
Feature Based Analysis of
Extensible Modeling Frameworks

and Libraries

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Business Informatics

by

Benjamin Weber
Registration Number 12025956

to the Faculty of Informatics
at the TU Wien

Advisor: Associate Prof. Dipl.-Wirtsch.Inf.Univ. Dominik Bork, Dr.rer.pol.

Assistance: Dipl.-Ing. Philip Langer, Dr.techn.

Vienna, 18th February, 2025
Benjamin Weber Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Benjamin Weber

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. Februar 2025
Benjamin Weber

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Assistant Prof. Dipl.-
Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork, for his invaluable guidance, support, and
encouragement throughout the duration of my research.
I am also profoundly grateful to Dipl.-Ing. Dr.techn. Philip Langer for his assistance
and insightful feedback, which greatly contributed to the development of this thesis.
Lastly, I would like to extend my appreciation to TU Wien for providing an excellent
academic environment and the necessary resources to complete this work.

v

Abstract

This thesis conducts a comprehensive feature-based analysis of extensible web-based
modeling frameworks and libraries, focusing on their capabilities to support the creation
and customization of a Domain-specific modeling language (DSML). These tools are
indispensable in modern software development, providing structured environments for
designing, visualizing, and managing complex systems. To evaluate their suitability
for different use cases, a hierarchical feature model is constructed, breaking down the
essential functionalities into categories such as extensibility, editing capabilities, model
management, and user experience enhancements.
Seven frameworks: A Tool for Multi-paradigm modeling (AToMPM), JointJS, React
Diagrams, Sirius Web, Sprotty, Graphical Language Server Platform (GLSP), and
Web-based Generic Modeling Environment (WebGME) are examined in detail. Each is
analyzed based on its implementation of features like constraint definition, meta-modeling,
integration with external tools and advanced editing workflows. The research points
out significant shortcomings, including insufficient attention to accessibility, alongside
standout feature support such as intuitive interfaces and robust extensibility mechanisms.
By comparing these frameworks, this thesis provides insights into their respective
strengths, limitations, and applicability for practitioners and researchers. The analysis
highlights areas for future development, emphasizing the need for more cohesive integra-
tion, enhanced user experience, and better support for emerging modeling paradigms.
Ultimately, this work seeks to advance the adoption and evolution of modeling frameworks,
contributing to more efficient and domain-tailored software development practices.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1

2 Constructing the Feature Model 3
2.1 Extensibility . 5
2.2 Editing Capabilities . 7
2.3 Model Management . 11
2.4 User Experience . 14

3 Modeling Framework Classifications 21
3.1 AToMPM . 21
3.2 JointJS . 23
3.3 React Diagrams . 24
3.4 Sirius Web . 25
3.5 Sprotty . 26
3.6 GLSP . 28
3.7 WebGME . 30

4 Evaluation 35
4.1 Critical Feature Gaps . 35
4.2 Standout Feature Support . 36
4.3 Framework Deficiencies . 37
4.4 Areas for Future Development . 37

5 Recommendation 39

6 Conclusion 43

List of Figures 45

List of Tables 47

ix

Acronyms 49

Bibliography 51

CHAPTER 1
Introduction

Modeling frameworks and libraries provide a set of tools, methodologies, and interfaces
to create and manipulate models [38] [51], which themselves are abstractions of systems
and processes. Models represent essential artifacts in software development by enabling
the structured analysis of system interactions and components [31].
Extensible modeling frameworks are designed to be flexible and customizable, allowing
them to be adapted to various domains. Often this is achieved through their modular
architecture, for example enabling the development of plugins that extend the core
functionalities, allowing for the creation of customized modeling environments. This
modularity is crucial for adapting tools to meet specific domain requirements and
integrating them with existing technologies [31]. Customizing these environments based
on domain requirements eventually leads to the creation of a domain-specific modeling
language DSML, which provides constructs that are tailored to specific domains, enhancing
communication with domain experts and improving the accuracy of models [29]. By
using DSMLs, domain experts can more naturally express concepts and ideas without
needing deep programming knowledge, bridging the gap between system implementation
and domain-specific requirements [29] [51]. Compared to more general purpose modeling
languages, DSMLs also offer more expressive power when designing systems within a
specific domain [38]. For this reason, only frameworks with some degree of extensibility
will be highlighted. Furthermore, given the recent trend towards web-based platforms,
which offer platform independence and ease of collaboration [51], only such tools will be
discussed in this paper.
In terms of research and scientific applications, extensible modeling frameworks are
significant for several reasons. Firstly, they facilitate the systematic development of
DSMLs, which can lead to improved productivity and better quality of software systems
through domain-specific component reuse. Secondly, these frameworks support rigorous
analysis and verification of models, contributing to more reliable software development
[29]. Hence, almost exclusively open source frameworks and libraries will be analyzed

1

1. Introduction

in this thesis because compared to closed source and commercial tools, they are more
relevant in a scientific context.
The primary goal of this paper is to classify various web-based extensible modeling
frameworks by constructing and applying a feature model. Generally, a feature model is
a hierarchical tree structure used to classify a specific domain by breaking it down into a
subset of features [32]. The resulting features will subsequently be used to classify the
frameworks based on their level of support for each feature.
Through detailed analysis and subsequent evaluation, we aim to uncover several critical
insights about these frameworks. This paper will try to identify features that might
be missing or lacking from certain frameworks, helping to pinpoint areas where these
tools could be improved. Additionally, we will determine which frameworks are the most
well-rounded in terms of their feature support and which are the most lacking, providing
a clear picture of the current landscape of modeling frameworks. The selected frameworks
and libraries do not represent extensible modeling environments as a whole. The analysis
in this paper is not meant to be exhaustive, but merely aims to highlight tools that
match different requirements.
Moreover, the analysis will reveal features that are either lacking or unexplored within
the examined frameworks, highlighting potential areas for future development.
By presenting these findings, the paper aims to assist readers in identifying the tools
that best fit their individual requirements, whether they are looking for comprehensive
feature support or specific functionalities tailored to their domain.
Ultimately, this work seeks to contribute to the ongoing development and refinement of
modeling frameworks, fostering an environment where both practitioners and researchers
can effectively utilize these tools for improved software development.
The remainder of this paper is structured as follows. First, a feature model is going to be
constructed in Section 2. This section will include an explanation of what a feature model
is, how it functions, and how to interpret it. The research topic of modeling frameworks
will be broken down into a subset of its features, each of which will be described in detail.
Next, the paper classifies the modeling frameworks in Section 3, starting with an intro-
duction to all the frameworks analyzed. Each framework is described in detail, covering
aspects such as platform type, technologies used, intended use, and distinctive features.
This section will also include the current relevance of each framework, notable connections
or relationships with other frameworks, and detailed results of the feature analysis.
A table presenting the results of the feature analysis follows these descriptions in Section 4.
The subsequent discussion highlights vital features missing from certain frameworks,
identifies exceptional feature implementations, significant deficiencies in frameworks, and
addresses any features that are in need of further development.
Based on the results, recommendations are provided in Section 5, grouping frameworks
that meet similar requirements.
Lastly, the paper will be concluded in Section 6 by summarizing the key findings,
highlighting their implications for practitioners and researchers, and suggesting areas for
future research based on identified gaps.

2

CHAPTER 2
Constructing the Feature Model

As stated previously a feature model is a hierarchical tree structure that specifies features
of a certain domain. Each model has a root representing the domain, with every
subsequent node representing a new feature that can potentially be broken down into
sub-features. A feature consisting of sub-features is called a compound feature. A
standalone feature without any child notes is referred to as a primitive feature [53].
The model imposes certain constraints that result in a variety of valid feature combinations.
Constraints are generally defined between a parent feature and one or all of its child
features [32]. Three specific constraints are relevant for the proposed feature model:

1. Mandatory Relationship: If a child feature is in a mandatory relationship with
its parent and the parent feature is supported, the child feature must also be
supported.

2. Optional Relationship: In an optional relationship, if the parent feature is supported,
the child feature may be supported.

3. Or Group: An "or group" specifies a constraint between a parent and all its children.
If the parent feature is supported, at least one child feature must be supported [32].

How this notation is realized graphically is shown in Figure 2.1.

Figure 2.1: Feature model notation

3

2. Constructing the Feature Model

In the following section, we will discuss the proposed feature model, with a particular
focus on its primitive features. We will classify the modeling frameworks and libraries
based on these features, indicating whether each framework provides full, partial, or no
support. To ensure clarity, we will define these levels of support precisely, as they are
essential for understanding the decisions made in the subsequent analysis.
Additionally one important distinction has to be made. In the upcoming sections we will
differentiate between two types of "personas". First, an adopter is a person that uses a
framework or a library to adapt it to their respective domain-specific needs by extending
and customizing it or using it as a foundation to build custom modeling editors. Second,
a user is a person that is entirely uninvolved in the implementation process and uses
these customized tools to create models. In some cases these personas can overlap and
one person can fulfill both roles but for the sake of unambiguous definitions we separate
these terms.

Figure 2.2: Top level feature model

Figure 2.2 shows the first level of features that can be supported by modeling frameworks.
Relatively broad features are depicted here, which will be broken down further in the
following sections.
Extensibility features are features that enable adopters to extend the framework both
logically and visually. Also, depending on the level of support, the functionality of the
framework can be extended by providing tools and possibilities not previously included
[10]. We will only examine tools supporting this feature, but since not all modeling
frameworks need to provide extension capabilities this node is marked as optional.
Editing capabilities are fundamental features of every modeling framework. They
allow users to interact with or modify models. Using such features constitutes changing
the state of a model in one way or another. Every framework needs to provide at least
basic tools that fulfill this role. Hence, it is marked as mandatory.
Model management is about managing the lifecycle of models, including creating,
storing, versioning, and easily switching between different models. It is strongly linked
to model persistence, since many model management features imply some level of data
persistence. The ability of the application to save models within its own environment
ensures that they are retained and accessible within the applications context, as opposed
to just being downloadable. Some frameworks do not include model management within
their scope, making it optional.
Lastly, user experience features are add-ons that are generally not required for basic
application of a framework. Instead they enhance the usage of a tool by providing essential

4

2.1. Extensibility

information and functionality that increase comprehension and decrease redundancy [41,
34].

2.1 Extensibility

Figure 2.3: Extensibility

The extension of a framework is expressed mostly in two ways: the definition of a DSML
[10] and the ability to integrate other technologies and tools into the framework [22,
51, 38]. At least one of the two need to be realized for a framework to be considered
extensible. First, we discuss the creation of a DSML in order to extend built-in logic.
Unlike general-purpose modeling languages such as UML, DSMLs are designed with
constructs and semantics that directly reflect the concepts, rules, and logic inherent to a
particular domain. Being more focused simplifies the modeling process for people in this
domain. [20, 10]

As seen in Figure 2.3 DSMLs can be expressed in many different ways, one of which is
the ability to define custom constraints. A framework supporting this feature allows the
establishment of specific rules that govern relationships and attributes within the model,
enabling adopters to define and enforce structural and semantic restrictions on model
elements [10]. The descriptions of the levels of support are as follows.
Full Support: Adopters can define and enforce structural and semantic restrictions
on model elements through a well-designed constraint system. Said constraints can be
applied to relationships, attributes, or other elements, ensuring the model adheres to the
specified rules.
Partial Support: Adopters may have access to basic constraint definition features,
but the range of supported customization options or complexity of constraints could be
limited. There might not be an easy way to create or manage constraints like a built in
tool or interface but instead there only exists a bothersome solution.
No Support: The framework does not provide any built-in support for adopters to define
or enforce constraints on model elements. The modeling environment relies solely on
adherence to predefined rules, without allowing adopters to introduce custom constraints.

Although not mandatory, often a constraint definition feature is implemented with the
ability to define custom validation rules in mind. At times both features may even

5

2. Constructing the Feature Model

overlap. Custom validations empower users to validate models against previously defined
rules, ensuring adherence to specified standards and constraints to ensure constant model
correctness. [10, 22]
Full Support: Validation rules can cover a wide range of aspects, including syn-
tax, semantics, and domain-specific criteria. Visual feedback and real-time validation
mechanisms provide immediate insight into model correctness, highlighting areas of
non-compliance with specified standards and constraints.
Partial Support: The framework provides some level of support for validation mecha-
nisms, but with limitations. For example, only having fixed validation rules leaves custom
constraint violations unresolved. Visual feedback or real-time validation mechanisms may
be present but might be less informative or comprehensive.
No Support: The framework does not have built-in validation mechanisms. Lack of
support for validation mechanisms may impact the ability to ensure model adherence to
predefined criteria.

One particularly important element for defining DSMLs is the ability to define elements
aligned with domain ideas and concepts. Among other things, this can include defining
behavior, properties and the appearance of a new element type. Having refined element
types available adds a layer of abstraction for users, eliminating the need to combine
standard elements in complex ways to model domain concepts [52].
Full Support: The framework allows adopters to define new modeling elements aligned
with domain requirements. Adopters can specify things such as properties, attributes,
behavior and appearance of custom element types. Said element types can have relation-
ships with standard or other custom element types. Tools or interfaces are provided to
easily create, modify, and use custom element types within the modeling environment.
Partial Support: Adopters might be able to define only certain aspects of new element
types, such as being able to specify behavioral traits but not its appearance. Custom
element types may also have limited or predefined relationships with other element types.
Creating and managing custom element types might require considerable effort or a
special workaround.
No Support: Adopters and users are limited to using elements offered by the framework.

A prominent approach of defining rules and behavior is meta-modeling. Many tools rely
on logic defined in code to enforce syntactical rules. An abstraction of this approach is
to define syntax and semantics within a model that in itself describes models. This in
essence is meta-modeling, making every model adhering to these rules an instance of this
so-called metamodel [10, 33].
Full Support: The framework allows the explicit definition of meta-models. Framework
adopters can define the structure and semantics of modeling elements within a separate
meta-model.
Partial Support: Framework adopters can define basic structures and semantics within a
meta-model, but there might be constraints on the complexity or depth of the meta-model.
No Support: Although the framework might provide other means of specifying syntax

6

2.2. Editing Capabilities

and semantics of models, meta-modeling is not supported.

As mentioned previously, apart from DSMLs frameworks can also be extended by means of
integration. This involves extending the core functionality of a framework by incorporating
other tools into the framework [22]. In most cases this is achieved by making use of
a modular architecture [51]. The performance of a framework in this aspect is largely
determined by its level of integration support.
Full Support: The framework posses fully fleshed out integration capabilities, providing
extensive support for seamless integration with various tools, systems, libraries, and
frameworks. Adopters and users can easily connect the modeling environment with
external tools and systems through well-defined interfaces or an application programming
interface API. Comprehensive documentation and support are available to guide adopters
and users through the integration process.
Partial Support: The integration process is supported but may require additional
configuration or manual steps.
No Support: Adopters and users are unable to integrate the modeling environment
with external tools, systems, libraries, or frameworks.

Support for integration often requires data interoperability. An import feature ensures
the framework can ingest data from various external sources, ensuring that it can work
seamlessly with data produced by different systems. An export feature facilitates data
sharing with other systems, allowing for a smooth data flow [10].
Full Support: Users can import and export models using at least one widely adopted
data interchange format such as JSON, XML, Avro, YAML, etc. Full Support implies
interoperability with other tools and systems that also adhere to these standard data
interchange formats. Import and export options include the ability to retain the structure,
semantics, and relationships of models.
Partial Support: Users may be limited to a single data format specific to certain tools
or platforms.
No Support: Users are unable to import or export models directly within the modeling
environment.

2.2 Editing Capabilities

Editing capabilities are characterized by one common trait. All features allow users to
change the state of a model. Be it a structural change or a completely new representation
of the model, each editing capability is a tool that enables the user to interact with a
model and alter it in some way.

Structural modifications are fundamental and among the most essential features a
modeling framework has to provide when it comes to actually constructing a model. In
this group, we include features to create both nodes and connections, as these element
types are often the base building blocks used for constructing models [20].

7

2. Constructing the Feature Model

Figure 2.4: Editing capabilities

Full Support: Users can easily create nodes or connections using streamlined workflows,
keyboard shortcuts, or context-aware menus. Drag-and-drop functionality may be
available, allowing users to place nodes precisely within the modeling environment or
connecting nodes with one another.
Partial Support: Node- and connection-creation workflows may be available, but they
could be less intuitive or streamlined. Users may have access to basic methods for creating
them, but advanced features may be limited. Visual feedback or assistance during node
and connection creation might be less sophisticated.
No Support: Users may encounter challenges in creating nodes and connections, re-
lying on manual and tedious processes and unintuitive workflows. Lack of support for
efficient node and connection creation can impact the overall user experience, especially
in scenarios where it is a frequent and critical task.

The grouping of elements is a feature that allows users to combine multiple elements into
a single unit. This can simplify the organization and manipulation of related elements
within a modeling framework. Grouping is particularly useful for maintaining coherence
in complex models by enabling simultaneous operations on multiple elements [34].
Full Support: Users can select multiple elements and group them together. The grouped
elements behave as a single unit, allowing for simultaneous movement, resizing, or other
operations.
Partial Support: There could be constraints on the types of elements that can be
grouped or the operations that can be performed on grouped elements.
No Support: Users are limited to organizing elements individually without the ability
to group related elements.

A feature enabling users to further enhance the structural capabilities of their models
is nesting. Nesting elements involves creating hierarchical relationships in which one
element is contained within another. This parent-child structure helps manage and visu-
alize complex models by establishing clear relational contexts among elements. Nesting
enhances the clarity and functionality of models by reflecting structural dependencies [12].

Full Support: Users can nest elements within other elements, creating a parent-child

8

2.2. Editing Capabilities

relationship. The framework provides tools or interfaces to easily create, modify, and
manage nested elements.
Partial Support: Certain types of elements or relationships may not be supported
within nested structures.
No Support: Users are limited to a flat structure without the ability to create hierar-
chical relationships between elements.

The following few features can still be classified as features that enable users to modify the
structure of models, but additionally pertain to a subset of features that allow for more
convenient layout adjustments. One such feature, connection routing, can enhance visual
clarity of complex models. With the ability to adjust the routing path of connections,
users can ensure that connections do not overlap with other elements resulting in a more
organized structure and increased maintainability off models [41].
Full Support: Users can easily define and customize the routing path for connections,
ensuring visually coherent and organized representations in the model. The framework
offers automatic routing algorithms that intelligently adjust connection paths to avoid
overlap with other elements and improve the overall layout.
Partial Support: Users may have access to basic connection routing options, but
customization or advanced routing algorithms could be limited. Users may need to
manually adjust connection paths.
No Support: Users are unable to modify connection paths. Lack of support for con-
nection routing may result in less visually organized and coherent representations in a
complex model.

Unlike connection routing, the next feature is not only limited to the relocation of
connections but can be applied to all elements. Automatic layouting refers to the
frameworks ability to organize model elements in a visually cohesive and readable manner
without requiring manual intervention. This feature improves the overall presentation of
the model by ensuring consistent alignment and spacing, thus improving the readability
and user experience [20] [41].
Full Support: Users can rely on the framework to automatically arrange model elements
in a visually cohesive manner, enhancing the overall presentation and readability of
the model. Customization options may include settings for layout styles, alignment,
and spacing, allowing adopters and users to tailor the automatic arrangement to their
preferences.
Partial Support: The automatic layout algorithms may have constraints or may not
handle complex model structures as efficiently.
No Support: Users need to manually organize model elements without the assistance
of automatic layout tools.

A feature allowing for dynamic size adjustments of model elements further enhances
layout clarity. Model element resizing allows users to adjust the size of elements within
the modeling environment. This feature is essential for maintaining precise control over

9

2. Constructing the Feature Model

the visual layout and to ensure that the presentation of information is clear and organized.
Resizing can be performed manually or automatically, depending on the frameworks
capabilities [34] [36].
Full Support: Users can easily resize model elements, providing flexibility in visual
layout and ensuring precise control over the presentation of information within the
modeling environment. The resizing mechanism is intuitive, allowing users to manually
drag and resize elements on the canvas. Additionally, the framework may support
automatic resizing, where elements adjust their size based on content or other layout
constraints.
Partial Support: Users may have access to basic resizing options, including manual
resizing, but the range of supported features or automatic resizing capabilities could be
limited.
No Support: The framework does not have built-in support for Model Element Resizing.
Lack of support for model element resizing may impact the precision and control over
the presentation of information within the modeling environment.

The last feature aiding users in layout adjustments is snapping. Snapping between
elements and on a grid is a feature that assists users in aligning model elements accurately
by automatically snapping them into place when moved into close proximity to other
elements or to a predefined grid. This feature ensures consistent spacing and alignment,
contributing to a well-organized and visually appealing model layout [20].
Full Support: Elements can automatically snap to one another when moved in close
proximity, facilitating alignment without manual adjustment. Snapping may include
options for aligning to a grid, ensuring consistent spacing and arrangement of elements.
Partial Support: Snapping to nearby elements might be available, but it could have
constraints or limitations on the types of elements that can be snapped together. There
may be no grid available to guide the placement of model elements.
No Support: Users are required to manually align elements without the assistance of
automatic snapping to nearby elements or a grid.

The next set of features involves the model having to be processed in some way. Model
transformation, for example, refers to the ability to convert models from one format
or language to another. This process includes defining transformation rules and often
involves validation and verification to ensure the correctness of the converted models [40]
[51].
Full Support: Adopters can define transformation rules to convert models from one
format or language to another. Transformation processes may include validation and
verification steps to ensure the accuracy of the converted models. The framework offers
tools or interfaces for users to easily create, manage, and execute model transformations.
Partial Support: Users may have access to predefined transformation capabilities or
templates. Customization of transformation rules may be limited, and the range of
transformations might not cover all aspects of the model.
No Support: Model transformation needs to be performed manually or using external

10

2.3. Model Management

tools, as the framework lacks native support.

Frameworks supporting different artifact representations allow interaction with models
more than one type of visualization. For example, being able to switch from modifying
a rendered version of a model using drag-and-drop tools to editing an equivalent fully
textual version [20]. Of course, depending on how this feature is realized, multiple
representations could also be synced and work in conjunction with each other.
Full Support: Users can choose between different artifact representations, such as
graphical or textual visualization, based on their preferences and specific modeling needs.
Partial Support: Switching between representations may be available but with cer-
tain restrictions or manual steps. For example, the synchronization between different
representations may be limited, requiring users to update changes manually.
No Support: Users are limited to a single type of representation for artifacts. Switching
between representations is therefore not supported.

Code generation is the process of converting abstract models to executable code. This
may also involve the ability for users to define custom mapping rules, not limiting the
frameworks capabilities to a subset of coding languages [40].
Full Support: The framework fully supports code generation, enabling the automatic
generation of code based on predefined models. Adopters can define mapping rules or
templates that specify how elements in the model should be translated into code.
Partial Support: Users may have access to predefined code generation templates for
specific languages.
No Support: Users are not able to define mapping rules or use templates to generate
code based on an established model.

In order to maintain consistency and integrity within complex models, some frameworks
implement support for refactoring. This implies that changes propagated throughout all
parts of a model encompassing all dependencies related to the change [20] [38].
Full Support: Users can efficiently modify model elements, such as renaming classes,
attributes, or other entities, with the assurance that changes automatically propagate
throughout the entire model and other affected artifacts.
Partial Support: Refactoring tools may lack advanced intelligence or may require more
manual intervention to ensure consistency throughout the model.
No Support: Changes do not propagate and must be applied throughout the model to
maintain consistency between dependencies.

2.3 Model Management

Model management involves all processes concerned with organizing and maintaining
models. The availability of such features depends for the most part on the type of
framework. If a framework does not concern itself with the persistence of models, model

11

2. Constructing the Feature Model

Figure 2.5: Model management

management does not become obsolete but is arguably less relevant [12]. This is specifi-
cally applicable to strictly code libraries that will be relevant for the subsequent analysis.

As mentioned above, model management typically implies some form of model persistence,
which in turn requires model organization. This means users will need a way to easily
access and interact with saved artifacts. There are several features that can enhance
model organization among them are artifact browsers. They are a mandatory feature
as they represent a central hub users have to use to access saved models or any other
relevant artifacts. Most often artifact browsers organize models in a hierarchical folder
structure and typically supports operations such as creating, renaming and deleting of
models.
Full Support: Users can organize models in a hierarchical folder structure or a similarly
organized layout. The artifact browser allows users to easily create, rename, move, and
delete folders and models. Users can efficiently navigate through the models using the
artifact browser, making it a central hub for managing and accessing modeling artifacts.
Partial Support: Users may have access to a basic organizational view, but customiza-
tion options or features could be limited. Certain operations, such as moving or renaming
models, may have constraints.
No Support: The framework does not provide built-in support for an artifact browser.

Unlike an artifact browsers a model search feature is not mandatory and only serves
to enhance the model organization capabilities of a framework. A dedicated search
functionality can enable users to quickly and efficiently locate specific models using
criteria such as model names [52].
Full Support: Users can search through a collection of models using criteria such as
model names to locate specific models.
Partial Support: Visual feedback or highlighting in the user interface is available but
may be less comprehensive, providing limited enhancements to the search experience.
This might make it slightly more challenging for users to identify relevant models quickly.
No Support: Users are unable to efficiently locate models within a repository through
a dedicated search functionality.

12

2.3. Model Management

Tagging and labeling refers to the ability to associate descriptive tags or labels with
models for better categorization and organization. This feature allows users to manage
models more effectively based on the assigned tags. This feature works best when
implemented in combination with the previously mentioned model search.
Full Support: The framework fully supports tagging and labeling, allowing users to
associate tags or labels with models for categorization. Tagging is flexible, enabling
multiple tags to be assigned to a single model and vice versa.
Partial Support: Users may only have access to predefined tags and labels, or can
assign only one tag per model.
No Support: Users are unable to associate tags or labels with models for categorization
within the modeling environment.

The following two features involve state management, referring to functionalities within a
modeling framework that allow users to control, track, and revert the state of models over
time. State management features ensure that users can maintain control over a models
development process, safeguard against errors, and allow collaborative contributions, all
of which are vital for the management of complex modeling projects [38].
A framework with version control capabilities typically has a system in place, responsible
for tracking changes made to models, providing a history of modifications and managing
different branches for concurrent development [38].
Full Support: Users can view a history of changes made to the model, which may
include additions, modifications, and deletions. The editor allows models to be reverted
to a previous version. In addition, users can also create branches to work on different
features, changes, or versions of a model concurrently. Branches can be merged, allowing
changes from one branch to be incorporated into another.
Partial Support: Users may be able to access a simplified history of changes, possibly
limited to specific types of modifications. The depth of the change history may be limited,
covering only recent or significant changes. Merging may have limitations, and conflict
resolution may require manual intervention.
No Support: Users are unable to view or revert to previous versions of the model, as
the framework does not include a system that tracks changes. Users are limited to a
linear development process without the ability to work on multiple branches concurrently.

An undo or redo feature is essential for flexibility in correcting errors and the ability to
refine models by navigating through multiple levels of changes [34].
Full Support: Users can undo or redo a series of actions to revert the model to a
previous state or reapply actions that were undone. Undo/Redo functionality is available
for all types of changes, allowing users to navigate through multiple levels of modification
to fine-tune the editing process.
Partial Support: Users can undo and redo basic actions, but the history might not
cover all types of changes. The depth of the undo/redo history may be limited, allowing
users to revert or reapply only a certain number of steps.
No Support: The framework does not have built-in support for undo/redo functionality.

13

2. Constructing the Feature Model

2.4 User Experience

Figure 2.6: User Experience 1

User experience with regard to modeling frameworks can be described as the overall
usability and efficiency of the environment. These features are designed to streamline
workflows, provide visual and interactive enhancements, and ensure that the model-
ing environment is user-friendly and accessible to a broad range of users [41]. They
could be realized as tools or simply as an enhanced ease of interaction with the framework.

The first type of features classifiable as user experience are interaction-based features.
They mostly change how users interact with the modeling environment and its tools,
increasing efficiency and accessibility. The first feature within this group are interactive
diagram elements. For this feature we consider functionality that enables both adopters
and users to configure and use model elements that are not only meant to be looked at
but also interacted with. This could be realized through embedded hyperlinks, actions
triggered via clicking, or other custom functions.
Full Support: The framework includes extensive capabilities for clickable and dynamic
elements within diagrams. Interactive elements may trigger events or actions, allowing
users to navigate to related information, open external resources, or execute specific
functions. Adopters may be able to create interactive elements such as hyperlinks,
buttons, or custom actions, or add them to existing model elements.
Partial Support: Users may have access to basic interactive elements with predefined
actions and are unable to define custom ones.
No Support: The framework does not support interactive elements such as buttons,
hyperlinks, or other elements with customizable actions.

Inline editing, just as the previous feature, also improves interaction directly with model
elements. Instead of having to change names and perhaps properties through a separate
input field, changes can be made directly within the modeling canvas [36]. This feature
makes modeling more intuitive for users and makes workflows more efficient [34].
Full Support: The framework allows direct text editing within the diagram for various
modeling elements. Changes made through inline editing are immediately reflected in the

14

2.4. User Experience

model, providing a real-time editing experience. The inline editing feature is intuitive
and user-friendly, enhancing the overall modeling workflow.
Partial Support: Inline editing may be available for certain types of modeling ele-
ments or specific properties. Changes made through inline editing might not always be
immediately reflected in the model, requiring additional actions to apply the edits.
No Support: Users are required to open separate dialogues or forms to edit properties
or textual information associated with modeling elements.

A zoom and pan feature allows users to increase the zoom of the modeling canvas and
pan across it. This is especially useful when working on complex models that are more
easily reviewed when looked at closely [36] [20].
Full Support: Users can zoom in and out of the model to examine details or get an
overview of the entire model. Pan functionality allows users to navigate across the model
canvas seamlessly.
Partial Support: Zoom and pan actions are not as smooth or responsive as in fully
supported frameworks.
No Support: The framework does not have built-in support for zoom and pan.

Frameworks supporting a model element search feature allow users to search for specific
model elements. Depending on the implementation they can be filtered based on their
individual metadata, most often through their identifier alias name. This feature can
also involve visual responses for found elements further enhancing the user experience
and interaction.
Full Support: Users can efficiently locate specific model elements using search criteria,
such as element names, types, attributes, or metadata. Visual feedback or highlighting
in the user interface enhances the search experience, making it easy for users to identify
relevant model elements.
Partial Support: Users can search for model elements, but visual feedback or highlight-
ing in the user interface may be less comprehensive, providing limited enhancements to
the search experience. This might make it slightly more challenging for users to identify
relevant elements quickly.
No Support: Users are unable to locate specific model elements within a model through
a dedicated search functionality.

Real-time collaboration enables multiple users to work simultaneously on the same
model or project, with changes being reflected for all users. This implies the support
of concurrent editing and live updates, as well as possibly presence indicators which in
combination facilitates effective teamwork [38].
Full Support: The framework fully supports real-time collaboration, providing extensive
capabilities for users to engage in collaborative activities in real-time. Multiple users can
simultaneously work on the same model or project, whilst changes are reflected instantly
to all participants. Real-time collaboration features include things such as concurrent
editing, live updates, and presence indicators to show the contributions of each user.

15

2. Constructing the Feature Model

Partial Support: Users may be able to collaborate in real-time, but the range of
supported collaboration features could be limited. Concurrent editing may be supported,
but with restrictions or potential conflicts that require manual resolution.
No Support: Users are unable to engage in real-time collaboration within the modeling
environment.

The next two features, although still considered interaction enhancements as illustrated in
Figure 2.6, can specifically aid impaired users by making the framework more accessible.
They are thereby classified as accessibility features within the feature model.
Using keyboard shortcuts, users are able to more easily perform specified actions. Adopters
may also be able to implement shortcuts with custom actions assignable to any combina-
tion of keys [34]. Users with certain impairments or disabilities may be more restricted
in their ability to use common peripherals like mouses and keyboards. Frameworks with
keyboard shortcuts or the ability to implement custom ones can support more restrictive
layouts [34, 35]
Full Support: Users can perform a wide range of operations using keyboard shortcuts,
including, for example, creating, editing, and navigating model elements. The framework
provides documentation or an easily accessible reference for users to learn and memorize
available keyboard shortcuts. Customization options allow adopters or users to define to
modify keyboard shortcuts based on their preferences.
Partial Support: Users may have access to only the most basic keyboard shortcuts
like redo, undo or copy and paste. Documentation or any other way to look up available
shortcuts might not exist.
No Support: Users are unable to use keyboard shortcuts for efficient navigation or
operations within the modeling environment.

"Assistive technologies" is a more general feature compared to others that includes
various accessibility enhancements. Disabilities can be classified into five main categories:
auditory, cognitive/learning/neurological, physical, speech, and visual with each requiring
different considerations in tool design [44]. While we cannot list every specific feature
that enhances accessibility, this inclusion in our feature model allows us to highlight
more efforts towards improving framework accessibility. This includes functionalities that
enhance the usability of the framework for all users, such as compatibility with assistive
tools.
Full Support: The framework enables users with disabilities to more easily navigate,
interact, and perform modeling tasks in some way. Documentation includes guidance on
accessibility features and other aspects relevant to users with disabilities. The framework
may have compatibility with assistive tools like screen readers.
Partial Support: Certain functions or features may have limited accessibility, and
some interactions may not be fully compatible with assistive tools. The framework may
not advertise any specific accessibility features but might still use technologies that are
compatible with assistive technologies.
No Support: The framework does not target to improve accessibility. Users with dis-

16

2.4. User Experience

abilities may face significant barriers when attempting to use the modeling environment.

Figure 2.7: User Experience 2

The next set of features are responsible for giving users contextual help and making it
easier to efficiently navigate the modeling environment. On-screen guidance, for example,
dynamically adjusts to the users actions or selected elements, providing real-time support
to facilitate the learning and use of the framework. The guidance may include tool tips,
help messages [34], and contextual hints that adapt to different scenarios [36], making it
easier for users to understand and utilize the tools available effectively.
Full Support: Users receive relevant guidance and tool tips based on their current
actions, context, or selected elements in the modeling environment. Adopters are able
to define tool tips and other forms of contextual help to aid users navigate and use the
framework or modeling tools build upon it.
Partial Support: The framework might include predefined contextual help and tool
tips but adopters are unable to customize this aspect.
No Support: Users do not receive contextual help or tool tips within the modeling
environment,

Navigation logic enhances the users ability to traverse complex models by using predefined
relationships and structures. This feature allows users to move seamlessly between related
elements, using intuitive shortcuts or context-aware menus. This can streamline the
process of exploring and managing interconnected components [36].
Full Support: Users can effortlessly traverse between model elements based on predefined
logic, enhancing the overall modeling experience. Navigation options may include intuitive
shortcuts, context-aware menus, or smart suggestions for transitioning to related model
elements. The editor may support features such as hyperlinking between elements, making
it easy to navigate to associated or referenced elements.
Partial Support: Navigation features may lack advanced context awareness or may not
seamlessly transition between elements based on intricate logic.
No Support: Users cannot navigate between model elements using shortcuts, context-
aware menus, or smart suggestions based on predefined logic.

Feedback mechanisms are similar to contextual help features, with both fulfilling a
guidance role for the user. Whilst context menus can be used to guide the user through

17

2. Constructing the Feature Model

most general workflows, feedback mechanisms are integral to ensure that users receive
timely updates and error reports [34], enhancing their ability to understand and resolve
issues within the modeling environment.
Error messages provide this sort of feedback, providing users with detailed and actionable
feedback when something goes wrong in the model. This feature helps users identify
problems quickly with clear explanations of errors and potential solutions.
Full Support: Users receive detailed and actionable error messages when issues or
validation errors are encountered in the model.
Partial Support: Because of non-descriptive error messages users may need to rely on
external resources or documentation for additional information on how to resolve errors.
No Support: Users are not provided with clear and informative feedback when errors
occur.

The last three primitive features within the feature model all concern the degree of
maintenance of the framework. It seems reasonable if at least one of the following features
needs to be supported for the framework to be considered actively maintained.
The first feature, "Regular Updates", ensures that the framework evolves with new features,
security enhancements, and bug fixes. This feature keeps the modeling environment
current, addressing any issues and adding functionalities that improve user experience
and framework stability.
Full Support: The framework provides adopters with timely and consistent updates.
Updates include enhancements to functionality, new features, improvements in security,
and bug fixes.
Partial Support: Updates may be less frequent or may focus on specific aspects such
as functionality or security.
No Support: Adopters are not provided with regular updates regarding functionality
or security. There may be infrequent or no releases that address improvements or bug fixes.

An actively maintained framework should, in most cases, also provide up-to-date doc-
umentation. This includes detailed information about the frameworks features, usage,
and best practices. Well-maintained documentation enhances the learning curve and aids
users in utilizing the framework efficiently.
Full Support: Documentation detailing the various features and how to use them
is available, providing up-to-date and comprehensive information for adopters. The
documentation is well organized, searchable, and easily accessible, enhancing the adopters
learning experience.
Partial Support: Documentation may cover essential aspects, but certain areas could
be less detailed or lack comprehensive information. Adopters may find the documentation
helpful for basic tasks, but advanced topics or use cases might be less well documented.
No Support: There is no documentation provided or the provided documentation is
severely out of date.

18

2.4. User Experience

The last primitive feature, "Community Support", constitutes the existence of a platform
for users to connect, share knowledge, and seek assistance from other users. This can
include forums, discussion boards, or social media groups where users can discuss issues,
exchange tips, and collaborate on problem solving.
Full Support: Adopters can engage in discussions, ask questions, and seek assistance
from the community. There are dedicated forums, discussion boards, or social media
groups where users can share experiences, tips, and best practices.
Partial Support: Adopters may have access to forums or discussion boards, but
community activity could be less vibrant. Documentation and official support channels
may play a more prominent role, with limited community-driven support.
No Support: Adopters lack access to active forums, discussions, or social media channels
for community support. There is little to no community-driven knowledge sharing or
assistance.

19

CHAPTER 3
Modeling Framework

Classifications

In this chapter we will both present all frameworks evaluated in this thesis and analyze
them individually based on the features previously defined. To increase the accuracy
of the evaluation results, we will also introduce an additional fourth level of support,
namely "not supported by core". This level pertains to all features that are not covered
by the core implementation of a framework but are stated to be available through other
means such as integration of other tools and libraries or custom implementations.

3.1 AToMPM

AToMPM is a fully web-based modeling framework, meaning it is not restricted by
things such as operating systems, platforms or a client device. It is referred to as a
research framework, meaning its main objective is to further research in Model-driven
engineering (MDE), allowing for rapid prototyping of new modeling concepts, languages,
or transformation techniques [51].
Adopters and users interact with AToMPM mostly using the already implemented graph-
ical user interface GUI. The main interface allows users to create models visually, drag
and drop elements, connect them, and edit the properties. Using the same GUI adopters
can define their own DSML or define model transformations [6]. AToMPM is based on a
client-server architecture that is illustrated in Figure 3.1. The clients are web browsers,
and the server is a Node.js application. At its heart, AToMPM has a minimal core called
"Stateful". This core does not have any specific modeling functionality but serves as
the foundation for everything else. The reason for its high modularity and extensibility
is its plugin-based system. Almost everything, except for the minimal core, such as
modeling functionalities and toolbars, is built as a plugin. The architecture allows for easy
extension. New plugins can be added, and even external servers in different programming

21

3. Modeling Framework Classifications

Figure 3.1: AToMPM Architecture. Reprinted from Ref. [51]

languages can be integrated. This is further supported by a plugin called "PluginManager"
explicitly depicted in Figure 3.1, which handles the loading and unloading of other plugins
[51].

AToMPM excels in its extensibility features. It offers complete support for constraint
definition, custom validation, and custom element type definition. Adopters can define
constraints either globally or locally within model element types using JavaScript [6]. The
framework also supports meta-modeling, allowing users to define metamodels primarily
using class diagrams [5]. However, AToMPM lacks integration capabilities with external
tools or libraries [6]. Whilst the framework does not support the import of (meta-)models,
it supports three export options: saving and using the AToMPM native ".model" extension,
exporting to an Ecore file usable in Eclipse and exporting to a SVG file [6]. None of the
mentioned file formats can be considered a widely adopted data interchange format.
The framework boasts a robust set of editing capabilities including intuitive node and
connection creation, as well as element grouping and nesting [6] [5]. Additionally,
AToMPM supports model transformations and advertises it as one of it’s main features.
It allows for the definition of model transformations within a modeling language, for
example, supporting general transformations from one language to another and even very
specific use cases such as petri net simulations [6]. It mostly shows deficiencies in regards
to convenient layouting features, namely automatic layouting and snapping with model
element resizing and connection routing also being supported only partially due to their
implementations seeming somewhat unintuitive for users [6].
AToMPM includes an artifact browser that functions similarly to a file explorer, allowing
users to create, move, and delete folders and files. Apart from this, it lacks useful model
management features like model search and version control. The framework does support
undo and redo functionality, although it is only accessible via buttons in the GUI, which
might be an issue from an accessibility perspective.
Some user experience enhancements, such as interactive diagram elements and zoom/pan
functionality, are offered [6]. It also supports real-time collaboration, allowing multiple

22

3.2. JointJS

users to work simultaneously on the same model [6]. However, it falls short in areas
like inline editing and accessibility features such as keyboard shortcut support [6] and
assistive technologies. The framework provides basic on-screen guidance through tool tips,
but lacks comprehensive contextual help [6]. It would be virtually impossible to navigate
the features of AToMPM successfully or at least inefficient by relying solely on these tool
tips. Considering this, the documentation seems indispensable. The documentation is
extensive and up-to-date [6] but unfortunately the frameworks development appears to
have halted, with the newest update released in February 2023. Moreover, community
support is limited and the last issue on the GitHub page was opened in August 2023 [7].

3.2 JointJS

JointJS is a JavaScript library used to build both diagrams and diagramming applications.
It is fully open source with a solid foundation and some very useful features for building
modeling editors [34]. As the name implies, it is based on JavaScript and uses Scalable
vector graphics (SVG) for rendering graphics. Moreover, it depends on additional
technologies such as jQuery, Lodash, and Backbone.js [30]. Unlike AToMPM JointJS
does not include features such as an already implemented modeling editor with a fully
formulated GUI or model persistence. Instead, it is better categorized as a coding library
that provides tools and building blocks to build unique modeling solutions. One could
argue that this allows for more freedom of extension and customizability but also requires
additional effort compared to frameworks akin to AToMPM. In addition to providing
predefined elements and features for creating diagrams, JointJs also allows creating
reusable custom diagram elements, as well as an extensive API for customization [30].
The developers behind JointJS also offer a commercial version of this framework called
“JointJS+” with many more features built on top of the open source version [34]. The main
difference between the two versions is the amount of manual and additional work needed
for building fully fleshed out modeling editors. Whilst implementing a lot of the features
in the open source version requires developers to create fully custom implementations
on top of the functionality the open source version provides, many of these features
are already supported “out of the box” in the commercial version that streamlines this
process [28].
We mentioned that this thesis will only focus on open source platforms since those tend
to be more relevant for research. Despite that, we have decided to include the commercial
version in this analysis since it is so closely related to JointJS and will also give an
interesting perspective on the proposed benefit of a paid framework.

JointJS provides a foundation for extensibility, with partial support for constraint
definition and custom element type definition [28]. Adopters are able to fully realize
these features by using provided components, such as the event listener and adding
custom implementations [34]. The commercial version, JointJS+, offers complete support
for these features, including a validation component for more streamlined handling of
constraints [34]. Both versions have considerable integration capabilities, supporting

23

3. Modeling Framework Classifications

various JavaScript frameworks and libraries, as well as both versions possessing built-in
import and export capabilities [28].
Some editing capabilities are already fully implemented in the open source version,
like connection creation [54] and nested elements [34]. However, it lacks node creation
workflows and convenient features, such as element grouping. JointJS+ addresses these
limitations, providing advanced functionalities like drag-and-drop, node creation and a
selection plugin for operating on multiple elements simultaneously [28]. Both versions
support connection routing [54] and automatic layouting, with JointJS+ offering a wider
selection of layouts [28].
The biggest weakness of the library is its lack of model management support. The
open source version does not support any of the features in this category, whereas the
commercial version only offers undo and redo functionality [28].
JointJS+ significantly improves the user experience compared to the open source version.
Although both support interactive diagram elements [54] [34], JointJS+ adds features such
as inline editing, zoom and pan, and keyboard shortcuts. Unlike the open source library,
JointJS+ also offers comprehensive tools that can be configured to provide contextual
help and tool tips. This includes plugins and components such as the popup and tool
tip components designed to enhance user interaction and provide necessary information
directly within the modeling environment [28]. A big strong point of this library is
without a doubt its relevancy and active maintenance. The library is frequently updated
with new releases that not only include bug fixes, but also introduce new functionality [13]
and forums or social media pages like GitHub or Twitter are easily accessible and lively
[14]. The documentation for this library is not only easy to access and find, but also very
detailed, covering most aspects of the library [34]. Additionally, JointJS provides many
demo applications that showcase all features included in the open source and commercial
versions of the library, along with their corresponding implementations [37].

3.3 React Diagrams

Like JointJS, React Diagrams is better described as a code library. As stated in the official
documentation of React Diagrams, the library was actually heavily inspired by JointJS. In
general, the library was designed for creating customizable and extendable diagramming
tools. The developer intended it to be used in conjunction with the JavaScript framework
React and wrote the implementation mainly in TypeScript [42]. One notable feature and
significant difference from JointJs is the use of HTML to render nodes as opposed to
SVG, making use of its unique properties such as being able to embed input fields or
drop-down menus. The library provides adopters with default models and widgets that
can be easily extended and tailored to ones own domain [4].

React Diagrams possesses close to no built-in extensibility features. It was designed
with ease of integration in mind as shown in a demo application that extends the core
library with an auto-layouting feature [45]. It excels in custom element type definition,
allowing adopters to extend three base model types: nodes, ports, and links. Each can

24

3.4. Sirius Web

be customized in appearance and behavior [17]. While it does not natively support any
others, most features could be implemented by extending the codebase. For instance, it
supports model serialization and deserialization, which could be used to implement an
import and export feature[45].
The library provides robust editing capabilities. All basic features, namely node creation,
connection creation and element grouping, are fully implemented. Additionally, the library
offers full support for connection routing, allowing users to freely adjust routing paths.
However, it lacks built-in support for many other features, for example automatic layouting
[45], nested elements and model element resizing [3]. Furthermore, no feature involving
any kind of model processing is supported, meaning no built-in model transformation or
code generation.
React Diagrams is primarily focused on the front-end diagramming experience and lacks
built-in model management features. Whilst features like an artifact browser and model
search are most likely not easily realizable, others like a version control or undo and redo
feature are very much feasible. The library is easily integrated with the version control
system GIT and custom implementations for an undo/redo feature have already been
proposed in a GitHub issue [55].
User experience falls a bit short, as many features are unsupported. It fully supports
interactive diagram elements, allowing for the integration of buttons and other interactive
HTML elements within nodes. Zoom and pan functionality is also fully supported [45].
That said, accessibility features such as customizable keyboard shortcuts and assistive
technologies are missing, as well as important feedback mechanisms such as on-screen
guidance and error messages. React Diagrams has seen less frequent updates recently,
with a focus on bug fixes and maintenance rather than new feature development. The
documentation is described as a work in progress and may not be comprehensive [4]. The
community surrounding this project used to be very active, but ever since development
has slowed down, so has the community activity. Questions still get posted from time to
time, but do not always get answered [42].

3.4 Sirius Web

Sirius Web is an open source project under the Eclipse Foundation that provides a
modeling workbench to create custom graphical modeling tools. It allows users to define
their own modeling languages and design their own editors for various domains. With
Sirius Web, users can easily create and customize visual representations, define valida-
tion rules, and specify the behavior of their models. It is a powerful tool for creating
specialized modeling environments tailored to specific needs. Sirius Web is a low-code
modeling editor comparable to a framework like AToMPM, as it also provides an already
fleshed out modeling environment with complex tolling and functionality. Extending
and customizing it requires much less coding then aforementioned libraries [52]. The
platforms technical stack holds up to today’s standards including modern technology
such as Spring, React, PostgreSQL and GraphQL. Additionally, it is worth noting that
Sirius Web is a sub-project of Eclipse Sirius and closely related to its predecessor Sirius

25

3. Modeling Framework Classifications

Desktop that was later remade to be a web-based platform [47].

The extensibility of this framework is one of the best we found in our analysis. It
supports all features we considered at least partially. Constraint definition is fully
supported through so-called "domain models", allowing adopters to define restrictions on
attributes and relationships between model elements with basic validation functionality
[52]. Custom element type definition is robust, with adopters able to define nodes with
various attributes and relationships in the domain model, and further customize them in
a so-called "view model". The platform also fully supports meta-modeling, enabling the
creation of domain-specific languages through class diagram syntax [46]. Apart from this
importing and exporting of models is convenient and Sirius Web also allows for certain
types of integration. This pertains mostly to integration with an Integrated development
environments (IDE). Using Sirius Web in conjunction with other applications, libraries
and so on is made a lot easier by utilizing webhooks. Unfortunately, those are only
available as an enterprise feature [52]
It has built-in support for editing capabilities such as node and connection creation,
element grouping and nested elements [46]. Automatic layouting can be enabled and
configured by adopters when creating a new DSML [52]. Sirius Web also supports model
transformation, allowing multiple representations of the same model, including diagrams,
forms [46] and others [43]. However, it lacks connection routing capabilities, which may
limit flexibility in complex diagrams.
The framework includes a fully featured artifact browser referred to as a "project browser"
that lists all models and associated artifacts. The artifact browser offers a basic model
search functionality [52], but more elaborate features like tagging and labeling are missing.
Model management features some might consider very essential are missing. This includes
version control features like a change history or branching and undo/redo functionality,
which could be all be limitations for complex modeling projects.
In regards to user experience Sirius Web offers an impressive coverage of features. It fully
supports interactive diagram elements, inline editing [52], and zoom and pan functionality.
It even allows real-time collaboration, meaning simultaneous editing of the same model
with changes being reflected instantly for the respective other user. It lacks keyboard
shortcuts and assistive technology support, which is a detriment to accessibility. On-
screen guidance is well implemented, with tool tips and context-aware menus that can be
customized by adopters [46]. The Sirius Web GitHub page is very active, with frequent
commits to its repository. The documentation is very detailed and regularly updated for
new versions of the framework. Both the issue and discussion section of the Sirius Web
GitHub are still seeing almost daily activity [25]. Additionally, developers of Sirius Web
can be directly contacted for support [16].

3.5 Sprotty

Sprotty is a diagramming framework that can be used to create complex diagrams or
entire modeling tools bolstering their own domain-specific elements and logic. Despite

26

3.5. Sprotty

not having a GUI like other tools previously referred to as frameworks, like AToMPM
and Sirius Web, Sprotty still cannot be classified as just a code library [21]. Unlike
libraries that usually provide specific functions that can be called upon as needed, Sprotty
boasts a comprehensive architecture, an extensive feature set, and the ability to shape
an applications structure [31]. The architecture of Sprotty allows for both rich-client
applications and applications with client and server interplay. Compared to some of
the other frameworks discussed in this paper that are less code-heavy, Sprotty demands
considerable technical knowledge from its adopters [21]. It leverages technologies such as
TypeScript for client-side implementation, Java and Node.js for server-side architecture
and SVG for rendering diagrams. A key feature of Sprotty is its ability to extend
the Language server protocol (LSP). The LSP is a client-server approach that replaces
today’s mostly monolithic Integrated development environments (IDE) that are used
in the field of software development. It has mainly been developed to counteract the
n-to-m complexity of having to individually integrate every programming language into
every code editor by decoupling the language-specific logic from the usability-centric text
editor and therefore lowering the complexity [8]. LSP establishes a uniform protocol that
standardizes the communication between a language client (e.g., an IDE like Eclipse)
and a language server (e.g., for a programming language like Java). The language client
only needs to be able to interpret and understand the protocol instead of the specific
programming language. Likewise, the language server can focus on language support
and does not need to consider the specifics of a respective IDE [8]. The LSP separates
language-specific logic (handled by a "language server") from the editor-specific implemen-
tation, meaning language-specific features only have to be implemented once. Sprotty’s
ability to extend the LSP to integrate graphical modeling with textual languages allows
for hybrid modeling approaches [31].

Sprotty provides moderate extensibility features. While it does not have a dedicated
constraint definition tool, adopters can allow or disallow user interaction on certain
elements such as the ability to select, drag, or connect elements [21]. More intricate
constraint definition can be achieved by integrating with Xtext, a separate framework [31].
The same goes for validation capabilities. Although natively only supported in minor
ways [26], full support can be achieved by integrating with Xtext [31]. Adopters can
implement custom elements with application-specific properties. Views can be defined
for each element based on different SVG element types with individual CSS styling
[21]. Sprotty excels in its integration capabilities. Integration with Xtext, Langium, the
Language Server Protocol, VS Code and Theia to name a few are supported by Sprotty
with existing packages to ease the process [21]. Features such as meta-modeling and
imports are not implemented.
The framework provides a lot of means to edit and modify models as part of its core
implementation. Especially structural modifications and layout adjustments are mostly
covered, with the only missing features being connection creation [21] [2] [48] [50] and
element resizing [39]. All features, including model processing (model transformation,
artifact representation and code generation) are only supported via integration [31].

27

3. Modeling Framework Classifications

Sprotty is among the frameworks that is not responsible for model persistence. Considering
this, most model management features are not inherently supported. Only when integrated
with for example an LSP they are realized [31]. Undo and redo functionality does not
mandate model persistence and is supported by Sprotty [21]. A wide variety of user
experience features are part of the core functionality of the framework. It fully supports
interactive diagram elements, inline editing, and zoom and pan. Keyboard shortcuts are
well supported and customizable [21]. The framework also offers a command palette [49]
that can be used to search for model elements within an open model [48]. Other features
such as collaborative features or assistive technologies are not supported. Adopters are
given tools to implement on-screen guidance for users, but it is not part of the core
functionality. Error messages are also supported and can be fully customized by adopters
utilizing the decoration feature on specified model elements [21]. To this day, Sprotty
still receives regular updates with the newest minor version being released on April 9th
2024. Almost all updates are accompanied by a change log detailing the improvements
and new features [26]. The documentation gives adopters a good introduction into the
framework, is comprehensive and for some topics goes into a fair amount of detail [21].
Lastly, the Sprotty project spans over four repositories and all of them seem to have an
actively maintained issue section for adopters to ask questions and give suggestions [26].

3.6 GLSP

GLSP is a web-based client-server framework that can be used to develop modeling editors
with great emphasis on customizability and extensibility of the editors functionality.
As detailed by De Carlo et al. [18], the platform is split up into three parts: The
client, which is responsible for rendering the diagram and providing editing tools for
the operations defined by the server. The server, which is responsible for things such
as loading, interpreting, and editing diagrams according to the rules of the graphical
diagram language and the source model, which is a representation of the model in a
format that can be easily saved [22].
GLSP is also closely related to Sprotty and even uses the framework in its clients imple-
mentation [9]. Whilst Sprotty mainly focuses on rendering and interaction with diagrams
on the web, giving users direct control over the visual elements [21], GLSP builds upon
this, providing additional tools and a protocol for servers to easily communicate with
diagram editors [22]. This communication is realized through a sequence of specialized
operations that handle model updates, bounds computation, and action processing [18].

Extensibility-wise, GLSP performs similar to Sprotty. The only significant difference
being constraint definition and validation. GLSP offers full support for both features,
making it possible for adopters to define constraints mostly on the server-side. It is
even possible to define quick fixes, which can be accessed via the context menus that
are supported by GLSP editors, to resolve constraints that have been violated following
validation [22]. Server-side validation rules can be customized and per default an editor
built upon GLSP renders a so-called “Palette” that, among other functions, includes

28

3.6. GLSP

a button to validate the model. When pressed, the model is validated and the user
gets immediate feedback through the validation markers, which in themselves are also
customizable [22]. On the server-side, it is possible to customize existing base elements
that are already preconfigured like basic nodes or edges with, for example, additional
attributes or relationship behaviors or configure completely new element types [22]. From
the client the adopter is able to customize the rendering of the elements limited by SVG
and CSS supported operations [36].
Considering the editing capabilities we analyzed as part of this research, GLSP performed
exceptionally well. It fully supports all structural modifications, such as basic functionality,
namely node creation [36] or more advanced capabilities such as nesting nodes [36] [23].
Layout adjustment capabilities are also fully supported, covering connection routing,
automatic layouting, model element resizing and snapping [36]. Despite that, model
processing is a weak point, with model transformation being unsupported and code
generation only supported by integrating GLSP with another framework like the Eclipse
Modeling Framework (EMF) cloud. An example implementation can be found in the
“ecore-glsp” project, where ecore files can be used to generate corresponding Java files
[23, 27]. Regarding different artifact representations, users are always able to right click
a model file and choose whether to open the file in a code editor (text-based) or the
rendered version. The editor could even be set up in a way where opening a model file
results in a split view with the textual and rendered view of the model being displayed
side by side synced to one another. GLSP is also one of the frameworks that has fully
implemented refactoring support. For example, if set up correctly, the labels (names) of
certain elements can reference other elements, which are synced with the original element
and propagating changes [36].
GLSP, like Sprotty, does not concern itself with model persistence, implying that most
model management features will not be supported. Whilst model search as well as tagging
and labeling are not supported by the framework, an artifact browser and version control
can be used together with GLSP when integrated with an IDE, which is very feasible
because of the frameworks outstanding integration capabilities.
The framework also boasts a rich user experience, again supporting almost all relevant
features analyzed. It supports interactive diagram elements, inline editing, and zoom
and pan functionalities [36]. Developers have recently added new features for a model
element search, real-time collaboration and improved accessibility, allowing users to
access features like model element search, canvas moveability, zoom and resizing with
only their keyboard. The features listed are still in an experimental state, mostly with
limited integration support regarding specific IDEs [19]. Keyboard shortcuts are also
well supported, especially when integrated with IDEs. Contextual help and feedback
mechanisms are fully covered, meaning on-screen guidance, navigation logic [36] and
error messages [22] are all implemented in the core of the framework. Furthermore,
GLSP is actively maintained, with regular updates [24] and a recent major release (v2.0)
introducing new experimental features [19]. The documentation is fairly detailed and
almost completely up to date. Pages in the documentation that have not yet been
adjusted for the newest release of the framework are marked as such [22]. In addition, the

29

3. Modeling Framework Classifications

projects GitHub page is very active with a dedicated discussion section where adopters
can ask questions, raise concerns and browse the archive of previous support tickets [24].
They also have an email address and a support forum for more specialized cases [15].

3.7 WebGME

WebGME is a web- and cloud-based collaborative modeling tool that focuses on domain-
specific modeling that allows users to define DSMLs and corresponding domain models. It
is similar to aforementioned tools AToMPM and Sirius Web providing a fleshed out GUI.
WebGMEs implementation is written in JavaScript, uses MongoDB for model storage and
provides a REST API for language-independent access. Some of its distinctive features
include prototypical inheritance that fuses meta-modeling with modeling, scalability,
extensibility and its built in version control.[38]
Much of the research on WebGME is based on the generic GUI, accessible by logging
into your WebGME account via the official homepage. It is the default model editor that
contains all the core features of WebGME and combines them in an intuitive GUI. Based
on the documentation it is possible to implement a completely new GUI and integrate it
with a frontend framework [33].

Based on our metrics WebGME performs great in terms of extensibility, fully supporting
all features we considered. Firstly, it has a fully implemented solution for meta-modeling,
which allows adopters to easily define DSMLs via class diagram-based models [38].
Constraints can also be defined implicitly through the meta-model and are enforced by
restricting user interaction. Constraints not definable through meta-rules can otherwise be
specified for each element using JavaScript code [33]. The validation of said constraints is
also supported by WebGME. If meta-model changes conflict with already existing models,
meta-rules can be validated project-wide via a button in the user interface. Custom
JavaScript constraints are not validated by the user interface, but can also be checked
by pressing a button in the user interface. The framework also has great integration
capabilities. As stated in the documentation, if only the WebGME client API is used,
it can function as a library that can be integrated with any frontend framework [33].
Additionally, a framework is provided that makes it easy to integrate user-defined plugins.
WebGME also offers its own format for importing and exporting files (.webgmexm) but
by utilizing the “WebGME-JSON” repository adopters and users can also import and
export models in a JSON format [59].
The framework not only performs well when it comes to extensibility, but also supports
quite a lot of editing features. Node creation is fully supported with an intuitive
drag-and-drop interface. Connection creation is partially supported, requiring some
configuration in the metamodel [1]. WebGME fully supports nested elements [33] and
element grouping. While manual connection routing is limited, the framework offers
three different automatic routing styles [38]. However, it lacks support for model element
resizing. Model transformations are not supported by the framework itself, but there
is other ways to implement custom ones. Plugins can be used to define them [33].

30

3.7. WebGME

There is also an npm package called "webgme-transformations” that can be integrated
into WebGME and used as a language to define model transformations [58]. Apart
from transformations, WebGME also supports different and even fully custom model
representations, so called "visualizations". In addition to pre-configured visualizations,
adopters can define different types of visualizer that present the model structure in
different ways [33]. Code generators are available by taking advantage of the WebGME
plugin framework and using one of the interpreter plugins available or writing a completely
new one [33]. Lastly, refactoring is also fully supported. Changes made in one location
propagate to all other related areas of the model. For instance, alterations within the
meta-model, such as adjusting the rendering specifics of a model element, ripple through
the entirety of the model.
The framework does concern itself with model persistence, making model management
features one of its strong suites. An object browser is available within its model editor
with three different views. The composition view is very similar to a standard folder view
of the models inside the project. Despite that, this feature is only partially supported,
since the user is not able to organize the models himself. The structure and organization
is automatic and can not be adjusted within the model editor. This could hypothetically
be circumvented by replacing the generic GUI of the model editor with a new GUI [33].
The artifact browser also enables users to search for specific models. Models can be
filtered by their names or meta-type. It is also possible to hide certain artifacts, such as
abstract nodes or connections. A standout feature is its built-in Git-like version control
system, which supports version history, commits, branching, and merging [33].
Regarding user experience, WebGME provides a fair amount of features. Interaction-
based features are for the most part at least partially supported, with inline editing, zoom
and pan functionality [61], and real-time collaboration being fully supported. Accessibility
is not mentioned in any of the documentation [33] as a major focus, therefore, no assistive
technologies are employed to enhance accessibility. Furthermore, keyboard shortcuts are
only partially supported, with only generic shortcuts being available and no ability to
customize and implement new ones. Contextual help features are also missing support,
with no sophisticated on-screen guidance like helpful tool tips and no implementation for
navigation logic. Error messages are shown to users whenever appropriate and display
descriptive messages. Examples found during testing are validation errors or conflicts
that occur during a merge. In terms of current relevance of the framework, it appears
that the main repository of WebGME is not updated very frequently, but it is also not
completely abandoned [60]. Documentation is very easily accessible via the home page of
WebGME [56]. Unfortunately, all official social media accounts associated with WebGME,
such as YouTube seem mostly inactive [57]. Similarly, the GitHub issue section is also
inactive with many unresolved tickets [60].

31

Table 3.1: Legend

+ Full support

0 Partial support

- No support

* Not supported by core

Table 3.2: Extensibility

Constraint
Definition

Custom
Validation

Custom Element
Type Definition

Meta-
Modeling

Integration
Capabilities

Import Export

AToMPM + + + + - - 0

JointJS 0 - 0 - + + +

JointJS+ + + + - + + +

React Diagrams * - + - + * *

Sirius Web + 0 + + 0 + +

Sprotty 0 0 + - + - 0

GLSP Eclipse + + + - + - 0

WebGME + + + + + + +

Table 3.3: Editing Capabilities 1

Node
Creation

Connection
Creation

Element
Grouping

Nested
Elements

Connection
Routing

Automatic
Layouting

AToMPM + + + + 0 -

JointJS - + - + + +

JointJS+ + + + + + +

React Diagrams + + + * + *

Sirius Web + + + + - +

Sprotty + - + + + +

GLSP Eclipse + + + + + +

WebGME + 0 + + 0 +

3.7.
W

ebG
M

E

Table 3.4: Editing Capabilities 2

Model Element
Resizing

Snapping Model
Transformation

Artifact
Representations

Code
Generation

Refactoring
Support

AToMPM 0 - + 0 * -

JointJS - + - * - *

JointJS+ + + - * - *

React Diagrams - + - - - -

Sirius Web + + + + * +

Sprotty - + * * * -

GLSP Eclipse + + - + * +

WebGME - + * + * +

Table 3.5: Model Management

Artifact Browser Model Search Tagging and Labeling Version Control Undo/Redo

AToMPM + - - - +

JointJS - - - * -

JointJS+ - - - * +

React Diagrams - - - * *

Sirius Web + 0 - - -

Sprotty * - - * +

GLSP Eclipse * - - * +

WebGME + + - + +

33

3.
M

odeling
F

ram
ew

ork
C

lassifications

Table 3.6: User Experience 1

Interactive
Diagram Elements

Inline
Editing

Zoom and
Pan

Model Element
Search

Real-time
Collaboration

Keyboard
Shortcuts

Assistive
Technologies

AToMPM + - + - + 0 -

JointJS + - - 0 - - 0

JointJS+ + + + + - + 0

React Diagrams + 0 + * - - -

Sirius Web + + + 0 + - -

Sprotty + + + + - + -

GLSP Eclipse + + + 0 0 + 0

WebGME 0 + + 0 + 0 -

Table 3.7: User Experience 2

On-Screen
Guidance

Navigation
Logic

Error
Messages

Regular
Updates

Documentation Community
Support

AToMPM 0 - + - + 0

JointJS - - * + + +

JointJS+ + - + + + +

React Diagrams - - - 0 0 0

Sirius Web + 0 0 + + +

Sprotty * 0 + + + +

GLSP Eclipse + + + + + +

WebGME - - + 0 + -

34

CHAPTER 4
Evaluation

After having analyzed the feature support of each framework, we can draw several
conclusions and reflect on the insights gained. We can not only attempt to evaluate
the frameworks against each other, but also contemplate current modeling framework
developments like vital missing features and areas that should get further development.

4.1 Critical Feature Gaps

Our results highlighted several features that lacked support in many frameworks, although
they are arguably important or extremely beneficial for adopters, users, or both.
For instance, meta-modeling is unsupported by many frameworks. While some tools like
AToMPM, WebGME and Sirius Web offer robust meta-modeling capabilities, others,
namely GLSP, Sprotty, JointJS and React Diagrams, lack native support for this feature.
Although this feature is not necessary for defining DSMLs, it removes complexity, makes
languages easily readable and interpretable and improves extensibility. Frameworks that
do not support this feature, often require adopters to implement all modeling rules in
code, adding a prerequisite to said tools [10].
Most tools lacked native support for both model transformation and code generation.
They are considered essential for MDE, allowing for the conversion between different
model representations or translating model files to code [10]. The lack of built-in model
transformation and code generation capabilities may require users to implement custom
solutions or integrate external tools, potentially complicating the modeling workflow [51].
As noted during the analysis part of the thesis, many frameworks reviewed do not have
built-in model persistence, making model management obsolete for the most part. This
means that features like tagging, labeling, and advanced search capabilities are often
missing or limited across the evaluated frameworks. This suggests that many tools are
focused more on model creation and editing than on long-term model management and
organization. Comprehensive model management support becomes increasingly important

35

4. Evaluation

for larger and more complex modeling projects [11]. Framework adopters that implement
modeling tools might have to come up with solutions for model persistence.
Depending on one’s requirements, real-time collaboration might also be a crucial feature,
that unlike other less complex features could be difficult for adopters to implement
themselves. Support for this feature makes it much easier to work in a distributed
environment [38]. JointJS, React Diagrams and Sprotty do not support real-time
collaboration.
Navigation logic is another feature that becomes increasingly useful when working with
large and complex models. Using predefined relationships and structures makes traversing
and understanding such models significantly easier [11]. This feature cannot be found in
tools like AToMPM, JointJS, and React Diagrams, while others such as Sirius Web and
Sprotty only provide partial support.
The aforementioned features highlight some of the gaps in current modeling frameworks.
In order to create more comprehensive modeling frameworks, developers should consider
implementing these features, especially if the tools are being designed with complex
modeling tasks or large-scale projects in mind.

4.2 Standout Feature Support

Some features are especially well implemented by certain frameworks. They are ei-
ther outright the only tool supporting a feature or might have the most fleshed out
implementation.
For example, WebGME is the only framework among all evaluated tools to have a
built-in version control system, supporting branching and merging, therefore enabling
collaborative modeling [38]. The integration of version control directly into the modeling
environment simplifies the development process and provides a more cohesive user
experience [38].
Depending on the use case, real-time collaboration is a highly valued feature that allows
simultaneous model changes. Sirius Web, GLSP [19] and WebGME all offer robust
solutions that fulfill this role. This feature can be particularly important for team-based
modeling projects that benefit greatly from direct collaboration.
Whilst we generally only reviewed frameworks with the ability to somewhat define domain-
specific concepts, not all tools approached this matter the same. Some frameworks rely
on in-code solutions to define domain-specific logic and others tried streamlining this
process by utilizing meta-models. AToMPM, Sirius Web and WebGME adopted such an
approach [5] [46] [38].
Lastly, AToMPM posses the most complex and formulated model transformation capabil-
ities. This, combined with its multiparadigm approach to modeling, makes AToMPM
especially relevant for advancing research in MDE.

36

4.3. Framework Deficiencies

4.3 Framework Deficiencies

Not only did the analysis highlight particularly well rounded frameworks but also tools
with a lacking assortment of features. JointJs for example hides many of its most essential
features behind a subscription model making them only available in the commercialized
version[28]. Some of its shortcomings, such as cumbersome constraint and model element
definition [34], lack of some essential editing capabilities and narrow focus on user
experience [28], make it unfit for full-fledged and complex modeling projects.
The reason React Diagrams is similar in this regard to JointJs is probably because it takes
a lot of inspiration from it [42]. Although it improves somewhat in terms of basic editing
capabilities [45] [17], it misses advanced features such as model transformation, different
artifact representations and refactoring support. It also lacks essential extensibility
features and additionally falls short in terms of user experience features.
Despite that, JointJs and React Diagrams are lightweight alternatives to more complex
frameworks, making them very easy to integrate into existing web applications.

4.4 Areas for Future Development

Our research shows multiple features that are unsupported by a majority of frameworks
or underdeveloped. In this section we want to highlight features we deem important
for the future of MDE and which would benefit greatly from further development. One
such feature is accessibility, or more specifically custom keyboard shortcuts and assistive
technologies. Many of the evaluated frameworks lack proper support for these features.
Modeling tools need to evolve in this regard in order to support users with diverse needs.
Recent research by Sarioglu [44] emphasizes the increasing importance of accessibility in
modeling tools, highlighting that about 16% of the world’s population live with some form
of disability. GLSP shows the most promise in this area, introducing new experimental
features that aim to help improve accessibility, but as our research indicates, there is still
considerable room for improvement [19].
Many frameworks also do not concern themselves with model persistence and therefore
do not support a majority of model management features. This in itself is not a problem
since different frameworks cover different use cases. Generally, model persistence can
be adapted using external tools or frameworks built specifically for this purpose [31].
Still, some teams might prefer this process to be streamlined and incorporated into
the modeling tool solution. Furthermore, even frameworks including model persistence
often lack features such as advanced search capabilities, namely support for tagging and
labeling of artifacts. Big and complex modeling projects rely on the ability to reliably
organize and retrieve models.
Lastly, some frameworks seem to have limited import and export functionality, often
not supporting any commonly used data interchange format [6]. This limitation greatly
restricts model interoperability and therefore cross-framework compatibility. We should
aim to improve the support for existing interchange formats to further interoperability
between frameworks and prevent vendor lock-in [10].

37

4. Evaluation

In conclusion, the evaluation reveals strengths and weaknesses of the considered frame-
works and although tools such as GLSP, Sirius Web, and WebGME offer very com-
prehensive feature sets, we have also discovered considerable gaps. Gaps shown such
as accessibility, model management support and framework compatibility can be seen
as future opportunities for innovation and development in upcoming iterations of the
frameworks or entirely new tools.

38

CHAPTER 5
Recommendation

The choice of a modeling framework depends heavily on the specific requirements of a
project, the expertise of the team, and the intended use case. Based on our analysis, we
can group the frameworks to help readers identify which tool best suits their needs.
If a fleshed out solution with comprehensive feature coverage is a priority, three frameworks
come to mind. WebGME is a great all-in-one solution providing great extensibility
features, having built-in model persistence, version control and well supported real-time
collaboration features. Its biggest shortcomings are in the area of user experience, like
for example the lack of community support and infrequent updates [60]. It is a great
fit for large-scale collaborative modeling projects. Similarly, Sirius Web is also a good
choice for an all encompassing solution. The framework relies on a low-code approach
to define domain-specific concepts, which means that using the tool does not require
substantial coding knowledge. It offers comprehensive extensibility features such as meta-
modeling, good editing capabilities, built-in model persistence and rich user experience,
like collaboration capabilities [52]. Despite this, it has limited integration capabilities
[52], no sophisticated version control and an insufficient focus on accessibility. In addition
to having an especially good coverage of the features considered, GLSP bridges some of
these gaps, with exceptional integration features [22] [27] and makes strides toward better
accessibility [19]. It should be noted that, unlike the previously mentioned frameworks,
GLSP does not include model persistence but supports it through integration.
Some frameworks are designed specifically for research and prototyping purposes. AToMPM
labels itself as a research framework [7]. This claim is supported by its substantial support
of model transformation and its multi-paradigm modeling approach [51]. It provides
the ability to easily experiment with novel modeling concepts, making it suitable for
academic and research projects.
When choosing a framework, the ease of use and required level of coding knowledge
should be considered. Sprotty and GLSP are best suited for modeling projects that
require very specific and fine-grained solutions. Their highly configurable nature makes
them more complex and assumes a high level of expertise from adopters [21] [22].

39

5. Recommendation

On the other hand, frameworks such as Sirius Web and WebGME decided to opt for
a low-code solution. They rely on an intuitive user interface, that for example lets
users model domain concepts in a meta-model instead of having them defined through
code-specified rules [46] [38].
If a project requires flexible and lightweight solutions, both JointJs and React Diagrams
can be considered. Both frameworks are not overly complex and rely on modern web
technologies, promoting easier integration with existing web application. JointJs offers
a good foundation with basic diagramming capabilities [28] that can be extended by
manually implementing additional features [34]. React Diagrams is similar, although it
was created specifically to be used in conjunction with the React JavaScript framework
[4] and unlike JointJs it lacks proper maintenance and community activity [42].
Maintenance, community activity and continuous development are important consider-
ations for choosing a framework. Our research has shown some tools to be vary of in
this regard. AToMPMs development has halted with its most recent update in February
2023. Soon after, community activity also came to a stop, with the latest GitHub
issue having been opened in August 2023 [7]. Even though its relevance for research
cannot be understated, its long-term viability is questionable. React Diagrams has seen
a considerable decrease in development activity, with updates focusing primarily on bug
fixes instead of new feature additions [7]. Documentation is labeled as work in progress
[6] and, as development regressed, so has community activity [7]. Lastly, while WebGME
has not been completely abandoned, updates have become more and more infrequent
[60]. Official social media accounts have also become inactive [57], which might indicate
a decrease in community activity.
Generally, when selecting a framework, consider the following factors:

• Project Scope and Complexity: The scale and complexity of a project play a pivotal
role in the selection of frameworks. Large-scale projects with multiple teams and
complex requirements may require frameworks that offer extensive collaboration
features and scalability. On the other hand, smaller or simpler projects might
benefit from lightweight solutions that focus on ease of use and quick setup.

• Required Features: Identify essential features like meta-modeling, model transfor-
mation, specific editing capabilities, or real-time collaboration. Choose a framework
that offers native support or robust integration options for those features.

• Technical Expertise: Assess the team’s familiarity with different technologies and
the level of coding required for customization. Decide on a framework that aligns
with the assessed expertise.

• Active Maintenance and Documentation: Choose actively maintained frameworks
with comprehensive documentation and active communities to facilitate trou-
bleshooting and knowledge sharing.

Choosing the right modeling framework requires careful consideration of individual
requirements and project constraints. By grouping frameworks based on their strengths

40

and weaknesses, this chapter assists readers in navigating the landscape of web-based
modeling tools. Factors such as extensibility needs, desired level of customization,
integration requirements, and emphasis on specific features play a crucial role in the
selection process. The insights presented here help readers to identify the framework
that best aligns with their goals, enabling them to leverage the power of modeling for
enhanced software development and research endeavors.

41

CHAPTER 6
Conclusion

This thesis conducts a comprehensive feature-based analysis of extensible modeling
frameworks and libraries, with a focus on web-based platforms. By examining the key
features of various frameworks, this paper sheds light on their respective strengths,
limitations, and applicability in different scenarios. The classification and evaluation of
these tools aim to assist both researchers and general users in selecting the most suitable
framework for their specific needs, as well as to guide future developments in the field.
The analysis highlights that some frameworks such as Sirius Web and GLSP standout
due to there exceptional feature coverage. They excel in providing robust extensibility,
including support for domain-specific modeling language creation and integration capa-
bilities. These features make them particularly appealing for complex and customizable
modeling tasks. On the other hand, we also analyzed lightweight libraries such as React
Diagrams and JointJS offering simplicity and high customizability, catering to projects
requiring streamlined, focused solutions. However, certain shortcomings were observed,
such as limited support for advanced model management functionalities, collaborative
editing, and accessibility features. These deficiencies suggest that, while the field has
matured significantly, there remains considerable room for growth to address broader
and more diverse user needs.
For practitioners, this research highlights the critical importance of aligning the choice
of framework with project-specific requirements. For researchers, identified gaps, par-
ticularly in areas such as accessibility enhancements, advanced collaboration tools, and
comprehensive integration with external systems, represent valuable opportunities for
further investigation and innovation. Bridging these gaps can lead to frameworks that
are more accessible, scalable, and adaptable to emerging trends in software development
and engineering.
Once again we would like to emphasize that this study was not exhaustive. Many
frameworks and libraries, including potentially innovative solutions, were not covered in
this thesis. Furthermore, the analysis focused on the technical aspects of frameworks

43

6. Conclusion

and did not focus on their performance in real-world applications. Future research could
expand on these aspects.
In conclusion, this thesis provides a structured and detailed exploration of web-based
modeling frameworks that offers valuable insights. While the work contributes significantly
to understanding the current landscape, the rapidly advancing nature of the field makes
ongoing research to develop frameworks that are not only feature-rich but also user-
centric, accessible, and capable of supporting the diverse challenges of modern software
development necessary.

44

List of Figures

2.1 Feature model notation . 3
2.2 Top level feature model . 4
2.3 Extensibility . 5
2.4 Editing capabilities . 8
2.5 Model management . 12
2.6 User Experience 1 . 14
2.7 User Experience 2 . 17

3.1 AToMPM Architecture. Reprinted from Ref. [51] 22

45

List of Tables

3.1 Legend . 32
3.2 Extensibility . 32
3.3 Editing Capabilities 1 . 32
3.4 Editing Capabilities 2 . 33
3.5 Model Management . 33
3.6 User Experience 1 . 34
3.7 User Experience 2 . 34

47

Acronyms

API Application programming interface. 7, 23

AToMPM A Tool for Multi-paradigm modeling. vii, 21–23, 25, 27, 30, 35, 36, 39, 40

DSML Domain-specific modeling language. vii, 1, 5–7, 21, 26, 30, 35

EMF Eclipse Modeling Framework. 29

GLSP Graphical Language Server Platform. vii, 28, 29, 35–39, 43

GUI Graphical user interface. 21, 23, 27, 30, 31

IDE Integrated development environments. 26, 27, 29

LSP Language server protocol. 27, 28

MDE Model-driven engineering. 21, 35–37

SVG Scalable vector graphics. 22–24, 27, 29

WebGME Web-based Generic Modeling Environment. vii, 30, 31, 35, 36, 38–40

49

Bibliography

[1] 04. Tutorial - Connections and Ports. url: https://www.youtube.com/
watch?v=QSthYt-j6oI&list=PLhvSjgKmeyjiwOzNmQq8OY6KG7Cz-y-
1d&index=5 (visited on 05/05/2024).

[2] Add context menu support - Issue 139 - eclipse-sprotty/sprotty. url: https:
//github.com/eclipse- sprotty/sprotty/issues/139 (visited on
04/24/2024).

[3] Any plans on ’group-nodes’ support? Issue 27 projectstorm/react-diagrams. url:
https://github.com/projectstorm/react-diagrams/issues/27
(visited on 03/27/2024).

[4] Architecture Questions | React Diagrams. url: https://projectstorm.gitbook.
io/react-diagrams/about-the-project/architecture-questions.

[5] AToMPM - Features | PPT. url: https://de.slideshare.net/slideshow/
atompm-features/26363260 (visited on 03/24/2024).

[6] AToMPM Documentation — AToMPM 0.10.0 documentation. url: https://
atompm.readthedocs.io/en/latest/ (visited on 03/25/2024).

[7] AToMPM/atompm: A Tool for Multi-Paradigm Modeling. url: https://github.
com/AToMPM/atompm (visited on 03/25/2024).

[8] D. Bork and P. Langer. “Catchword: Language Server Protocol: An Introduction to
the Protocol, its Use, and Adoption for Web Modeling Tools”. In: Enterprise Mod-
elling and Information Systems Architectures: International Journal of Conceptual
Modeling 18.9 (2023), pp. 1–16. doi: 10.18417/emisa.18.9.

[9] Dominik Bork, Philip Langer, and Tobias Ortmayr. “A vision for flexible glsp-based
web modeling tools”. In: IFIP Working Conference on The Practice of Enterprise
Modeling. Springer. 2023, pp. 109–124.

[10] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engi-
neering in practice. Morgan & Claypool Publishers, 2017.

[11] Erwan Breton and Jean Bézivin. “Model driven process engineering”. In: 25th
Annual International Computer Software and Applications Conference. COMPSAC
2001. IEEE. 2001, pp. 225–230.

51

https://www.youtube.com/watch?v=QSthYt-j6oI&list=PLhvSjgKmeyjiwOzNmQq8OY6KG7Cz-y-1d&index=5
https://www.youtube.com/watch?v=QSthYt-j6oI&list=PLhvSjgKmeyjiwOzNmQq8OY6KG7Cz-y-1d&index=5
https://www.youtube.com/watch?v=QSthYt-j6oI&list=PLhvSjgKmeyjiwOzNmQq8OY6KG7Cz-y-1d&index=5
https://github.com/eclipse-sprotty/sprotty/issues/139
https://github.com/eclipse-sprotty/sprotty/issues/139
https://github.com/projectstorm/react-diagrams/issues/27
https://projectstorm.gitbook.io/react-diagrams/about-the-project/architecture-questions
https://projectstorm.gitbook.io/react-diagrams/about-the-project/architecture-questions
https://de.slideshare.net/slideshow/atompm-features/26363260
https://de.slideshare.net/slideshow/atompm-features/26363260
https://atompm.readthedocs.io/en/latest/
https://atompm.readthedocs.io/en/latest/
https://github.com/AToMPM/atompm
https://github.com/AToMPM/atompm
https://doi.org/10.18417/emisa.18.9

[12] Frank Budinsky et al. EMF: Eclipse Modeling Framework. 2nd. The Eclipse Series.
Addison-Wesley, 2009. isbn: 0321331885,9780321331885. url: http://gen.lib.
rus.ec/book/index.php?md5=1747769a6ad818f458e3e2c9a25ab7c8.

[13] clientIO/joint: A proven SVG-based JavaScript diagramming library powering
exceptional UIs. url: https://github.com/clientIO/joint (visited on
05/22/2024).

[14] Community of diagramming experts and geeks – JointJS. url: https://www.
jointjs.com/community (visited on 05/24/2024).

[15] Contact - Eclipse Graphical Language Server Platform. url: https://eclipse.
dev/glsp/contact/ (visited on 04/22/2024).

[16] Contact us - Obeo. url: https://www.obeosoft.com/en/contact (visited
on 04/09/2024).

[17] Customizing | React Diagrams. url: https://projectstorm.gitbook.io/
react-diagrams/customizing (visited on 03/26/2024).

[18] G. De Carlo. “Integrating extended visualization and interaction functionalities
into language server protocol based modeling tools”. Diploma Thesis. Technische
Universität Wien, 2022. url: https://doi.org/10.34726/hss.2022.
99900.

[19] Diagram Editors Boosted: Collaborative, Testable and Accessible diagrams with
Eclipse GLSP - YouTube. url: https://www.youtube.com/watch?v=RBbI_
QBzwl4&t=34s (visited on 04/22/2024).

[20] Hanns-Alexander Dietrich et al. Developing graphical model editors for meta-
modelling tools-requirements, conceptualisation, and implementation. 2013.

[21] Docs | Sprotty. url: https://sprotty.org/docs/ (visited on 04/25/2024).
[22] Documentation - Eclipse Graphical Language Server Platform. url: https://

eclipse.dev/glsp/documentation/ (visited on 04/22/2024).
[23] eclipse-emfcloud/ecore-glsp: ecore-glsp. url: https://github.com/eclipse-

emfcloud/ecore-glsp (visited on 04/23/2024).
[24] eclipse-glsp/glsp: Graphical language server platform for building web-based dia-

gram editors. url: https://github.com/eclipse-glsp/glsp (visited on
04/22/2024).

[25] eclipse-sirius/sirius-web: Reusable frontend and backend components for Sirius
Web. url: https://github.com/eclipse-sirius/sirius-web (visited
on 04/08/2024).

[26] eclipse-sprotty/sprotty: A diagramming framework for the web. url: https://
github.com/eclipse-sprotty/sprotty (visited on 04/24/2024).

[27] Ecore tools in the cloud - behind the scenes - YouTube. url: https://www.
youtube.com/watch?v=YQyaCR_V5zc (visited on 04/24/2024).

52

http://gen.lib.rus.ec/book/index.php?md5=1747769a6ad818f458e3e2c9a25ab7c8
http://gen.lib.rus.ec/book/index.php?md5=1747769a6ad818f458e3e2c9a25ab7c8
https://github.com/clientIO/joint
https://www.jointjs.com/community
https://www.jointjs.com/community
https://eclipse.dev/glsp/contact/
https://eclipse.dev/glsp/contact/
https://www.obeosoft.com/en/contact
https://projectstorm.gitbook.io/react-diagrams/customizing
https://projectstorm.gitbook.io/react-diagrams/customizing
https://doi.org/10.34726/hss.2022.99900
https://doi.org/10.34726/hss.2022.99900
https://www.youtube.com/watch?v=RBbI_QBzwl4&t=34s
https://www.youtube.com/watch?v=RBbI_QBzwl4&t=34s
https://sprotty.org/docs/
https://eclipse.dev/glsp/documentation/
https://eclipse.dev/glsp/documentation/
https://github.com/eclipse-emfcloud/ecore-glsp
https://github.com/eclipse-emfcloud/ecore-glsp
https://github.com/eclipse-glsp/glsp
https://github.com/eclipse-sirius/sirius-web
https://github.com/eclipse-sprotty/sprotty
https://github.com/eclipse-sprotty/sprotty
https://www.youtube.com/watch?v=YQyaCR_V5zc
https://www.youtube.com/watch?v=YQyaCR_V5zc

[28] Explore the features of our diagramming library – JointJS. url: https://www.
jointjs.com/features (visited on 05/23/2024).

[29] Robert France and Bernhard Rumpe. “Domain specific modeling”. In: Software and
System Modeling 4 (Feb. 2005), pp. 1–3. doi: 10.1007/s10270-005-0078-1.

[30] Marco Geue et al. “Entwicklung eines grafischen Editors für XProc-Pipelines mit
dem SVG-basierten JavaScript-Framework JointJS”. MA thesis. Hochschulbiblio-
thek, Hochschule Merseburg, 2019.

[31] Philipp-Lorenz Glaser. “Developing Sprotty-based Modeling Tools for VS Code”.
In: (2022).

[32] Soichiro Hidaka et al. “Feature-based classification of bidirectional transformation
approaches”. In: Software & Systems Modeling 15 (2016), pp. 907–928.

[33] How to build a Design Studio with WebGME — WebGME 1.0.0 documentation. url:
https://webgme.readthedocs.io/en/latest/index.html# (visited on
05/05/2024).

[34] Joint API (v4.0) - JointJS Docs. url: https://docs.jointjs.com/ (visited
on 05/23/2024).

[35] Philip Langer Jonas Helming Maximilian Koegel. Accessibility in Diagram Editors
with Eclipse GLSP. 2024. url: https://eclipsesource.com/blogs/2024/
02/07/accessibility-in-diagram-editors-with-eclipse-glsp/
(visited on 07/10/2024).

[36] Philip Langer Jonas Helming Maximilian Koegel. Web-based diagram editor features
in Eclipse GLSP. 2021. url: https://eclipsesource.com/blogs/2021/
02/10/web-based-diagram-editor-features-in-eclipse-glsp/
(visited on 04/24/2024).

[37] Kitchen Sink App – Demo applications & examples. url: https://www.jointjs.
com/demos/kitchen-sink-app (visited on 05/23/2024).

[38] Miklós Maróti et al. “Next generation (meta) modeling: web-and cloud-based
collaborative tool infrastructure.” In: MPM@ MoDELS 1237 (2014), pp. 41–60.

[39] Moveable ports and live node rescaling - Issue 268 - eclipse-sprotty/sprotty. url:
https://github.com/eclipse-sprotty/sprotty/issues/268 (visited
on 04/24/2024).

[40] Jon Oldevik et al. “Framework for model transformation and code generation”. In:
Proceedings. Sixth International Enterprise Distributed Object Computing. IEEE.
2002, pp. 181–189.

[41] Jakob Pietron et al. “A study design template for identifying usability issues in
graphical modeling tools.” In: MoDELS (Workshops). 2018, pp. 336–345.

[42] projectstorm/react-diagrams: a super simple, no-nonsense diagramming library
written in react that just works. url: https://github.com/projectstorm/
react-diagrams (visited on 03/27/2024).

53

https://www.jointjs.com/features
https://www.jointjs.com/features
https://doi.org/10.1007/s10270-005-0078-1
https://webgme.readthedocs.io/en/latest/index.html#
https://docs.jointjs.com/
https://eclipsesource.com/blogs/2024/02/07/accessibility-in-diagram-editors-with-eclipse-glsp/
https://eclipsesource.com/blogs/2024/02/07/accessibility-in-diagram-editors-with-eclipse-glsp/
https://eclipsesource.com/blogs/2021/02/10/web-based-diagram-editor-features-in-eclipse-glsp/
https://eclipsesource.com/blogs/2021/02/10/web-based-diagram-editor-features-in-eclipse-glsp/
https://www.jointjs.com/demos/kitchen-sink-app
https://www.jointjs.com/demos/kitchen-sink-app
https://github.com/eclipse-sprotty/sprotty/issues/268
https://github.com/projectstorm/react-diagrams
https://github.com/projectstorm/react-diagrams

[43] Axel Richard. Sirius Web 2024.1 - The official voice of the Obeo experts. 2024.
url: https://blog.obeosoft.com/sirius-web-2024-1 (visited on
04/06/2024).

[44] A. Sarioğlu, H. Metin, and D. Bork. “How Inclusive Is Conceptual Modeling?
A Systematic Review of Literature and Tools for Disability-Aware Conceptual
Modeling”. In: Conceptual Modeling: 42nd International Conference, ER 2023,
Lisbon, Portugal, November 6–9, 2023, Proceedings. Ed. by J. P. A. Almeida et al.
Springer, 2023, pp. 65–83. doi: 10.1007/978-3-031-47262-6_4.

[45] Simple Usage - Demo Simple Storybook. url: http://projectstorm.cloud/
react-diagrams/?path=/story/simple-usage--demo-simple (visited
on 03/26/2024).

[46] Sirius Web 101: Create a Modeler With No Code - YouTube. url: https://www.
youtube.com/watch?v=p_tDEzGtS0o (visited on 04/06/2024).

[47] Sirius WebHome. url: https://eclipse.dev/sirius/sirius-web.html.
[48] sprotty/examples at master - eclipse-sprotty/sprotty. url: https://github.

com/eclipse-sprotty/sprotty/tree/master/examples (visited on
04/24/2024).

[49] sprotty/packages/sprotty/src/features/command-palette/command-palette.ts at mas-
ter - eclipse-sprotty/sprotty. url: https://github.com/eclipse-sprotty/
sprotty/blob/master/packages/sprotty/src/features/command-
palette/command-palette.ts (visited on 04/23/2024).

[50] sprotty/packages/sprotty/src/features/move/snap.ts at master - eclipse-sprotty/sprotty.
url: https://github.com/eclipse-sprotty/sprotty/blob/master/
packages/sprotty/src/features/move/snap.ts (visited on 04/24/2024).

[51] Eugene Syriani et al. “AToMPM: A web-based modeling environment”. In: Joint
proceedings of MODELS’13 Invited Talks, Demonstration Session, Poster Session,
and ACM Student Research Competition co-located with the 16th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2013):
September 29-October 4, 2013, Miami, USA. 2013, pp. 21–25.

[52] The Obeo Studio Documentation. url: http://docs.obeostudio.com/2023.
12.0/help_center.html (visited on 04/06/2024).

[53] Thomas Thum et al. “Abstract Features in Feature Modeling”. In: 2011 15th
International Software Product Line Conference. 2011, pp. 191–200. doi: 10.
1109/SPLC.2011.53.

[54] Tutorials - JointJS Docs. url: https://resources.jointjs.com/tutorial
(visited on 05/23/2024).

[55] Undo / History Functionality Issue 391 projectstorm/react-diagrams. url: https:
//github.com/projectstorm/react-diagrams/issues/391 (visited on
03/26/2024).

54

https://blog.obeosoft.com/sirius-web-2024-1
https://doi.org/10.1007/978-3-031-47262-6_4
http://projectstorm.cloud/react-diagrams/?path=/story/simple-usage--demo-simple
http://projectstorm.cloud/react-diagrams/?path=/story/simple-usage--demo-simple
https://www.youtube.com/watch?v=p_tDEzGtS0o
https://www.youtube.com/watch?v=p_tDEzGtS0o
https://eclipse.dev/sirius/sirius-web.html
https://github.com/eclipse-sprotty/sprotty/tree/master/examples
https://github.com/eclipse-sprotty/sprotty/tree/master/examples
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty/src/features/command-palette/command-palette.ts
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty/src/features/command-palette/command-palette.ts
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty/src/features/command-palette/command-palette.ts
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty/src/features/move/snap.ts
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty/src/features/move/snap.ts
http://docs.obeostudio.com/2023.12.0/help_center.html
http://docs.obeostudio.com/2023.12.0/help_center.html
https://doi.org/10.1109/SPLC.2011.53
https://doi.org/10.1109/SPLC.2011.53
https://resources.jointjs.com/tutorial
https://github.com/projectstorm/react-diagrams/issues/391
https://github.com/projectstorm/react-diagrams/issues/391

[56] WebGME Homepage. url: https://webgme.org/ (visited on 05/08/2024).
[57] WebGME YouTube channel. url: https://www.youtube.com/channel/

UC1cPQP4jjsXRhpXUnoPZQWg (visited on 05/08/2024).
[58] webgme-transformations | listen.dev. url: https://verdicts.listen.dev/

npm/webgme-transformations (visited on 05/06/2024).
[59] webgme/webgme-json: Simple JSON domain that allows the manipulation and use

of json based documents in other projects. url: https://github.com/webgme/
webgme-json (visited on 05/05/2024).

[60] webgme/webgme: Web-based Generic Modeling Environment. url: https://
github.com/webgme/webgme (visited on 05/08/2024).

[61] zoom +/- buttons with collapsible zoom slider - Issue 907 - webgme/webgme.
url: https://github.com/webgme/webgme/issues/907 (visited on
05/05/2024).

55

https://webgme.org/
https://www.youtube.com/channel/UC1cPQP4jjsXRhpXUnoPZQWg
https://www.youtube.com/channel/UC1cPQP4jjsXRhpXUnoPZQWg
https://verdicts.listen.dev/npm/webgme-transformations
https://verdicts.listen.dev/npm/webgme-transformations
https://github.com/webgme/webgme-json
https://github.com/webgme/webgme-json
https://github.com/webgme/webgme
https://github.com/webgme/webgme
https://github.com/webgme/webgme/issues/907

	Abstract
	Contents
	Introduction
	Constructing the Feature Model
	Extensibility
	Editing Capabilities
	Model Management
	User Experience

	Modeling Framework Classifications
	AToMPM
	JointJS
	React Diagrams
	Sirius Web
	Sprotty
	GLSP
	WebGME

	Evaluation
	Critical Feature Gaps
	Standout Feature Support
	Framework Deficiencies
	Areas for Future Development

	Recommendation
	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

