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Kurzfassung

Mächtige Plattformen für modellgetriebene Softwareentwicklung existieren, jede mit ihren
eigenen Stärken, Schwächen, Funktionen, Programmiersprachen und Entwicklergruppen.
Um ihre individuellen Vorteile zu vereinen, wäre es von Vorteil, Interoperabilität zwischen
den Platformen herzustellen, sprich Metamodelle und Modelle die in einem Framework
erstellt wurden zu einem äquivalenten (Meta)modell in einem anderen Framework zu
transformieren. Dadurch ist Freiheit gegeben, beliebige Metamodellplattformen zu wählen
ohne dabei einen Lock-In-Effekt zu riskieren.

Zwei der wohl bekanntesten Plattformen bezüglich Metamodellierung, die darüber hinaus
auch gut dokumentiert und frei verfügbar sind, sind das Eclipse Modeling Framework
(EMF) und das Modeling SDK for Visual Studio (MSDKVS). Diese Arbeit gibt genauere
Erklärungen wie man zwischen EMF und MSDKVS Interoperabilität erzielen kann, und
das auf zwei Ebenen, nämlich der Ebene der abstrakten Syntax und der Ebene der
grafischen konkreten Syntax.

Die Plattformen werden verglichen, ihre Eigenschaften dementsprechend aufeinander
abgebildet und eine bidirektionale Transformationsbrücke auf ihren Metamodell- und Mo-
dellebenen implementiert. Der Ansatz wird ausführlich evaluiert mittels Transformationen
von verfügbaren Metamodellen und davon generierten oder manuell erstellten Modellen.
Die Evaluation bezüglich der Validität, Ausführbarkeit und der Aussagekräftigkeit der
Transformationsbrücke selbst wird quantitativ und qualitativ durchgeführt.
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Abstract

Powerful metamodeling frameworks for realizing Model-Driven Software Engineering
(MDSE) exist, each having its own strengths, weaknesses, functionalities, programming
languages and engineering communities. By combining their individual benefits, it would
be preferable to establish interoperability between them, i.e. transforming metamodels
and models created in one framework into equivalent (meta)models in other frameworks.
Thus enabling the freedom of choosing the metamodeling platform without risking a
lock-in effect.

Two of the most well known metamodeling frameworks, which are well documented and
available for free are the Eclipse Modeling Framework (EMF) and the Modeling SDK
for Visual Studio (MSDKVS). This thesis gives detailed explanations on how to achieve
interoperability between EMF and MSDKVS on two levels, namely the abstract and
graphical concrete syntax levels.

The platforms are compared, their features are mapped accordingly and a bidirectional
transformation bridge on their metamodel and model layers is implemented. The approach
will be extensively evaluated by transforming available metamodels and generated or
manually created models thereof. The evaluation regarding the validity, executability and
the expressiveness of the transformation bridge is done quantitatively and qualitatively.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Model-Driven Software Engineering (MDSE) is made possible through the use of different
metamodeling frameworks and tools which are used to define Domain-specific languages
(DSLs) and the application thereof. The benefits of such languages can help designers
efficiently cooperate on creating an underlying software infrastructure. The most promi-
nent and actively used one is the Eclipse Modeling Framework (EMF). Many more such
frameworks exist, some of them are available through proprietary licenses and fees and
others are available as freeware. In order to be able to fully use the functionality of
the metamodeling environments and the user interfaces that metamodeling frameworks
provide, a need to transform metamodels created in one framework to syntactically
equivalent metamodels in other frameworks has emerged.

Not only do frameworks differ in their representations, their platforms also differ in their
functionality and the plugins they provide in addition to their use of different programming
languages and their capabilities. The option to freely choose which programming language
should be used to extend a metamodel in its functionality (validation, code generation,
etc.) and the toolset different metamodel frameworks provide is also contributing to
the need for nearly lossless transformations from one metamodeling environment to
another. Traditionally, once developers started working with one platform, switching
to different platforms later on was cumbersome and time consuming, not only because
of the complexity, but also because of the scarcity of available automated support for
metamodel interoperability. One well documented and freely available example as an
additional metamodeling framework to the prominent EMF is the Modeling SDK for
Visual Studio (MSDKVS), which has been developed and is still being maintained by
Microsoft and is part of the DSL Tools Solution for Visual Studio editions. By providing
interoperability among various frameworks, teams and individuals using different tools
and environments can use this to strengthen collaborative development.
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1. Introduction

1.2 Aim of the work
The aim of this work is to provide a transformation framework which offers the possibility
to transform metamodels and their models defined in the Modeling SDK for Visual Studio
(MSDKVS) to metamodels corresponding to the syntactical elements (concrete graphical
and abstract syntax) available in EMF and vice-versa, thereby achieving interoperability
among these environments and their toolsets. Interoperability and its challenges, especially
Model-driven interoperability (MDI), have been defined in [10]. MDI aims at providing
bridges to achieve interoperability between several systems by mapping syntactic and
semantic information from one system derived from its specification, representation in a
specific format (e.g., XML) or a public API to another. In [28] and [29], interoperability
is also mentioned within the context of being able to migrate existing systems to others.
Regarding the metamodeling environment, this means the migration of models and meta-
models from one tool to another while preserving structural and semantic information.
Through an extensible rule framework, on which the transformation will be based, different
metamodeling platform concepts can be investigated and compared in detail, such that
the metamodeling framework with a stronger or weaker set of features than the other
can be identified for each element.

In addition to the transformation on the metamodeling level, the result of this transfor-
mation then acts as a reference metamodel for the transformation on the layer below, the
models themselves. Through the use of the result of the first transformation it will be
possible to migrate models defined in one metamodeling environment to the other. One of
the challenges of the transformation approach is defining the rule set, through which the
source metamodel is transformed to a corresponding metamodel in the target framework.
This set of rules maps source elements to target elements, where some elements are
more complex in their functionality and abilities in one framework than the other, e.g.,
multiple versus single inheritance or geometry definitions for different shapes of entities
on the model layer. Another challenge is the unavailability of a standardized definition
for the meta-metamodel that metamodels defined in the MSDKVS depend upon which
results in less insight on the structure of the framework itself, in contrast to EMF with
its meta-metamodel definition for Ecore.

Benefits of this transformation are manifold, for example by providing interoperability
between the two frameworks the current state of the art interoperability chain is extended,
meaning the possibility of modeling engineers and other shareholders of a project, where
metamodeling is integrated in the tool chain, are not bound to just one metamodeling
framework. Metamodels and models thereof can be moved independently among this
transformation chain between various metamodeling frameworks by chaining the different
transformation bridges together. Through implementing the ruleset for the transformation,
an implicit class diagram of elements for representing the functionalities of metamodels in
MDKVS is created that can be used as a reference meta-metamodel for metamodels in this
framework, tackling one of the challenges described above. Metamodel zoos, collections
of metamodels that are clustered and can be searched among [4, 5, 32], that contain
numerous metamodels on both sides, should act as an input for proving the validity and
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1.3. Methodological approach

feasibility of such a transformation and should highlight the benefits a transformation
approach provides. Through extensively analyzing both EMF and MSDKVS platforms,
the proposed transformation bridge will be implemented and evaluated accordingly,
considerably advancing previous attempts [7, 13] further discussed in detail in Section 4.3.

1.3 Methodological approach

Research of this work follows the design science research approach consisting of the follow-
ing steps, starting from initial state of the art research, defining the problem relevance in
today’s environment, the reviewing of existing approaches (e.g., transformation bridges)
and adapting them according to the frameworks in question and achieving a resulting
metamodel on the target side to migrate models from the source modeling language
to the target modeling language. Furthermore, the evaluation through defined metrics
and the freely available resulting artifact for further usage contribute to the research
area. Considering the design science research approach, following research questions are
investigated:

• RQ1: What is the degree of interoperability between MSDKVS and
EMF in terms of user interaction and framework behavior? When trans-
forming (meta)models from one tool to another, differences in complexity, usability,
tool support, graphical interface etc. are unavoidable. This research question
deals with the qualitative analysis on how much of the original features can still
be used, ideally semantically equivalent, after the transformation into the target
environment has been executed, to what degree they differ and how their interaction
and behavior has changed. The qualitative analysis is done through examination
of both framework environments regarding their interaction possibilities with the
transformed entities in comparison to their representations and functionality in the
source framework.

• RQ2: What are the quantitative differences and similarities of trans-
formed metamodels and models in the target framework compared to
the original? Quantitative, comparative analysis of the M3 bridge of a trans-
formation on both metamodel and model level has to be done in order to show
similarities and differences in how a metamodel and its models are syntactically
represented by, e.g., number of classes, abstract classes, relationships, inheritance
relationships, shapes, etc. Based on the ruleset definitions, assumptions and formu-
las regarding these numbers can be made beforehand and are evaluated against the
transformation results.

With regards to the design science approach principles, the following steps are performed
in order to achieve the desired results and are described in more detail in the following
chapters.

3



1. Introduction

1.3.1 Review of frameworks

In-depth analysis of metamodeling frameworks has to be done in order to identify possible
transformation rules based on their syntaxes, similarities and differences among semantic
and syntactic representations and model generation functionalities as well as validity
constraints.

1.3.2 Review of existing transformation approaches between different
metamodeling frameworks

In [9, 26, 27, 29, 31] identical approaches are used for transforming modeling languages
realized in a variety of different metamodeling tools (Microsoft Visio, Aris, MetaEdit+,
ADOxx). Further work is available in identifying common structures among different
metamodels and also different metrics in terms of usage statistics of abstract syntax
elements (element classes, element relationships) and their complexity in [39]. A trans-
formation approach for an older version of the DSL Tools for Visual Studio, which
nowadays contains the Modeling SDK for Visual Studio for defining domain specific
languages, to EMF has been conducted in [7, 13] but does not use all syntax elements
and functionalities that both frameworks offer, e.g., concrete graphical syntax elements
realized with Sirius in EMF, and the amount of abstract syntax transformation rules are
kept at a minimum as well as the resulting evaluation of the feasibility and validity of
the approach are missing.

1.3.3 Defining a ruleset for transforming metamodels between
MSDKVS and EMF

Based on the previous steps, [29] defines a basic ruleset for transformations among the
most common features of current metamodeling frameworks which is then adapted to each
combination of transformations that is implemented. What is missing are the concrete
syntax elements, [29] focuses on the abstract syntax of metamodeling tools. In addition
to the adapted ruleset for the transformation approach between the abstract syntaxes
of MSDKVS and EMF, their graphical syntax capabilities are also added to the ruleset.
Common elements that exist in both representation formats are identified and compared
against each other. These rulesets (abstract and concrete syntax rulesets) will be adapted
and extended incrementally in subsequent chapters, when exclusive functionalities, that
have to be mapped explicitly, are investigated in detail.

1.3.4 Applying the ruleset defined in step 3 to a transformation
bridge based on XML representations

The transformation approach on the metamodel layer is realized as a M3 XML transfor-
mation bridge that executes the set of rules defined in step 3 sequentially to transform
metamodels (their XML representations) defined in MSDKVS to EMF (XML representa-
tion files as well) and vice-versa.

4



1.4. Structure of the thesis

1.3.5 Extensive evaluation of the transformation approach through
metamodeling zoos

Through applications focusing on searches among metamodels and source code repositories,
like Github and Google Code, it is possible to filter available metamodels created by the
community and use them as input for the artifact to analyze and prove the validity of the
resulting metamodeling syntax. A web application to crawl through previously aggregated
search results is available in [34]. The transformation approach is then evaluated against
certain criteria, such as completeness, complexity, and reusability.

1.3.6 Transforming of models based on resulting metamodel on
target framework

The transformator creates a metamodel corresponding to the features of the target
metamodeling tool. Models from the source tool are then fed into the second part
of the transformation, namely the transformation of models. The resulting model
is validated against the previously created metamodel and evaluated on the target
framework. Again, metrics such as completeness, complexity, not only concerning the
transformation approach itself but also lines of code or runtime, are investigated as well.
Additional qualitative aspects such as semantic equivalence regarding the use of the
different frameworks based on source and target model are analyzed and compared (see
research question 1 and 2).

1.3.7 Research contributions

The contribution results of this thesis’ research are manifold. First, mapping tables, that
not only target abstract syntax features of both frameworks, but a novel approach in
also including the graphical concrete syntax capabilities, are established. The MSDKVS’
internal meta-metamodel structure is exposed in the form of a class diagram. Last but not
least, the transformator, source and transformed models and metamodels are available
in a publicly hosted github repository. On top of that, the transformator itself will be
available as a website widget 1 for transforming (meta)model files.

1.4 Structure of the thesis

The thesis is structured as follows. Chapter 2 provides necessary definitions of the
foundations for metamodeling. Chapter 3 investigates the two platforms that are used as
target and source frameworks for the transformation approach, at first separately with
example models and then also giving an overview on similarities and differences that
should be taken into account when defining the rules the transformation is based on.
The next Chapter 4 gives an overview on the domain of model-driven interoperability
and existing transformation approaches based on other frameworks and related works,

1https://me.big.tuwien.ac.at/, last accessed on 04.01.2023
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1. Introduction

including an approach targeting the DSL Tools Framework for Visual Studio, which will
be explicitly compared in detail to this thesis’ approach. Chapter 5 defines the rulesets,
on which the transformations from MSDKVS to EMF and vice-versa are built upon,
where not only abstract syntax elements but also graphical concrete syntax elements
used for visually representing said elements are considered.

Based on these rules, Chapter 6 explains the implementation for the M3 transformation
bridge in detail. The results of the implementation are then used in Chapter 7 for a
study on the feasibility of the transformation approach, taking into account a number
of metamodels contained in so-called metamodeling zoos that can be found on different
websites and inside publicly available code repositories. After having successfully trans-
formed metamodels between the frameworks, models based on these metamodels should
also be transformed. How modeling is realized in both frameworks will be described
in depth in Chapter 8. Afterwards, Chapter 9 evaluates the full M3 bridge approach
by comparing the outputs of different runs of the transformation bridge. The research
questions posed above are answered accordingly.

Chapter 10 ends with a conclusion on the feasibility and completeness of the transforma-
tion and also a discussion about the limitations and possible losses in functionality that
the transformation unavoidably creates.
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CHAPTER 2
Foundations of Metamodeling

This chapter lays the foundation of the domain in which this thesis’ topic is situated,
i.e., the domain of Model-Driven Software Engineering (MDSE). The origins, ideas
and descriptions of the most prominent features are given in order to understand the
subsequent chapters and to get a glimpse of the main problems and obstacles the
transformation approach is about to solve and overcome. A very detailed overview and
further information on this topic is given in [10].

2.1 Model-Driven Software Engineering (MDSE)

Complete or partial representations of real world objects, architectures, interfaces as well
as software systems can be abstracted by the use of models [15]. These models can then
be shared and used as a communication base among shareholders and different teams
that are collaboratively working on projects using a modeling approach. Concerning the
validation and guidelines for defining said models, a hierarchy for further abstracting them
exists, divided into a stack of layers. Figure 2.1 shows an example of such a hierarchy
stack, consisting of four layers which have been standardized by the OMG [10, 33].

• M0 Layer (runtime instances) containing the application data or runtime
instances.

• M1 Layer (model layer) describing the concrete user model based on the given
metamodel (e.g., a UML model).

• M2 Layer (metamodel layer) defining the metamodel (or DSL).

• M3 Layer (meta-metamodel layer) abstracting the definition for possible
metamodel structures. This level provides the functionality for interchanging of

7



2. Foundations of Metamodeling

Figure 2.1: The four-layer metamodeling hierarchy [16]

tools and their metamodels. As an example, in this figure, the M3 layer consists of
the Meta-Object Facility (MOF) standard for defining underlying metamodels.

Because the M3 layer can indefinitely be referenced by itself the hierarchy stops at this
level and the overall system therefore is strictly enclosed. The M3 level also established
the foundation for realizing interoperability of tools based on a common abstraction of
their metamodels.

When speaking about modeling in the domain of developing and maintaining software,
the term Model-Driven Software Engineering (MDSE) is used, where not only software
developers, but also other types of stakeholders of the software artifact can be included to
communicate with each other to reach the desired outcome. In such cases, the abstraction
of the underlying software infrastructure in the form of one or more models can help
eliminate communication barriers, foster cooperation and even generate code [10].

One outcome of a MDSE approach can be a modeling language. Several so-called meta-
modeling languages or tools have emerged to simplify this task by providing developers
with the necessary equipment. Most of those metamodeling languages share the same
principles, which will be mentioned in Section 2.2 later in this chapter. Some prominent
examples of metamodeling platforms that also provide IDEs to efficiently create the
needed syntax elements include the Eclipse Modeling Framework, MetaEdit+ and the
DSL Toolkit for Visual Studio. When designing metamodels in these frameworks that
best suit the requirements of the defined context, each metamodel has to correspond
to an underlying meta-metamodel integrated into these platforms. These metamodels
are usually publicly available. The Meta Object Facility Standard (MOF) and the

8



2.2. Features of MDSE

metamodeling language for EMF, called Ecore, both contain parts of UML class diagrams
and are situated on the M3 layer of OMG’s metamodeling stack.

Regarding the development of modeling languages, two different types can be distinguished
based on their expected functionalities.

• General purpose languages (GPLs) should be considered when the domain
cannot be clearly isolated and all of the available functionality of a modeling
framework has to be used in order to target a broader range of problem areas and
application contexts. Typical examples of GPLs can be UML (Unified Modeling
Language) or programming languages like Java, Python, Go etc.

• Domain specific languages (DSLs) are languages specifically targeting the
context of a domain that is best suited for the project’s needs. Some examples
for DSLs are a medical application, a language situated in the banking sector, a
database application, and with regards to developing specific kinds of software
products also HTML, Matlab, SQL etc. Regarding DSLs in the domain of modeling
languages, the term DSML (domain specific modeling languages) can also be used
[10].

Elements in modeling languages can be divided into two main syntax groups: abstract
and concrete syntax. Abstract syntax elements consist of relationships, classes and their
attributes. They define the domain or language on a more theoretical level through, e.g.,
connections between these entities, their internal structures, etc. Concrete Syntax on
the other hand refers to elements, either graphical or textual, describing the abstract
syntax elements with a notation easier understandable by humans. Graphical concrete
syntax (GCS) elements are distinguished by their different shapes, sizes and additional
graphical objects, like icons or symbols. Textual concrete syntax (TCS) elements consist
of a collection of characters that describe how the element is structured. In addition
to these two groups, the semantics also play an important part of giving meaning to
syntax elements and guiding the designer for correctly defining the modeling language
depending on the domain and its intended usage.

2.2 Features of MDSE

The following section briefly describes the important aspects of MDSE and their typical
use cases with regards to modeling languages and tools.

2.2.1 Structure of modeling languages

Most commonly known modeling languages are derived from class diagrams in UML,
which describe the structure of a system using classes, their attributes, their methods
and relationships between them. In a UML class diagram, each attribute and method is

9



2. Foundations of Metamodeling

assigned a visibility status and methods can be given multiple parameters, which can be
either in or out parameters, or both.

Relationships between classes in a class diagram are determined by different available
types, like association, aggregation or composition. Inheritance concepts between classes
are also special types of relationships, specifically "is-a" relationships, where the super
class can either be fully specified or abstract and the derived classes inherit features (i.e.,
attributes and methods) from the referenced super classes.

Relationships can have different cardinality (or multiplicity) values assigned to them, like
"zero or more", "exactly one", "one or more". Aggregation and composition relationships
represent a relationship, where one class is part of another class. The difference between
these two relationships are with regards to the deletion of classes, where the elimination
of the compositing class deletes all classes part of the composition.

Modeling languages (specifically metamodeling languages), which are adaptations the
UML class diagram design pattern, consist of the following elements:

• Abstract syntax, where classes, associations and attributes are defined as ab-
stractions extracted from the software system to be mapped or generated, as well
as constraint languages like OCL used for defining constraints to act as rules for
validating models. Abstract syntaxes can be either defined for GPLs or DSLs, if
the target domain is clearly structured and contained.

• Concrete syntax, which adds additional representational aspects on abstract
syntax elements for distinguishing them and making them more understandable
and readable based on constraints.

• Semantics, including generating model editors to create models based on predefined
metamodels, code generators, suitable editors for operations (e.g., CRUD) on
metamodel entities for creating said metamodels and transformation approaches
for different types of model transformations.

The metamodeling language in the Eclipse Modeling Framework for example is called
Ecore, consists of the aforementioned components of a metamodeling language and offers
APIs for manipulating, graphically editing and storing models.

2.2.2 Model Transformation

Model transformations [36] between models are done by defining a mapping between
metamodels that is used to transform a model corresponding to its metamodel to another
model corresponding to the same or another metamodel. This mapping executes a
number of operations and applies rules in order to create the resulting model.

A model transformation can either be realized as aModel-To-Model (M2M) transformation
or a Model-To-Text (M2T) transformation, where the former has to conform to constraints

10
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given by metamodels and the latter includes code generation possibilities, where a
metamodel on the target is not needed.

Further distinctions of model transformations are mentioned in [19, 25, 29], for example
endogenous transformations, where the source and target metamodels reference the same
meta-metamodel, and exogenous transformations, where the source and target meta-
metamodels are not the same. Another type of a model transformation is concerned with
the direction of the transformation itself, where unidirectional transformations can only
be done in one direction and bidirectional transformations are done in both directions.

Model transformations have also been standardized by defining so called model trans-
formation languages [25] like the Atlas Transformation Language (ATL) or the Epsilon
Transformation Language (ETL), where each language describes model transformation
by rules using metamodel elements. These rules are conducted on the model layer,
transforming a source model to a target model.

Not only can model transformations be achieved between different metamodels and their
resulting models defined in the same platform or framework, but it should also be possible
to transform models and respectively their metamodels between different platforms in
the form of model transformation bridges. Various possibilities and an overview on the
most common approaches of such model transformations are given in Chapter 4. An
important aspect to consider is the chaining of model transformations where a model
traverses a list of intermediate states to reach the desired output (e.g., the executing
program).

2.2.3 Model validation and constraint languages

For defining more complex constraints and restrictions on possible designs and use cases
that metamodels and their models allow, OMG has standardized a language called
Object Constraint Language (OCL). OCL enriches metamodels with additional validation
functionality and rules they apply on their models. Basic types, iterators over lists
and mathematical quantifiers ("for all", "exists") are usable in OCL statements. As
a consequence, relevant objects based on entities and their attributes contained in a
metamodel can be queried, filtered and returned as a result for dynamic validation
responses while designing models.

2.2.4 Code Generation

Code generation in the form of automating tasks and creating executable programs is
also a very important part in MDSE. In the long run, it facilitates the maintenance of
domain specific tasks because the underlying models comply to a metamodel designed
for the requirements of the domain, meaning models instead of directly writing source
code are used for developing software artifacts.

As mentioned before, regarding model transformations, code generation is a typical
example for M2T transformations, where the source is a model, that is an instance of a
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metamodel, and the target is an executable source code or any other more sophisticated
executable or interpreted file. Trivial and more complex code generation transformations
can be implemented by using a set of templating engines, where either a simple template
for possible classes can be created or additional functionalities like basic CRUD operations
can be inferred and also generated. Advantages and different code generation techniques
are further given in [10].
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CHAPTER 3
Metamodeling Frameworks

The following chapter lists and explains the core aspects of both frameworks that
this thesis and its transformation approach deals with, namely the Modeling SDK
for Visual Studio (MSDKVS) and the EMF, and compares them according to their
available documentation, similarities and differences regarding their functionality and
their popularity among software engineering communities. To further demonstrate these
aspects, the frameworks are compared against each other by defining the same metamodel
on both frameworks, specifically family tree metamodels are created, similar in their
purpose, which consist of different constraints regarding relationships between their
entities (e.g., father, mother, child), inheritance features and different concrete syntax
representations.

A representation of the target domain is given in Figure 3.1 as a UML class diagram
which then acts as a reference for the concrete designs in each metamodeling framework.

For a sufficient overview on the various aspects provided by the frameworks described
in the next sections, the UML class diagram is designed targeting the frameworks’
more unique features, such as abstract classes, containment relationships, inheritance
relationships and self-targeting relationships.

The domain of the class diagram describes a Family containing multiple Person entities.
Each Person entity can be either a Man or a Woman. The idea behind this setup was
taken from the Sirius Starter Tutorial 1. To further include containment references, each
Person lives in a Town, which is contained within a Country.

1https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial, last accessed on
04.01.2023
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Figure 3.1: Basic Family Tree UML Class Diagram

3.1 Eclipse Modeling Framework

As mentioned before, EMF is a prominent player in the field of Model-Driven Software
Engineering (MDSE). EMF provides a rich set of features for, e.g., defining metamodel,
generating code, creating and validating models, transforming models, and serializing
them in XMI format. Many EMF-based tools exist, and they can all be integrated
into and used in modeling projects. EMF also allows runtime support for producing
java classes and programmatically manipulating models through reflection. This section
describes some of the core features of EMF needed for understanding the transformation
approach and provides an overview on how metamodeling is realized within EMF.

3.1.1 GUI

Figure 3.2 displays the graphical user interface that is available when designing and
implementing an Ecore metamodel in a modeling project in Eclipse. Ecore is the name
for the explicitly available meta-metamodel inside EMF. An EMF meta-model consists
of .ecore and .genmodel files for describing its purposes and functionality. In the .ecore
file, the abstract syntax elements are defined, which will be explained in detail later in
this chapter. The .genmodel files are used for Java code generation, i.e., interfaces of the
corresponding classes, a factory to create them, concrete implementations which can be
manually extended and used via an AdapterFactory. Each interface that is created
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here extends the EObject interface, which acts as the base of EMF classes. Additionally,
.genmodel is used for generating edit and editor code to create model instances of the
metamodel and creation wizards.

Figure 3.2: Graphical user interface in Eclipse Modeling Tools Version 2022-03 (4.23.0)

• (1) Modeling Canvas: Here, the modeling canvas shows a class diagram initialized
with the help of the Sirius default class diagram editor, which uses a standardized
.odesign file (i.e., VSM - Viewpoint Specification Model, see Section 3.1.4 for more
information) for visually creating and editing metamodels.

• (2) Model Explorer: The explorer for the modeling project in general, containing
all files needed for displaying the model, either tree-based or visually by initializing
a Sirius diagram that uses the textual metamodel tree and vice-versa.

• (3) Properties: In this area, different properties for the selected metamodel entity
can be filled and edited with various values.

• (4) Palette: EMF contains a tool palette for simply dragging and dropping ele-
ments onto the canvas (1) and linking them through different types of relationships.

3.1.2 Abstract Syntax in EMF

Regarding Figure 2.1 depicting the metamodeling hierarchy, realizing metamodel support
requires specifying it by instantiating concepts from the EMF meta-metamodel, namely
Ecore. The expressiveness of all possible metamodels is determined by said meta-
metamodel, therefore playing an essential role in the definition process. The Ecore
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meta-metamodel is explicitly defined in various sources, e.g., in [9, 10, 29, 31]. Figure 3.3
displays an excerpt of this meta-metamodel.

Figure 3.3: Excerpt of the Ecore meta-metamodel [9]

An Ecore metamodel is comprised of one or more EPackages. Each EPackage can contain
multiple EClasses, whereas each EClass can contain multiple EStructuralFeatures. These
features are divided into two types, namely EAttributes and EReferences. EAttributes
resemble properties of EClasses, they have an EDataType ranging from simple datatypes
(e.g., Integer, String) to more complex ones (e.g., user defined external types). EReferences
are used for linking two EClasses. Inheritance relationships are realized by defining
ESuperType relations on top of an EClass. EMF allows the definition of single and multiple
inheritance relationships. By setting the containment flag of a EReference to "true", a
composition relationship between source and target EClasses can be defined, resulting
in cascading deletion behavior, where deleting the containment itself also automatically
deletes its contained elements as well.

3.1.3 Model Tooling

A detailed introduction to EMF is given in https://www.vogella.com/tutorials/
EclipseEMF/article.html, last accessed on 04.01.2023, where all aspects from
project initialization, to metamodel editing (class creation, attribute definitions and
relationship creation), to code generation, to model editor generation and running editor
code for model creation are explained. A detailed example based on a real world scenario
on how one integrates MDSE into a project with the help of EMF is also given in [10]. A
quick overview on the different diagram elements available for specifying metamodels,
regarding the tree based editor and the default Sirius tool palette for Ecore metamodels,
is given as follows:

• Classifier: Containing elements for creating classes, datatypes and enumerations.

• Feature: Features range from class attributes to class methods and literals.

• Relation: All Relationships that can be defined between classes can be taken from
here, like inheritance, reference, bidirectional and containment references.
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• Dynamic (only class diagram): Creates a dynamic XMI model instance from
the selected class element contained in the current model.

• Package: Used for grouping elements together. Packages can interchange informa-
tion and element usage.

3.1.4 Concrete Syntax in EMF

The Eclipse Modeling Project Website lists three frameworks that can be embedded into
an eclipse installation and used for visualizing ecore metamodels and models, namely
GLSP (Graphical Language Server Platform) 2, Sirius 3 and Graphiti 4. The integration
of the Sirius framework into EMF adds functionality for defining graphical representations
on top of Ecore models, their classes, relationships and the different types that Ecore
offers to integrate in one’s own modeling language makes it possible to design beautiful
and concrete domain specific models and metamodels for better readability and usability
in software project teams that integrate Model-Driven Software Engineering. For the
matter of this thesis and its transformation approach, the well established Eclipse Sirius
framework was selected for defining and using elements and representation options
inside the transformation bridge, as it also best resembles the possibilities of graphical
representations a language designer can use on the MSDKVS side, where the concrete
syntax is integrated into the framework as is and cannot be exchanged. Furthermore,
it offers solutions for rapid development of graphical concrete syntax on the EMF side
without requiring a lot of understanding about the backend processes [37, 38].

When opening a model or a metamodel with references to a viewpoint specification model
(.odesign), an additional file is created called an .aird file, which contains Sirius represen-
tation data resembling the currently displayed representation of the metamodel based on
VSM metadata. This .aird file is dynamic in terms of its XML data representation and
changes its content frequently. .Aird files contain the data that is needed for graphically
representing the models during runtime, and are generated when a viewpoint is selected
to visualize (meta)model content. Semantic data is not contained within them, and their
volatility in terms of content makes it impossible to generate them programmatically.

A detailed mapping used in the transformation approach between EMF’s Sirius framework
and MSDKVS included diagram mapping is given in Chapter 5.

With Sirius, a Viewpoint Specification Model (VSM) containing one to several viewpoints
within .odesign files can be used for describing not only the concrete syntax on the
model layer, but also on the metamodeling layer. For the implementation of the M3B
transformation, only viewpoints on the model layer are used for transforming graphical
syntax elements from and to EMF. VSMs are used for managing the different concepts
the Sirius framework offers, like styles, tooling and mapping to (meta)model objects.

2https://www.eclipse.org/glsp/, last accessed on 04.01.2023
3https://www.eclipse.org/sirius/, last accessed on 04.01.2023
4https://www.eclipse.org/graphiti/, last accessed on 04.01.2023
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Identical to the GUI for defining metamodel elements, Sirius offers a property editor
window when a corresponding element is selected, making it possible to access different
domain element like EClasses and ERelationships for attributing them with customized
styles and tooling capabilities. The valid elements for each description can be restricted
by applying validation rules in the form of expressive query languages like OCL, AQL or
Acceleo.

Regarding the structure of a VSM in Sirius, the following elements are worth mentioning:

• Group: The root element of any Sirius specification file. This element can be
compared to the Ecore’s abstract syntax EPackage element.

• OwnedViewpoints: Acts as a wrapper for multiple OwnedRepresentations.

• OwnedRepresentations: These represent the data of the metamodel and model,
referencing their abstract syntax features and enriching them with a variety of ap-
pearances and behavior. Sirius supports multiple different types of representations,
the most important and relevant for this thesis being the diagram representation.
Tables, trees and matrices are the remaining ones not being targeted by this thesis’
transformation approach.

• Layers: Every representation has to have one defaultLayer, and can contain
multiple additionalLayer elements, grouping together the different styles a designer
can define for specific metamodel elements.

• NodeMappings: As the most basic form of graphical shape mappings in Sirius,
these are used for styling EClasses that do not contain other EClasses. Each
mapping, depending on their target element, can define different styles usable by
said abstract syntax entity.

• ContainerMappings: When an EClass is used inside a containment EReference,
the container itself and its sub nodes can be styled by using ContainerMappings
and SubNodeMappings.

• EdgeMappings: These types of mappings are used for graphically attributing
and styling EReferences between two EClasses. Specialized properties such as, e.g.,
TargetArrow and RoutingStyle, are definable here.

• ToolSections: Every VSM can contain multiple ToolSections, separating the
different tools into designated areas. Each ToolSection can contain various types
of OwnedTools, each usable on different abstract syntax elements. What kinds of
elements can be targeted by each tool can be specified by a multitude of available
query languages. Each OwnedTool contains one ore more operations, namely
firstModelOperations and subModelOperations, to define sequences of operations
the tool has to execute in order to manipulate the modeling canvas when the tool
is being used.
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• User Colors Palette: Different kinds of colors, that are usually not part of the
framework itself, are explicitly added here as entries by their red, green and blue
values, and referenced from within the viewpoints by their names.

3.2 FamilyTree Example Metamodel in EMF

Based on the UML class diagram (see Figure 3.1) and with regards to the MSDKVS
DSL definition in Section 3.4 for a basic familytree language, a similar metamodel based
on Ecore has been defined in EMF, shown in the following Figure 3.4.

Figure 3.4: Basic Family Tree as an Ecore metamodel in EMF, left in the default Ecore
tree-based editor view, right as a Sirius VSM

3.3 Modeling SDK for Visual Studio

This section describes the aspects of MSDKVS (also sometimes referred to as VMSDK,
meaning Visual Studio Modeling and Visualization SDK) with regards to metamodel
definition, model creation and validation, the framework’s interface and different tools
the framework provides. A detailed description on the framework’s functionality and
usage guidelines are given on the official Microsoft Online Documentation [35] or in [17].

3.3.1 Framework overview

MSDKVS supports the development of domain-specific languages by weaving together
abstract and concrete syntax. MSDKVS offers a graphical user interface with an integrated
editor to define classes, relationships, attributes and their types for a particular domain
as well as an explorer, a property editor window and several other features such as XML
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serialization behavior of models, code generators using a templating engine (specifically
the T4 text template engine to generate text files) and the possibility to build extensions
to all these features.

The project type in Visual Studio to create DSLs is called "Domain-Specific Language
Designer" project and the modeling suite for Visual Studio can be separately installed
through the Visual Studio Installer. After selecting the project, different types of
project templates for creating one’s own modeling language are selectable, including
class diagrams, component models or task flows. Each of these templates comes with
a predefined project structure to directly start working on the DSL by editing the
automatically created application data. The most important file is the DslDefinition.dsl
file within the Dsl project, containing all the syntax definitions (abstract and concrete
syntax) and their validation constraints, serialization behavior, tooling capabilities and
much more.

Two projects are created at startup, the Dsl project and the DslPackage project. The
Dsl project is used for designing the language and the DslPackage project is used for
running the separate Visual Studio instances to create models based on the designed
DSLs. Distribution of published DSLs can be done through the creation of Visual Studio
Extension files (.vsix) created when the solution is built.

3.3.2 GUI

Figure 3.5 shows a solution for DSL projects opened in the currently available 2022
Community Edition of Visual Studio. An overview with descriptions of the various
numbered areas is given as follows:

• (1) Dsl Canvas: Elements from the Toolbox can be added and are shown on
the left hand side of the canvas. The canvas is divided into two areas, whereas
the larger left area contains the domain classes and domain relationships that
have been created and the links between them. The smaller right side is titled
"Diagram Elements" and contains shape definitions for classes, relationships and
their attributes (i.e., graphical concrete syntax). These shape definitions can be
mapped to elements in the "Classes and Relationships" area through "Diagram
Element Mappers" to graphically enhance model elements.

• (2) Toolbox: The Dsl Designer section of the toolbox contains all nodes that can
be dragged and dropped onto the canvas, creating either a class, relationship, links
and different types of shapes.

• (3) DSL Explorer: This window can be seen as a graphical representation of all
values contained within the XML schema representation of the DSL, where not
only the nodes in the canvas are listed in their corresponding categories, but also
the editor functionalities like toolbox operations, serialization behavior and custom
C# types as well as DomainEnumerations can be added and removed.
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Figure 3.5: Graphical user interface in Visual Studio Community 2022 of MSDKVS

• (4) DSL Details: This window displays content when a class node, a relationship
node, shape node or a mapping between these nodes has been selected. Here, links
and values for decorators and delete propagation behavior can be tied together and
added to the selected element.

• (5) Properties: This window contains all possible properties and their values
for the selected element on the canvas. These entries resemble attributes in the
elements’ XML representation.

3.3.3 Code generation

While designing a DSL, MSDKVS adds an API to it that can be called to read model
information and update these instances dynamically through generating text or source
code files using T4 Text Templates. These template files can be supplemented with C#
or Visual Basic code snippets that use the specific model instance as reference.

3.3.4 Model creation and validation

To create a model for the previously implemented DSL in the DSL designer GUI, a separate
experimental Visual Studio instance has to be started by running the automatically created
DslPackage project within the solution. The DSL definition contains information about
what kinds of classes and relationships the model can contain as well as their appearances
by defining several styles for these class elements (called shapes), for relationships (called
connectors) and their domain properties (called decorators).
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3.3.5 Abstract Syntax in MSDKVS

While MSDKVS does not offer a publicly available view on the meta-metamodel, the
transformation itself implicitly offers the ability to generate said meta-metamodel by
using the data structures for serializing the input metamodel files in the form of class
diagram. The full representation of said class diagram after the transformation on the
M2 layer has been implemented can be investigated in Appendix D at the end of this
thesis. An abstracted excerpt of the meta-metamodel file is shown in Figure 3.6.

Figure 3.6: Excerpt of the MSDKVS meta-metamodel [15]

When creating a DSL in MSDKVS, one element always has to act as the root element
of the dependency tree and every subsequently created DomainClass, if not targeted
by another embedded relationship, is referenced by this root class. The root class by
default has the same name as the DSL itself, but can be changed after initial creation.
Regarding transformation mappings, relationships from every class to a DSL’s root class
are embedded relationships, meaning that they can directly be mapped to containment
references in Ecore.

The possible entities that can be created on the metamodeling canvas are available in
the Dsl Designer Toolbox. The following table contains all objects within the toolbox
that create abstract syntax elements and are added to the serialized XML representation
file of the DSL. First, a list of the elements of the DslDefinition project canvas obtained
from within the left part of the workbench titled "Classes and Relationships" is given as
follows:

• Domain Class: These are used to define model elements for the domain. Do-
mainClasses are the most common elements for defining a DSL.
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• Domain Relationships: Relationships in general are used for connecting model
elements (i.e., instances of domain classes) through links. Relationships offer
different customization features (e.g., multiplicities) and their source and
target objects are called roles, which can have different names than the classes they
represent. An important feature of MSDKVS is that domain relationships can be
the target of other relationships as they are themselves usable as classes, i.e., can
contain attributes.

• Embedding Relationship: Displayed with solid lines, embedding relationships
are used for defining containment references (i.e., class ownership relations) between
two elements in the language. In MSDKVS, the root element has an embedding
relationship to all domain classes either directly or indirectly through other ref-
erenced classes, and this element itself acts as the metamodel diagram, where all
model elements are added to on the M1 layer. Another important aspect is that,
if the parent element of the embedding relationship is deleted, all children are
removed as well.

• Reference Relationship: All relationships that are not embedding are called
reference relationships and are displayed as connector shapes (described in Sec-
tion 3.3.6) and the deletion of referenced elements does not cascade to other linked
elements. Every relationship contains a source and a target role, resembling other
DSL elements. No distinction between bi-directional references and simple refer-
ences, as is done in Ecore, is made here, thus usually containing less reference
entities than EMF.

• Inheritance: Inheritance relationships are a special kind of relationship, where
one node inherits features (i.e., relationships and attributes) of the node it is related
to. It can be compared to the typical object-oriented definition of inheritance,
except that in the environment of metamodeling in MSDKVS, not only class and
relationship nodes, but also shape nodes can be inherited from. This is an important
aspect that has to be considered when transforming MSDKVS DSLs, such that, e.g.,
each decorator property from the shape that is inherited from is also transformed for
the object the sub shape is mapped to. MSDKVS also only allows single inheritance,
in contrast to EMF where an EClass can inherit attributes and behavior from more
than one base class, which will also be elaborated in more detail in Chapter 5 when
the transformation rules are described.

These canvas items are displayed in views that can be adjusted through different contextual
actions, like reordering of classes or collapsing / expanding of entities. Each of these
elements can be attributed by adding a number of DomainProperties to them, e.g., a
"name" property with type String or a "created" property with type DateTime.

Regarding their XML representations, the DslDefinition.dsl file, when opened in a text
editor, contains all canvas objects and their mappings to tool palettes, shapes (i.e.,
graphical concrete syntax) and serialization properties. Every object on the canvas is
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given a so-called Moniker type to be referenced in other parts of the editor. Monikers
are uniquely identifying names for elements. The XML content is grouped in areas where
cross referencing other elements through these moniker types is made possible. These
groups include:

• Classes, where all domain classes and their properties are nested within.

• Relationships, where different relationship types with their source and end points
defined as roles and referenced through domain class monikers are contained.

• Types, where a number of external common system types is listed by default, such
as String, Double or Boolean. DomainEnumerations and custom types are listed
here as well.

3.3.6 Concrete Syntax in MSDKVS

Every class and relationship can be decorated with corresponding shapes that are
maintained on the right hand side within the editor’s graphical interface. They describe
the appearances of the metamodel object instances on the model layer. Compared to
EMF and Sirius respectively, MSDKVS does not offer the possibility to define concrete
syntax used on the M2 (metamodel) layer. How metamodel entities are represented is
not adjustable and is the same for every metamodel defined on this platform.

The exact representation of the concrete syntax elements is visible when examining the
projects DslDefinition.dsl file that is used for displaying and editing the metamodels,
serialized in XML format. As has been done for the abstract syntax, the canvas elements
and XML tags relevant for transforming graphical concrete syntax elements are listed
as follows with descriptions on how they are represented and editable inside the GUI.
A comparison and the definition of mapping rules between these elements and the
corresponding syntax on the EMF side is finally given in Sections 5.2.2 and 5.3.2 in
Chapter 5.

• Geometry Shape: Each geometry shape defines the layout and graphical represen-
tation of the linked DomainClass. Each shape contains several DomainProperties,
which can define, e.g., the color of the DomainClass and the default size parameters.
Additionally, for every DomainProperty the targeted class has, one or more decora-
tors can be defined through DecoratorMaps that can contain numerous properties
like font attributes, text orientation and different line types for the class nodes’
borders like dashed or dotted.

• Compartment Shape: These shapes can contain multiple DomainClasses, dis-
playable in different styles like lists or tables. In this thesis’ example, this would be
the country entity containing multiple town entities. Only DomainClasses having
containment references can be visualized by CompartmentShapes.
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• Image Shape: Instead of geometries, these shapes are represented on the model
layer based on their image target, which is normally required to be a bitmap file and
must be part of the resources folder of the modeling project. Only DomainClasses
can be visualized by ImageShapes.

• Connector: Connectors define the layout and styles for DomainRelationships.

• Port Shape: Ports are shapes that are attached to other shapes and they can be
used to define specific regions for connecting other diagram elements.

• Swimlane: With Swimlanes, the language designer is able to divide the diagram,
either horizontally or vertically, whereas a Swimlane resembles a model element on
the canvas.

• Diagram Element Map: This tool is used to map a DomainClass or a Domain-
Relationship to a valid shape on the canvas.

Regarding objects in the right area of Figure 3.5, following noteworthy regions can be
extracted from their XML schema content:

• Shapes: This area contains all shapes that have been defined on the canvas. Every
shape except connectors are declared here with properties defining their appearances
(in MSDKVS called decorators). Each shape can contain multiple decorators and
these decorators reference DomainProperties that belong to the referenced class
(i.e., domain class, compartment). Same as for every other object, shapes contain
unique id values (GUIDs) for being able to cross reference them in other areas.

• Connectors: Contains a list of shapes for DomainRelationships.

• XmlSerializationBehavior: Contains different cross references to other objects
via their moniker types and adds additional information on their serialization
features as well as modeling functionalities and available context menus when
interacting with the tree editor of the underlying model. How the modeling entities
are represented inside the XMI serialized file is configurable here.

• ExplorerBehavior: Custom explorer behavior for nodes is declared in this section.
This area is out of scope for this thesis’ transformator as it does not directly affect
the abstract and concrete graphical syntax validity.

• ConnectionBuilders: These are used for adding reference creators that are used
for linking objects together with Connector shapes, targeted by tools.

• Diagram: This element contains all shape maps between shape nodes and syntax
elements as well as design properties for the modeling canvas when running the
experimental IDE instance, like color attributes for backgrounds and texts.

• Designer: The designer region covers the definition of tools with which the modeler
is able to design the model based on its DSL.
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3.4 FamilyTree Example DSL in MSDKVS
In comparison to the previous defined diagram and metamodel in UML and EMF
respectively, Figure 3.7 shows the equivalently defined DSL in MSDKVS, with the same
classes, references and attributes for easy comparison.

Figure 3.7: Basic Family Tree as DSL in MSDKVS

3.5 Comparative Analysis of Framework Features
For getting a good overview on what features are available within each framework, the
following Tables 3.1 and 3.2 to 3.4 are used for comparing the two platforms. The tables
consist of three columns, the first column is used to describe and name the identified
feature, the other two columns denote for each framework respectively whether or not
the feature is available in it and how it is implemented. The list of relevant elements was
adapted and extended from [30] in terms of first class concrete syntax concepts extracted
through detailed investigation of the two frameworks (i.e., their available documentation
and hands-on experience). The concepts have been abstracted for better comparison
thus creating a standardized table on core abstract and graphical syntax features in
metamodeling frameworks. The features (i.e., rows of the table) are then again discussed
separately while taking both frameworks into account to discover the major similarities
and differences.
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Criteria Ecore MSDKVS

ASM Concepts
Class EClass DomainClass
Relationship EReference DomainRelationship
Attribute EAttribute DomainProperty
Enumerations EEnum DomainEnumeration
Role DomainRole
Grouping EPackage Language, Namespace
Classes
Abstract Classes
User-defined root el-
ement
Relationships
Arity binary binary
Composition
Multiplicity
Inverse
Endpoints EClass DomainRole
Unique Names (per Class)
Link to Model
Attributes
Applicable to EClass DomainClass, DomainRelation-

ship, Shapes
Multiplicity single-/multi-valued single-/multi-valued
Unique
Ordered
Default Value
Custom Data Type
Access Modifier
Enumerations
Roles
Multiplicity -
Dependency - DomainRelationship
Inheritance
Single/Multiple multiple single
Instantiation single single
Class Inheritance
Relationship Inheri-
tance
Validation

Constraint Lan-
guage

OCL GPL (C#, VB)

Table 3.1: Comparison of abstract syntax features in MSDKVS and EMF with regards
to their meta-metamodeling concepts 27
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3.5.1 Abstract Syntax Features

ASM Concepts

These are the main abstract language concepts and are integrated into most metamodeling
frameworks. The core features listed here are the definitions of classes, links (i.e.,
relationships between classes) and attributes (i.e., properties of said classes and, if
available, their relationships). As we will explicitly look at MSDKVS in the course of this
thesis, the concept of a role has to be also included as one of the main abstract syntax
features. Typically associated with DomainRelationships, roles are acting as the source
and target entities used as inputs for these relationships. Roles can be used to attribute
additional values on top of a class entity. This means that one class can have multiple
roles spread out through the language definition that act as so-called role players on both
ends of a link (i.e., an intermediate object for referencing the class itself).

Grouping

Many metamodels contained within publicly available collections, especially Ecore meta-
models, often use more than one package. These packages contain and group definitions
of the aforementioned ASM concepts and can make them available to other packages
defined in a metamodel by attributing them to referencable namespaces. MSDKVS
does not enable the multiple grouping concept, as only one package (i.e., Language or
namespace) can be defined in a language project.

Classes

The class concept is the main concept a language designer needs to define the basic
structure of his or her metamodel. The definition of classes can be made either abstract,
as an interface or, by default, public. The ability to manually define a root element is
only available in EMF, as in MSDKVS, the root element of every language definition is
always a container class created at the initialization of the project. This root element
acts as the modeling canvas on the M1 layer.

Relationships

Relationships, in EMF called EReferences, a type of EStructuralFeatures, in MSDKVS
called DomainRelationships, in addition to classes are needed to define a metamodel
or DSL. Relationships can have different Arities, can be defined bi-directional, can
be a containment of subclasses, can have multiplicities on either source or target en-
tities etc. These source or target entities are EClasses in EMF and DomainRoles in
MSDKVS, whereas DomainRoles reference DomainClasses through moniker types. Each
DomainClass can have multiple DomainRoles spread across the DSL.
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Attributes

Attributes are properties added to model entities. In EMF, only EClasses are attributable,
whereas on MSDKVS, in addition to DomainClasses, also DomainRelationships and
Shapes (GeometryShapes, CompartmentShapes, Connectors etc.) can contain multiple
different Attributes. Attributes in EMF are another type of EStructuralFeatures, namely
the ecore:EAttribute type. Inside MSDKVS, attributes are called DomainProp-
erties. The unique possibility of attributing DomainRelationships makes transforming
DSLs to Ecore metamodels interesting, as such relationships have to be transformed to
corresponding EClasses acting as each target and source of additional EReferences in
order to preserve their attributes while transforming. Attributes can either be simple
types like Integer, String or Boolean or more complex types like a collection of types or
user-defined custom types (i.e., EDataTypes in EMF and ExternalTypes in MSDKVS).
Attributes can have default values configured to them. How these properties should be
accessed after code generation can also be distinguished on both MSDKVS and EMF.
Last but not least, enumeration types, special kinds of attributes, can also be defined
on both platforms, EEnumerations in EMF and DomainEnumerations in MSDKVS
respectively.

Roles

As roles are only realizable inside MSDKVS, special transformation rules only apply in
the direction of MSDKVS2EMF. Multiplicities are applied to these DomainRoles and
have to be transformed to EReferences and their EClasses accordingly.

Inheritance

As mentioned in Section 3.1.2, EMF allows defining inheritance structures containing
one or more super classes, whereas MSDKVS only allows single inheritance, meaning
one DomainClass can only inherit from one other DomainClass maximum. Multiple
inheritance is a feature that not many modeling frameworks provide. The inherited
features super classes pass down to their sub classes include properties and relationship
structures. An important aspect of MSDKVS though is the ability to not only inherit
these features among DomainClasses, but also among DomainRelationships and even
their corresponding shapes as well.

Validation

Validating the well-formedness of a given metamodel is possible, available out of the box
and also encouraged in both platforms. EMF allows turning auto-validating on and off,
whereas MSDKVS validates metamodels as soon as the DSL is opened in the respective
editor inside Visual Studio. Information regarding syntax validity is either considered as
an information, a warning or an error, same as when debugging source code, whereas
warnings or information do not break the program’s ability to be compiled and executed.
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Constraint Language

Further constraining possible design decisions made on the underlying modeling layer (the
M1 layer) is available in both EMF and MSDKVS. EMF uses the Object Constraint Lan-
guage (OCL) for describing rules applying to meta-models and their models, specifically
the Eclipse OCL variant 5. MSDKVS on the other hand relies on general programming
languages (GPLs), specifically C# and Visual Basic. Through T4 text templates and
C# or VB code snippets a language designer can narrow down the valid interactions a
modeler has with the designed modeling language.

5https://projects.eclipse.org/projects/modeling.mdt.ocl, last accessed on
04.01.2023
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Criteria Ecore (with Sirius) MSDKVS

GCM Concepts
Integrated Sirius
Diagram Canvas
Diagram Ele-
ments
Mapped to EClass, ERelationship, EAttribute DomainClass, DomainRelation-

ship, DomainProperty
Class Shapes NodeMapping GeometryShape, ImageShape
Relationship
Shapes

EdgeMapping Connector

Composition
Shapes

ContainerMapping CompartmentShape

Attribute Layout Labeling DecoratorMap
Special Shapes BorderedNode Swimlane, Port
Layers
Class Shapes
Geometries
Icons
Coloring
Layout
Class Geome-
tries
Four sided shapes Square, Diamond Rectangle
Curved shapes Ellipse, Dot Ellipse, Circle, RoundedRectangle
Special shapes Basic shape, Note, Gauge
Class Icons
Image file format bitmap
Relationship
Shapes
Line Style solid, dot, dash, dash-dot solid, dot, dash, dash-dot, dash-

dot-dot, custom
Routing Style straight, manhattan, tree rectilinear, straight
Arrowing
Coloring
Sizing
Line Styles
Solid
Dot
Dash
Dash-Dot
Dash-Dot-Dot
Custom

Table 3.2: Comparison of graphical concrete syntax features in MSDKVS and EMF with
regards to their meta-metamodeling concepts
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Criteria Ecore (with Sirius) MSDKVS

Routing Styles
Straight
Manhattan rectilinear
Tree
Composition
Shapes
Geometries
Icons
Coloring
Layout
Background Style
Inner shapes
Composition Ge-
ometries
Gradient
Parallelogram
Image
Appearance
Fill Color
Gradient
Coloring
Named colors
RGB
Style
Border Line Style, Size, Color Line Style, Size, Color
Background
Foreground
Labeling
Labeling
Sizing
Formatting
Alignment
Offsetting
Positioning
Inheritance
Shape Inheritance

Table 3.3: Comparison of graphical concrete syntax features in MSDKVS and EMF with
regards to their meta-metamodeling concepts continued
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Criteria Ecore (with Sirius) MSDKVS

Tool Palette
Sectioning
Creation Tools
Edition Tools implicit
Deletion Tools implicit
Copy Paste Tools implicit
Creation Tools
Class Creation Tool Node Creation Element Tool
Relationship Cre-
ation Tool

Edge Creation Connection Tool

Composition Cre-
ation Tool

Container Creation Element Tool

Filter Mecha-
nisms
Mapping Filter
Variable Filter

Table 3.4: Comparison of graphical concrete syntax features in MSDKVS and EMF with
regards to their meta-metamodeling concepts continued

3.5.2 Graphical Concrete Syntax Features

The identified graphical concrete modeling syntax concepts were retrieved and abstracted
after investigating both EMF, including its Sirius framework, and MSDKVS to be able to
map and compare them to other metamodeling frameworks that also offer some kind of
graphical notation. The following list based on the previous tables explain each subsection
with regards to these two frameworks.

GCM Concepts

Whereas MSDKVS offers integrated graphical concrete syntax elements, functionality and
validation, the Eclipse environment has different frameworks which are used to design
metamodels within a GUI and provide tool support, mentioned in Section 3.1.4. In the
course of the M3B and this thesis’ transformation approach we consider Sirius as it is
the most commonly used framework and best resembles the possibilities of viewpoint
representation in comparison to the MSDKVS side. Sirius uses so called Viewpoint
Specification Projects (VSP) containing descriptive model files ending with .odesign [37].
These files contain the specification of the graphical representation of a model and are
comprised of layer definitions and tool sections containing toolbox operations with a
structured dependency tree of further inner operation mappings, style mappings for
model shapes, font layout properties, custom color definitions, and much more. Another
identified and important aspect is the notion of a diagram canvas, where model entities
can be dragged to and from and the metamodel (or DSL) can thus be graphically
manipulated. Available not only on the M2 layer, but on the M1 layer as well, where
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tools defined through the graphical concrete syntax portion of the framework are used
to restrict the possible operations a model designer has. Both frameworks have to set
an entity object (i.e., a class entity) to be the diagram canvas’ root element. In EMF,
this is done when creating the model (i.e., the M1 layer), in MSDKVS this is done when
designing the DSL (i.e., the M2 layer), where only one element can act as the root element
and, when starting a Visual Studio instance for creating models, becomes the canvas
entity. Therefore, it is necessary for this root element on MSDKVS to be able to traverse
through all metamodel objects either through reference or containment relationships.

Diagram Elements

The available diagram elements are usually comprised of different shapes and modifications
thereof to which abstract syntax elements like classes, relationships and also attributes
can be mapped. Both frameworks offer the possibility to define specific shapes to the
aforementioned abstract syntax. NodeMappings are used in EMF to define shapes on
classes, in MSDKVS they are called GeometryShapes or ImageShapes. Relationships are
shaped by EdgeMappings on EMF and by Connectors on MSDKVS. Classes that use
containment references have to be mapped to either ContainerMappings in EMF and
CompartmentShapes in MSDKVS, where each framework also offers the possibility to
define shapes on the contained elements as well. Attributes, on either classes or even
relationships when talking about metamodeling in MSDKVS, can be graphically altered by
using Labels within style elements on EMF and through DecoratorMaps in MSDKVS, their
targets ranging from more simple decorators like TextDecorators to more sophisticated
ones like IconDecorators and ExpandCollapseDecorators. Aside from these standardized
shapes, each framework also contains special shapes, which have to be considered when
transforming the graphical concrete syntax. Sirius features BorderedNodes, which can
be mapped to MSDKVS Port shapes applied to a compartment’s subnodes. MSDKVS
further offers Swimlane support for dividing the canvas into separate areas.

Class Shapes

Identified categories of class shapes that were found in both frameworks include geo-
metrical class shapes and custom icon shapes. Each of these can be further customized
by applying colors on different styling aspects like background, foreground or borders.
Layout properties like width or height parameters and weight can be applied to class
shapes on both platforms.

Class Geometries

Based on the available geometry shape definitions for classes following distinctions were
recognized:

• Four-sided Shapes: Shapes that have four sides include Squares and Diamonds
on EMF and Rectangles on MSDKVS, although square-like shapes can be defined
by using the same height and width attributes.
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• Curved Shapes: Both frameworks offer Ellipses as curved shapes, as well as
Dots on EMF and Circles on MSDKVS. Rounded Rectangles are a special kind of
rectangular shape where the edges are rounded based on a specific shape property.

• Special Shapes: As opposed to the previously mentioned special shapes, these
special shapes are explicit types of class geometries. EMF allows setting the type
of a NodeMapping to be used as, e.g., Notes or Gauges. MSDKVS does not have
other class shapes than those mentioned previously.

Class Icons

Regarding shapes, metamodeling platforms also allow the submission of custom image
files to adapt the look and feel of the models. EMF and MSDKVS differ in their support
of various file formats. Icons can be used to, for example, add custom appearances to tool
palette items or composition shapes. As mentioned before, every image that is attributed
to an element on the language canvas has to be in BMP format for MSDKVS, EMF does
not exclude any of the well known image formats. This characteristic has to be explicitly
considered when transforming between these frameworks.

Relationship Shapes

Relationship Shapes are mapped to relationships on the metamodeling layer. The design
properties set here are reflected on instances of said relationships on the modeling canvas
in the runtime instances of the editor. Each relationship shape can set a line style, routing
style for connecting lines between two classes. Arrowing targets the start and end layout
of a reference. Each link can also be colored and sized accordingly.

Line Styles

Both metamodeling platforms offer the opportunity to set the line style of a relationship,
where usually the number of used dots and dashes can be set by predefined order
configurations. MSDKVS also supports the possibility to define custom sequences of this
dot and dashes.

Routing Styles

Routing styles are concerned with how a link between two elements is formed, which can
either be a straight line or in the form of the manhattan routing style, which is called
rectilinear style on MSDKVS.

Composition Shapes

Composition shapes offer nearly identical styling options as class shapes, the exception
being setting shapes for inner classes. MSDKVS does not offer this option whereas EMF
allows defining inner shapes.
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Composition Geometries

Several types of geometries or shapes for compositions have been found, the default being
a gradient, which is present in both platforms. Looking at EMF and Sirius, further
shapes are offered which include parallelograms (i.e., Lozenges) and also image shapes,
which are both not available in MSDKVS.

Appearance

Appearances regarding class shapes, in particular composition shapes, include additional
coloring options such as setting a gradient or a single filling color.

Coloring

As metamodeling frameworks often depend on an underlying programming language
(e.g., EMF on Java, MSDKVS on C#), the available coloring options, different styles,
and appearance attributes are limited by the languages’ libraries. As for MSDKVS, three
different types of color palettes are available (system, web, and custom). EMF offers a
selection of basic system colors per default.

Style

These style section targets every possible shape of the selected platforms. Styles can target
different configuration mappings, e.g., a border line style for a class or the foreground
color of a composition shape. Styles from MSDKVS and EMF can be easily mapped to
each other as both offer the same styling functionalities.

Labeling

Labeling includes the opportunity to style labels, which are mapped to attributes of
classes and relationships, accordingly. Normally, these attributes are represented through
text labels, therefore editing the font sizes, font families, positioning, text alignment
among other things are common features. Setting an offset to said text labels is only
available on MSDKVS although it is considered a prominent feature especially in web
development so it was added to the list of recognized features.

Inheritance

MSDKVS offers the possibility to inherit shape properties among shapes. The equivalent
shape mappings on EMF with their styles and attributes do not offer this functionality.

Tool Palette

Different types of tools have to be defined to work with defined metamodeling in a
runtime environment on a modeling canvas. The granularity of what types of tools
can be created and customized varies greatly between EMF and MSDKVS. MSDKVS
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only allows the definition of essential element creation tools for domain classes and
domain relationships. On the other hand, EMF offers the definition of a vast amount of
additional tools containing, e.g., edition tools, copy-paste tools, or reconnect edge tools.
This functionality is not customizable on MSDKVS, but some are automatically used
when a creation tool is created. Thus, copying and pasting or deleting elements on the
modeling canvas works out of the box. Having no tool palette defined does not mean
that interaction on the modeling layer is not possible. Integrated textual tree editors
with context menu operations is always available to add elements to the model.

Creation Tools

Regarding the creation tools, which are integrated into both platforms, each one offers
a class creation tool (NodeCreation in EMF / Sirius and ElementTool in MSDKVS)
and a relationship creation tool (EdgeCreation in EMF / Sirius and ConnectionTool in
MSDKVS). Creating a composition uses a separate creation tool on EMF, namely the Con-
tainerCreation Tool. MSDKVS creates composition instances through its ElementTools
as well.

Filter Mechanisms

Additional functionality on the modeling canvas includes the possibility of filtering the
instances of classes and relationships based on queries. Different types of filters can be
defined on EMF, MSDKVS does not allow applying such filter functionality, therefore it
is not explicitly targeted in the mapping rules for the M3B, but it should be considered
when additional frameworks are used for transforming graphical concrete syntax elements.
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CHAPTER 4
Model-driven Interoperability

and Related Work

This chapter first gives a definition of Model-driven Interoperability in the domain of
metamodeling and language engineering and afterwards presents existing approaches
regarding model transformations between different frameworks and platforms and con-
cludes with related work and gives a quick overview on how transformations among
various prominent frameworks have been implemented in the past.

4.1 Model-Driven Interoperability (MDI)

As mentioned in Chapter 1, interoperability deals with the exchange of information
between two or more systems, and the ability to use that information in each system re-
spectively [22]. Interoperability overcomes the barriers of encapsulating existing platforms
and connects features among different systems, making the underlying tools platform-
independent. As modeling languages for software development gained popularity in the
early 2000s, a need for transforming the grammarware technical space (i.e., EBNF-based
grammar tools) to the modelware technical space existed [40] to achieve interoperability
between these sets of tools. When this interoperability was established, a plethora of
metamodeling platforms followed, which in turn also raised the need for interoperability
amongst them.

Interoperability can be seen as a means for migrating existing systems to newer ones, that,
e.g., are better supported or are more well known among project members, or suitable in
terms of backwards compatibility to downgrade to previous versions for legacy purposes.
Or it can strengthen the collaboration among developers with different programming
language backgrounds by providing a format for combining and working on a split code
base.
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Regarding the interoperability of models, which is the main topic of this thesis, it means
the exchange and possible migration of models between several meta-modeling tools,
where not only models but their metamodels are exchanged as well. The desired goal is
to have as little information loss as possible with regards to the functionality of their core
aspects and design concepts. A major problem in this regard is the diverse functionality
and internal representations that these tools operate on [30]. [10] defines the aim of
model-driven interoperability (MDI) as "defining bridges to achieve interoperability ... by
applying model-driven techniques". Concepts (see Section 2.2.1) of different metamodels
are matched and based on the results, a transformation from one environment to the
other is executed step by step. Another difficulty poses the fact that some metamodeling
environments do not offer a description on the meta-metamodel the metamodels conform
to, thus no concrete knowledge about the possibilities on designing metamodels can be
concluded out of the box. In this regard only the publicly available documentation on
how the tool can be used is helpful. As mentioned in Chapter 3, MSDKVS is such a
tool that does not offer a publicly available meta-metamodel. Therefore, the first step
of the transformation approach proposed and implemented in the course of this thesis
implicitly adds a meta-metamodel for MSDKVS inferred by the class hierarchy created
for serializing the input files from DSLs created in MSDKVS. The full class diagram is
displayed in Appendix D.

4.2 Existing transformation approaches
In the past there have been a lot of approaches concerning model-driven interoperability
among different metamodeling languages (i.e., metamodeling frameworks) [9, 13, 26, 27,
28, 30, 31]. They typically consist of one or more model transformation bridges that are
used for exchanging data between them. But there have been other proposals for generic
or concrete transformations, which will be listed in this section. Generally speaking, there
exist two main types of transformations that can be distinguished, transformations among
metamodels or models contained in the same framework (endogenous transformations)
and transformations of metamodels contained within different frameworks (exogenous
transformations) [10, 23]. The latter is the one that we are concerned about in this
thesis, where the meta-metamodels our source and target metamodels conform to are
not the same, i.e., their origin frameworks differ. These are then so-called horizontal
exogenous transformations, as the source and target of the transformation are situated
on the same abstraction level but adhere to different meta-metamodels. Some of these
works mentioned above transform only metamodels, i.e., do not consider the models and
concrete syntax interoperability.

4.2.1 ATL - ATLAS Transformation Language

Regarding transformations on the M1 layer (i.e., the models themselves), ATL 1 is a
prominent player for defining transformation languages to transform models based on

1https://www.eclipse.org/atl/, last accessed on 04.01.2023
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similar properties in EMF. For this, ATL contains a set of defined rules and helper
methods to achieve the transition from model A to model B, where each rule describes
how a source part should generate the target entity and vice versa. ATL is a QVT-like
language [6], where QVT (Query/View/Transformation) comprises a standardized set
of model transformations defined by the OMG (Object Management Group). Besides
ATL as a model transformation language, [23] also examines QVT-O and Xtend trans-
formation languages in the course of a controlled experiment. These are categorized as
M2M (model-to-model) transformations, whereas on the other hand, M2T (model-to-
text) transformations are mainly used inside code generators and not directly part of
transformation languages. [10] additionally mentions TGG (Triple Graph Grammars)
and ETL (Epsilon Transformation Language) as members of the family of transformation
languages.

4.2.2 Bridging Transformations

The most commonly and widely adapted possibility of transforming metamodels between
two different frameworks is done via transformation bridges. A bridge is implemented via
mapping each feature of the source framework in terms of meta-metamodel functionality
to the equivalent feature, if existent, on the target framework. Because most frameworks
are built upon standardized and well structured mechanisms on how a language (i.e., a
metamodel or DSL) can be developed, many features, mainly concerning the definition of
abstract syntax elements, are practically identical with slight adjustments depending on
the actual framework. Regarding the usage of concrete syntax elements, either graphical
or textual, the differences between the frameworks are more varying.

4.3 Related works

Related works regarding different transformation approaches have been collected and
in the course of preparing the transformation for this thesis examined extensively. This
section gives an overview on the different types of metamodel interoperability in terms of
realization and their targeted frameworks.

In terms of transformation bridges, the approaches have been formalized as M3-Level-
Based Bridges (M3Bs) in, e.g., [30] and implemented respectively, for example for the
framework pairs Aris and EMF in [27], MetaEdit+ and EMF in [26], Microsoft Visio
and EMF in [31] and all of them combined in [29] with references to additional previous
work. The most recent work done in achieving interoperability between two different
metamodeling platforms, namely between ADOxx 2 and EMF, has been done in [9].
Furthermore, a GME-to-EMF metamodel framework transformation bridge is available in
[14]. M3Bs require frameworks to have a three level hierarchy (cf. 2.1, excluding the M0
layer for the runtime instances). Following Figure 4.1 depicts a pattern for M3Bs, where

2https://www.adoxx.org/live/home, last accessed on 04.01.2023
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layers M2 and M1, metamodels and their models, are transformed based on mapping
rules made on the M3 layer, hence the name M3B.

Figure 4.1: Pattern of M3-Level-Based Bridges [31]

Another transformation bridge as mentioned in Chapter 1 for the framework pair Microsoft
DSL Tools (where the current MSDKVS is also a part of) and EMF has been conducted
in [7, 13]. The transformation approach from these sources has been defined between 2005
and 2010, making them targeting an older release of the current version of the DSL Tools
Framework for Visual Studio. Furthermore, the abstract syntax has not been completely
included in the transformation approach after having investigated the publicly available
source code. Additional differences regarding today’s version of MSDKVS as opposed to
the transformation approach in [13] are, e.g., the serialized file formats (.dsldm compared
to today’s .dsl mentioned in [7]), the visualization of a meta-metamodel containing
the ValueProperty entity compared to today’s DomainProperty, and the representation
of attributes for classes and relationships. Concrete syntax elements where also not
transformed accordingly, and no explicit evaluation and feasibility study was given to
show the practicability and validity of the proposed approach and its implementation.
One example transformation was explained in [13], the PetriNet metamodel, where
the question remains if the validation of said transformed metamodel and models was
successful in the target platform. In Chapter 7 this gap is addressed properly by
providing an exhaustive quantitative and qualitative evaluation of the transformation
bridge. [7, 13] and [14] transform metamodels and their models through a chain of
ATL transformations to reach the desired outcome. An intermediate transformation
of this chain is done with targeting a KM3 (Kernel MetaMetaModel) metamodel, i.e.,
a DSL for describing metamodels [24] as an intermediate representation of arbitrary
metamodels. As a transformation already existed between KM3 and Ecore, the MS/DSL
metamodels needed to be only transformed to this pivot KM3 metamodel. Thus, no direct
transformation between EMF and MS/DSL tools existed, which introduces potential
information loss as KM3 can be considered a generic platform-agnostic DSL to represent
the ’common denominator’ of several metamodels. In the course of this thesis, the
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previous approach was examined with preserved .dsldm files of the Atlantic-Zoo Github3

and it was observed that the execution of the XML2DSL step always resulted in empty
files. This is caused by the evolution of the MSDKVS platform (mentioned above) and
the discontinuation of some of the used components in the previous approach.

Regarding tool interoperability, where one of the involved frameworks is not a meta-
modeling language, like Microsoft’s Excel or other applications, [6] uses the approach
of defining a pivot metamodel to combine abstraction of features that are common
among the source systems. The specific models are therefore not directly transformed
to the target tool environment, instead this pivot metamodel serves as an intermediary
entity. Another interoperability approach trying to bridge different conceptual data
modeling tools (CDML) like ER and ORM2 is given in [11], where a common metamodel,
namely the KF Metamodel [21], with rules for transforming from and to these conceptual
modelling frameworks is used and implemented in a web based tool called crowd 2.0 [12].
The intended usage is targeted at achieving semantic interoperability.

This thesis gives a detailed description and comparative analysis on the syntactical
elements available in MSDKVS and EMF according to their XML representation and
their graphical views inside the platforms’ editors. Concerning the concrete syntax
elements, no explicit mapping has been done previously, and the mapping between the
abstract syntax elements was refined and extended to suit the frameworks’ capabilities
of their current versions, as well as more semantically appropriate functionalities like
toolboxes and abilities of the integrated editors for manipulating models.

3https://github.com/atlanmod/atlantic-zoo/tree/main/AtlanticDSLTools
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CHAPTER 5
Definition of Transformation

Rulesets

This chapter lists and gives a description on all the ruleset that have been defined and
how they should be implemented in the first step of the transformator. Every rule is
investigated bidirectionally, meaning both EMF to MSDKVS and MSDKVS to EMF
variants are explained, the identified mapping of source entities to the corresponding target
entities are given, how much additional elements these mappings eventually generate
on the target platform are discussed (e.g., additional classes or references as a result of
workarounds to stay semantically equivalent on both frameworks) and also if and how
much information is possibly lost.

5.1 Mapping of M3 Layer Concepts

Based on the tables regarding the comparative analysis in Section 3.5, Tables 5.1 and 5.2
list the identified rules necessary for transforming EMF and MSDKVS metamodels and
groups them accordingly.

5.2 EMF to MSDKVS

5.2.1 Abstract Syntax

AS.R0: EPackage 7→ Language As there can be multiple EPackages defined in one
Ecore metamodel, they and their contents have to be flattened, resulting in only one
EPackage being transformed to a corresponding DSL’s Language definition.

AS.R1: EClass 7→ DomainClass Three types of EClassifiers can be distinguished
regarding their type attributes, namely EClasses, EEnums and EDataTypes. When
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ID Rule Name EMF MSDKVS
AS.R0 Group Mapping EPackage Language
AS.R1 Class Mapping EClass DomainClass
AS.R2 Relationship Mapping EReference DomainRelationship
AS.R3 Attribute Mapping EAttribute DomainProperty
AS.R4 Role Mapping EClass DomainRole
AS.R5 Data Type Mapping System Types, Custom

Types
System Types, Custom
Types

AS.R6 Enumeration Mapping EEnum DomainEnumeration
AS.R7 Inheritance Multiple Single

Table 5.1: List of mapping rules for abstract syntax concepts

ID Rule Name EMF MSDKVS
GCS.R0 Canvas Mapping Viewpoint Diagram
GCS.R1 Class Shape Mapping NodeMapping GeometryShape
GCS.R2 Icon Mapping NodeMapping ImageShape
GCS.R3 Relationship Shape

Mapping
EdgeMapping Connector

GCS.R4 Composition Shape
Mapping

ContainerMapping CompartmentShape

GCS.R5 Attribute Layout Map-
ping

Label DecoratorMap

GCS.R6 Special Shape Map-
ping

BorderedNode Swimlane, Port

GCS.R7 Color Mapping Named Colors, RGB Named Colors, RGB
GCS.R8 Shape Inheritance
GCS.R9 Tool Palette Mapping ToolSections ToolboxTab

Table 5.2: List of mapping rules for graphical concrete syntax concepts

transforming an EClass, a target DomainClass is created, having the same Name. As it is
necessary for each element in MSDKVS to have a unique Id as an identifier, a GUID is gen-
erated upon creation. Abstract attributes are transformed to InheritanceModifier
values. If the current EClass is the identified root class of the metamodel, it must not
be abstract in MSDKVS. Inheritance feature are transformed as well, transforming
possible multiple inheritance structures to multiple single inheritance structures, which
will be described in detail later in Section 6.1.3, where the unique features are listed.
XmlClassData is added to the serialized XML data as well in order to use MSDKVS’
code generation and model editor capabilities.

AS.R2: EReference 7→ DomainRelationship Each EClass can contain two types of
EStructuralFeatures, either EReferences or EAttributes. EReferences are transformed
to DomainRelationships, generating also a unique identifying GUID for the required
Id attribute. EReferences can either be flagged as containment references, simple
relationships or a bidirectional references between two EClasses. Source and target entities
of EReferences are transformed to DomainRoles, linking each previously transformed
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DomainClass via Monikers using the unique names of the classes. Regarding the
requirements of MSDKVS and the resulting naming strategy employed in this rule refer
to Section 6.1.3. Multiplicities of a EReference are transformed accordingly.
AS.R3: EAttribute 7→ DomainProperty EAttributes are transformed to Domain-
Properties. In EMF, only EClasses can contain attributes. An attribute can either be
defined by a simple value, e.g., EStrings or EInt, an enumeration type or a custom
type, like an external Java class, resulting in different transformation outcomes such
as additional DomainClasses or even template code files contained within the DSLs
namespace. Default values are transformed trivially, as they are definable on both
platforms.
AS.R4: EClass 7→ DomainRole DomainRoles are created for every EReference. As
the relationships are mapped after all classes have already been transformed, the resulting
DomainClasses are already available to be used for looking up suitable DomainRoles.
This rule is executed in combination to rule AS.R2.
AS.R5: DataType 7→ DataType Different types have been mentioned previously, each
transformed in its own way. As simple types are almost identical in their possible range of
values, they are trivial. Classes with type EDataType are transformed to ExternalTypes
having the same namespace as the resulting DSL, thus achieving identical functionality.
In order to be able to correctly validate such an ExternalType attribute, a C# class with
its name and namespace has to be referenced from within the DSL project. To achieve
this, a basic .cs file with the name of the attribute and an empty class definition within
the correct namespace is generated, one for each mapped EDataType. These files have to
be put in the root folder of the target DSL project. More complex types (e.g. external
java classes) are transformed to DomainClasses connected by a DomainRelationship
using the type as a target DomainRole. Multiplicities of the newly generated relationship
are transformed accordingly, having a 1:n relationship when the attribute value is a
collection, and a 1:1 otherwise.
AS.R6: EEnum 7→ DomainEnumeration An EEnum is a special type of an EClas-
sifier, containing multiple ELiterals for defining custom values that can be attributed to
a class. The target DomainEnumeration also contains a list of EnumerationLiterals, thus
making it possible to easily map each literal element. The only difference with regards
to this rule in MSDKVS is that the value of a EnumerationLiteral must not contain a
list of specific characters, including white spaces, commas and backslashes. Therefore, a
renaming strategy has to be employed. Default literal values are transformed accordingly.
AS.R7: Inheritance As EMF supports multiple inheritance structures, concrete
patterns have to be implemented to transform these features into semantically equivalent
ones on the target side, explained in detail in Section 6.1.3.

5.2.2 Concrete Syntax

GCS.R0: V iewpoint 7→ Diagram OwnedViewpoints can be seen as the EPackages
of a Sirius Viewpoint Specification Model file. One or multiple OwnedViewpoints can
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be defined inside a VSM’s Group tag, and because of their containment trait they
do not need to be flattened like multiple EPackages. Instead they are iterated while
being transformed into MSDKVS’ equivalent graphical concrete syntax elements. Each
viewpoint can contain multiple OwnedRepresentations, and each representation contains
a DefaultLayer with optional AdditionalLayers (see Section 3.1.4). The relevant concrete
graphical syntax elements are contained within these layers. The resulting Diagram
consists of mapping tags to all the different shapes created in the following steps, referenced
by their Monikers.

Shapes

Regarding shapes in MSDKVS, it is important to note that also the default values for
each attribute have to be considered while transforming. This is especially important
since these default values often mean that the attributes do not have to be defined at all,
thus the M2 transformator has to know which values are the default ones. These have
been received through extensive testing and reading the available API documentations
online. An example for such values is the BorderSizeComputationExpression of
a shape mapping in EMF which maps to the OutlineThickness attribute of a shape
in MSDKVS. In EMF, this value defaults to 1, whereas in MSDKVS the default value
is 0.03125. In many cases, EMF provides simple default number values which are just
multiplied on the target side. DomainPaths are used in MSDKVS for correctly mapping
a shape entity to a domain entity. These domain paths are defined as XPath-like syntaxes
and are built as follows: <RelationshipName.PropertyName/!Role>. To identify the
target shape on the modeling canvas, a containment reference in addition to the source’s
property name and role has to be given.

GCS.R1: NodeMapping 7→ GeometryShape NodeMappings are transformed to Ge-
ometryShapes, visualizing DomainClasses through different geometries, like Rectangles
or Circles. The comparison tables in Section 3.5 are divided into the various identified
shape types after having investigated both frameworks. A DomainClass is then referenced
accordingly by mapping the ShapeMoniker inside the Diagram.

GCS.R2: NodeMapping 7→ ImageShape NodeMappings that are attributed with
custom images identified by their URL are transformed to ImageShapes. MSDKVS only
allows the usage of bitmap files as image references, therefore the images have to be
transformed as well to fit this requirement.

GCS.R3: EdgeMapping 7→ Connector Graphically visualizing EReferences is done
via defining EdgeMappings inside the viewpoint specification model. These are mapped
to Connectors in MSDKVS, offering many different styling options like RoutingStyles,
ArrowStyles and DashStyles etc. Important to note is the positioning of the label
on relationships. Sirius supports BeginLabel, CenterLable and EndLabel styles.
In MSDKVS,

GCS.R4: ContainerMapping 7→ CompartmentShape Containment references, i.e.,
having a container with sub elements, are visualized in EMF by specifying Contain-
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erMappings. These mappings can contain multiple SubNodeMappings. A mapping to
MSDKVS’ equivalent CompartmentShapes can be achieved while also considering the
mappings for the contained nodes. MSDKVS requires CompartmentShapes to have a
CompartmentMap defined, referencing a contained domain element via the containment
reference name and a displaying attribute within the containment, supplied via the
map’s PropertyDisplayed attributed. If no SubNodeMapping has been defined, the
resulting shape cannot be valid.

GCS.R5: Label 7→ DecoratorMap Each mapping in EMF can have various styles,
depending on the target element, and each style has multiple labels, targeting different
attributes and customizable parts of the elements. In MSDKVS, each shape has a list of
Decorators, and each Decorator is mapped to a DomainProperty of the shaping entity,
mapped via DecoratorMaps within the corresponding ShapeMap. Therefore, a mapping
between these concepts is easily established as they are quite similar in theory.

GCS.R6: SpecialShapeMapping For special shapes that are unique to each platform
special workarounds and default shapes have to be declared. Regarding Sirius’ special
shapes, BorderedNodes inside containment references or even normal references, where
a NodeMapping is the containing shape, can be mapped to Port shapes in MSDKVS.
If additional shapes are found, they are transformed to available target shapes best
resembling them.

GCS.R7: ColorMapping Sirius in EMF lets users define colors through a drop
down table of predefined System Colors, User Fixed Colors in separate user
colors palettes, Computed Colors by dynamically computing RGB components, or as
Interpolated Colors, that dynamically change the coloring of a referenced object
through the definition of so-called Color steps [3]. Through these steps, a color can
be changed through associating values via computation expressions. For this thesis’
transformation approach only user fixed colors and system colors are taken into account.
Most named system colors can be directly translated to MSDKVS’ color scheme, although
some exceptions have to be considered, e.g., Sirius’ dark_red color can map to MSDKVS’
DarkRed color by removing the underscore. If a corresponding color has not been found,
background and border colors default to black, whereas label and filling colors default to
white in MSDKVS.

GCS.R8: ShapeInheritance As shape inheritance is a feature unique to MSDKVS,
this transformation is trivial as it is not available in EMF.

GCS.R9: ToolSections 7→ ToolboxTab Sectioning of available tools to be able to
interact with the modeling canvas in the platforms’ runtime environments is possible in
both frameworks. EMF offers the possibility to define a plethora of different tools, e.g.,
creation and deletion tools for relationships and classes, edit tools and more sophisticated
tools that use queries to get the applicable elements or tools that propagate changes
to other elements as well. MSDKVS only offers a subset of these possible interactions,
restricting the transformator to only transform valid types of tools when transforming
from EMF to MSDKVS. Each tool can have an icon associated with it in order to design
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custom toolbars. As with icon shapes, these images have to be converted to bitmap files
in order to be usable in MSDKVS. In addition to converting the file to bitmap, another
requirement in MSDKVS is for these icons to be of size 16x16 pixel. Thus, the image has
to be resized accordingly.

5.3 MSDKVS to EMF

5.3.1 Abstract Syntax

AS.R0: Language 7→ EPackage As there are no multiple languages definable in one
DslDefinition.dsl file, this step is trivial and creates only one EPackage element on the
target side as well.

AS.R1: DomainClass 7→ EClass The most basic form of mapping when comparing
MSDKVS and EMF because the class concept is de facto identical, except for the specifi-
cations mentioned later on regarding inheritance and DomainRoles used for targeting
in DomainRelationships. InheritanceModifiers on MSDKVS (abstract, sealed,
public) are transformed accordingly, whereas public is the default value, abstract directly
translates to the abstract attribute of an EClass (i.e., abstract="true"). Descriptions
supplied in MSDKVS are mapped to documentation tags on the transformed EClass.

AS.R2: DomainRelationship 7→ EReference DomainRelationships act as links
between multiple types of domain model entities. A domain relationship always consists
of source and target roles, represented by DomainClasses and a specific role they are
given regarding the relationship definition. A DomainRelationship in MSDKVS can
be mapped to an EReference, which is an EStructuralFeature, distinguishable by the
ecore:EReference type. The name for the EReference is mapped from the source
domain role from the domain relationship in MSDKVS, and the type is mapped to the
target domain role, which contains a domain class moniker for retrieving the target
domain class. The subsequent rules for this rule are used to transform containment
references, multiplicities and bi-directional reference accordingly.

AS.R3: DomainProperty 7→ EAttribute For each DomainProperty either defined
in a DomainClass or a DomainRelationship, a resulting EStructuralFeature with type
ecore:EAttribute is generated. The resulting EType is mapped through a sep-
arate TypeMapper, which takes as input the name of the domain property type of
MSDKVS, where either basic types like Boolean, Int32 or String are mapped or
more complex types like other domain classes, domain relationships and even external
classes. If a DefaultValue has been set, it is transformed directly to the corresponding
attribute in Ecore, which can be done for either simple types or complex types like
DomainEnumerations as well.

AS.R4: DomainRole 7→ EClass A DomainClass can be referenced by multiple
DomainRoles acting as target or source role player of a DomainRelationship. Every
DomainRole always references, through monikers, the actual domain class and can be
retrived through cross references in the XML data portion of the DSL. These are, e.g.,
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used for mapping source and target (i.e., EOpposite attributes) of EReferences. Each
DomainRole contains multiplicity values for the connected DomainRelationship.

AS.R5: DataType 7→ DataType As mentioned before, a TypeMapper is implemented
that contains bidirectional mappings of the system type variants contained in both
frameworks. MSDKVS differentiates between signed and unsigned integers, ranging
from 16 to 64 bytes (i.e., short, int and long). System/DateTime is mapped to
EDate, System/Byte is mapped to EByte, System/Double is mapped to EDouble,
System/String is mapped to EString, System/Boolean is mapped to EBoolean
and System/Char is mapped to EChar. More types are usable for specific use cases
by default when creating a DSL in MSDKVS. These types are NullableUsage and
FieldCase, which are mapped to EBoolean because of their possible truth values, as
well as System/Single and System/Guid, which are typically in a string format and
therefore mapped to the EString data type. When a system defined type is referenced,
like a class that is either contained within a standard library of C# or a user defined
class in source code, for code generation purposes and correct representation functions
on the target EMF side their class names are used for creating additional EClasses, that
are then referenced instead through additional EReferences, which results in an external
code independent metamodel. If a transformation from this resulting metamodel back to
MSDKVS is executed, these new classes would also result in additional DomainClasses
as well, thus having eliminated the code specific definitions previously referenced through
external classes.

AS.R6: DomainEnumeration 7→ EEnum A DomainEnumeration contains multiple
EnumerationLiterals, each with its own Name and Value attributes. These components
are transformed accordingly to EEnums and their ELiterals.

AS.R7: Inheritance The concept of Inheritance is trivial when transforming from
MSDKVS to EMF, as both frameworks support the notion of having their classes inherit
references and attributes from other classes. These inheritance references are signaled
by the classes’ property BaseClass in MSDKVS and ESuperTypes in EMF. Regarding
DomainRelationships though, MSDKVS also allows Inheritance as well, making the
transformation of inheritance structures based on relationships cumbersome and require
special attention, resulting in additional structures on EMF as a DomainRelationship
has to be interpreted as a class.

5.3.2 Concrete Syntax

GCS.R0: Diagram 7→ V iewpoint Regarding the concrete graphical syntax layout,
the biggest difference between MSDKVS and EMF is that EMF needs additional Sirius
components in order to visually represent the domain model entities on a canvas, whereas
MSDKVS has an integrated graphical component to achieve this. Sirius, in reference to
the Ecore metamodel definitions, has the possibility to define multiple areas of definitions
that can intercommunicate and exchange information too. In MSDKVS, only one
representation (i.e., viewpoint in EMF / Sirius) is available, which means, that only one
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mapping per domain entity to a shape definition is allowed. Therefore, when transforming
the GCS of MSDKVS, only one viewpoint is generated on the Sirius side. A diagram can
be defined with a variety of colors, either a filling background color or a text color that
can be overridden by each shape modeled on the canvas.

Diagram Elements

GCS.R1: GeometryShape 7→ NodeMapping Geometry shapes reference Domain-
Classes only. The corresponding transformed graphical entity in Sirius is called a
NodeMapping. Regarding appearances (e.g., geometries), styles (e.g., border style, font
style) and layout (e.g., positioning) of the entity itself and also its domain properties, for
which appearances can be stylized through decorator maps, rule DIAG.R5 gives more
insight on this manner.
GCS.R2: ImageShape 7→ NodeMapping As ImageShapes and GeometryShapes
target DomainClasses, and there exist no explicit type of mapping associated with image
shapes on EMF, the resulting object is also a NodeMapping entity. In EMF, these
two types are distinguished by their type attribute. When a NodeMapping has the
WorkspaceImageDescription style tag, it signals the interpreter that the referenced
class is displayed as an icon on the canvas, thus transforming ImageShapes to mappings
with this specific style.
GCS.R3: Connector 7→ EdgeMapping Connectors, as opposed to other shapes with
their ShapeMaps containing further mapping information needed to establish a mapping
to the concrete canvas objects, have their own ConnectorMaps. These maps connect a
Connector and the targeted DomainRelationship via their moniker types. The shape
object itself and its list of maps are used for transforming into an equivalent EdgeMappings,
defining several styles including RoutingStyles and ArrowStyles. If a connector is
targetting a domain relationship that is transformed to a class due to its attributability
or inheritance mechanism, the connector has to be translated to a NodeMapping instead.
GCS.R4: CompartmentShape 7→ ContainerMapping CompartmentShapes, in ad-
dition to their mapping information in the form of a CompartmentShapeMap, which
links the DomainClass and its containment reference to this shape, gives insight on
the container and its sub element shapes, creating a ContainerMapping with multiple
SubNodeMappings accordingly. Decorators are transformed to the mapped shape elements’
styles as well.
GCS.R5: DecoratorMap 7→ Label Each attribute, which is mapped via a Decora-
torMap to a corresponding decorator within a shape, is transformed to a Label with
different style attributes to achieve visual similarity.
GCS.R6: SpecialShapeMapping As for special shapes, that were not included in
the previous steps, MSDKVS further offers the usage of Port and Swimlane shapes. As
there is no equivalent shape for swimlanes in EMF, they are by default transformed
to ContainerMappings as they can contain subelements. Ports are transformed to
BorderedNodes, contained either within NodeMappings or ContainerMappings.
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GCS.R7: ColorMapping MSDKVS uses three types of color definitions: Custom,
Web and System. System colors have names that correspond to the objects in the
Windows OS, like Scrollbar or WindowBackground. Web colors consist of colors that are
identified by their uniquely standardized web names, which are used in web development.
Custom color palettes can also be used, which are the same as in e.g., a Paint program,
where the user can define them through a color picker. These are usable on all objects,
where colors can be applied (e.g., diagram background color, line colors, text colors,
border colors, etc.). A ColorMapper class acts as a middleware that takes the color used
in MSDKVS as input and looks up the system color, to get the RGB values of a selected
named color (i.e., web or system). These RGB values are then injected separately on the
target EMF metamodel. A viewpoint specification model in Sirius can be supplemented
with an additional section of user defined color palettes, defined by their red, green and
blue values respectively and given a name by the designer. This functionality is used
when transforming the MSDKVS colors to EMF. An example on how this looks inside
the Sirius editor can be seen in Figure 6.8.

GCS.R8: ShapeInheritance Shape inheritance is a unique feature integrated into
MSDKVS, where one shape (has to have the same type as the super shape, e.g., a
GeometryShape can only inherit from another GeometryShape) inherits and has the
ability to override different style attributes for mapped domain properties of the referenced
entities from its super shape. This can be used for, e.g., distinguishing model entities
based on their inheritance structure, which also implicates that shape inheritance, when
used inside a DSL, goes hand in hand with class or relationship inheritances. Regarding
the transformation approach and the mapping rule, all attributes and layout properties
from the super shapes are first transformed and then the specific, possibly overridden
and additional properties in the sub shapes are transformed to the target framework.

GCS.R9: ToolboxTab 7→ ToolSections A Designer section in MSDKVS can contain
multiple ToolboxTabs, dividing the available tools into various sections for visually
grouping tools together. Different types of tools exist, each targeting a different meta-
metamodel concept, like ElementTools for DomainClasses and ConnectionTools for
DomainRelationships. As such tools are only used for creating elements on the diagram
canvas inside the modeling run-time, the resulting transformation thus only need to create
the semantically equivalent OwnedTools types like ContainerCreationDescription,
EdgeCreationDescription and NodeCreationDescription. Implicitly, to be
able to delete the created elements as well, appropriate DeleteElementDescription
tools are generated to establish interoperability.
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CHAPTER 6
M2 Layer Transformation

6.1 Overview

The following section gives an overview on how the first part of the M3B transformation
approach, the metamodel transformation, is structured in terms of the frameworks in
question and their unique features. The mapping on the M3 layer, the meta-metamodel
layer, and the implementation of the M2 layer transformation, where metamodels from
one framework are transformed into metamodels corresponding to the meta-metamodel
on the target framework by implementing the aforementioned transformation rulesets,
are discussed.

Figure 6.1 shows the M3B sketch of all layers involved in the transformation for both
frameworks, MSDKVS and EMF. On the left hand side, the MSDKVS column consists of
the implicitly defined meta-metamodel, which the underlying DSLs conform to in terms of
valid metamodeling entities and their relationships. The metamodels are serialized inside
a XML based .dsl file. These files are used as input and output of the transformation,
whereas when transforming from left to right, i.e., from MSDKVS to EMF, only one of
these files is needed for transforming on the M2 layer of the metamodeling stack. The
transformator, as can be seen in the figure, is divided into M2 and M1 transformation
explicitly. The M2 Transformator is written in C# and deserializes the incoming files into
corresponding data structures that afterwards can be used for iteration. Abstract and
concrete syntax elements represented as XML tags inside these input files are examined
and the mapping rules, based on the M3 concepts of the meta-metamodels of both
frameworks mentioned in Chapter 5, are applied sequentially to transform the source
metamodel into an equivalent metamodel on the target side.

The right hand side consists of files and definitions for the EMF framework. Here, the
meta-metamodel is publicly available. An Ecore metamodel has its graphical concrete
and abstract syntax contained within separate files. This applies also to the M1 level, the
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Figure 6.1: Sketch of the M3B transformation approach between MSDKVS and EMF

model layer. MSDKVS offers graphical manipulation of models out of the box, in EMF,
the Sirius framework is used in order to design models and metamodels on a graphical
canvas. To create a runtime instance of a metamodel, a .genmodel file can be used for
generating the necessary projects and model code. In addition to that, an .odesign file is
then used to visualize the models and their entities in the runtime instances of Eclipse.
As a result, when a metamodel is transformed from MSDKVS to EMF, these three files
are generated by default. When transforming from EMF to MSDKVS, only one file is
needed in total, and the .genmodel and the .odesign files can be submitted optionally as
additional input in order to transform the graphical notation of the metamodel as well.

6.1.1 M3 Layer Mapping

For being able to map each structural element that can be used inside a metamodeling
framework, the meta-metamodel they conform to has to be identified. As opposed to
the environment of MSDKVS, where the meta-metamodel on which metamodels are
based is given only implicitly in the available documentation online [35] and in [17],
an explicit definition of the Ecore meta-metamodel for metamodels in EMF is given in
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various sources, e.g., in [10, 29, 31], to name a few. Figure 6.2 shows an excerpt of this
meta-metamodel.

Figure 6.2: Part of the Ecore meta-metamodel with its main concepts, from [31]

As mentioned before, the meta-metamodel for MSDKVS is created by defining a class
hierarchy in the XML to XML metamodel transformator written in C# and afterwards
extracting this class diagram to get a visual representation of the underlying structure
the metamodel concepts conform to. After having implemented and included all possible
values, having examined available MSDKVS projects on different source code repositories,
the meta-metamodel depicted as a class diagram in Appendix D could be extracted.

6.1.2 M2 Layer Transformation

The M2 layer transformation is implemented in C# as a .NET console application, which
integrates the XML schema of both frameworks’ serialization format for metamodels as
a data structure, which implicitly produces a detailed and complete representation of
the MSDKVS meta-metamodel. As an input, the files needed for the transformation
are loaded and serialized into this data structure. Depending on the file endings, folder
or zipped file contents the transformator decides what direction of transformation and
rulesets should be traversed, thus enabling the resulting program to execute both directions
of the transformator.

Based on the rulesets for abstract and concrete syntax elements defined in Chapter 5, the
transformator executes several code snippets conforming to those rules in a sequential
manner, so that the investigation of the set of functions is of a clear structure and the
output of the transformator is ordered accordingly such that elements needed for, e.g.,
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transforming reference relationships are available on the transformed data to be used as
a target.

Additionally, some main criteria have to be fulfilled in order to properly evaluate the
outcome and compare the result to the original metmamodel, i.e., the files have to be
correctly opened and editable in the target framework, the validation of the transformed
metamodel has to be free of errors that keep the editor code from being built, the
metamodels have to be correctly displayed as class diagrams or in form of a tree structure,
the generator code should successfully generate an executable modeling instance, and
the editing of models should be similar between source and target framework regarding
their tool palettes, contextual actions available on the model entities, appearances of
the model nodes, deletion propagation of containment references and the ability to edit
inherited properties in children entities, just to name a few. These requirements are
discussed in Chapter 7 in detail.

In the following sections, challenges faced during the realization of the M2 Transformator
are discussed and detailed steps, if available, on how these obstacles were solved are
provided, grouped by the transformation directions.

6.1.3 EMF2MSDKVS

Nested EPackage Flattening. We recognized different styles of EPackage definitions
in publicly available EMF metamodels (see Table 3.1 in the Grouping row). Ecore
metamodels can either have one or multiple EPackages defined, while EPackages may
also have ESubPackages. Therefore, as MSDKVS usually only has one equivalent
language definition, these EPackage contents are flattened and merged into one
global EPackage before executing the transformation. Naming conventions and
avoiding name clashes are transformed accordingly.

Entity Name Clashes. Detecting and resolving name clashes are essential when real-
izing metamodeling platform interoperability [9]. Different naming strategies to
avoid possible name clashes, e.g., across multiple ESubPackages, are executed. For
domain relationships, the MSDKVS names are changed as follows:
<sourceEClass.name>_<EReference.name>_<targetEClass.name>.
Name clashes on domain classes (if there are any), are resolved by mapping the
EPackages’ nsPrefix attribute to the DomainClass’ Namespace attribute.

Multiple Inheritance. As EMF, in contrast to MSDKVS, supports multiple inheri-
tance, a transformation of multiple inheritance structures into equivalent single
inheritance structures is necessary. We adapted the Expansion Strategy pattern
proposed by Crespo et al. [18] to translate the complex structures of multiple
ESuperTypes in EMF into equivalent single BaseClass references in MSDKVS
without information loss (see Fig. 6.3). Important to note is that also EReferences
that target a super class have to be duplicated to the newly created domain classes
as Domain Relationships in MSDKVS. In addition to the abstract syntax duplicates,
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Figure 6.3: Adapted Expansion Strategy [18]: (a) multiple inheritance in EMF; (b)
transformed single inheritance in MSDKVS

this affects the transformation of all types of graphical concrete syntax mappings
from Sirius as well, especially the Creation Tools inside the modeling editor if
such a duplicated class has been used as the tools’ target. Concerning shapes,
only the shape maps have to be duplicated and then renamed in most cases, as
the decorators for styling the referenced entity’s attributes are most likely to be
contained inside the duplicated classes as well. If that is not the case, their shapes
have to be cloned as well and used inside the tool mappings.

Root Element Pattern Matching. MSDKVS metamodels require a root element that
is mapped to the diagram shape. This diagram shape provides the modeling canvas
in the runtime instances of a domain model. As per API requirement, this selected
root element has to be the source domain role of domain relationships marked
as containment relationships, where the targets are all domain classes that are
neither part of an existing containment relationship (e.g., children of compartments)
nor should target any base classes they would inherit from. When transforming
an Ecore metamodel into MSDKVS, existing EClasses are matched against these
criteria. If such an EClass can be found, this EClass is transformed to be the root
diagram element in MSDKVS. If no EClass is suitable, then an additional default
domain class is generated that acts as the diagram’s root element. This is especially
required in order to achieve the transformation functionality on the M1 layer, as in
MSDKVS only one class can be the model’s root class, whereas creating a model
in EMF lets the modeler choose which class should act as the model’s root.

Icon Mapping. Sirius supports the definition of icon styles on different node mappings,
referencing workspace images in various image file formats. For MSDKVS, a
requirement to attribute a model entity with icons is that the images have to be in
Bitmap format. Therefore, library calls to convert these files to the required format
on the target platform are employed in the M2 transformation. Tooling icons have
the additional requirement of having 16 pixels as width and height each.

Reserved Keywords. As MSDKVS operates on C#, the type of reserved keywords
that are not allowed, e.g., used as the name of a class or attribute differs from its

59



6. M2 Layer Transformation

counterpart. During the evaluation step later described in Chapter 9, some Ecore
metamodels contained attribute, reference or class names that proved invalid when
the transformed DSL was opened inside the MSDKVS environment. Thus, the
employed naming strategy prepends an underscore to a name when such a reserved
keyword is being found.

DomainEnumeration Literal Validity. When transforming EEnum entities with
their literal values, special attention has to be given to the fact that MSDKVS does
not allow a variety of special characters like comma, backslash or white spaces in
their EnumerationLiterals, as was mentioned previously in Section 5.2.1. Similar to
the name clash problem with regards to DomainRelationships, a naming strategy
has to be defined when such special characters occur during the M2 transformation
step. Each invalid character is transformed to an underscore, one of the only special
characters not reserved by the language’s API. A mapping file generated on top
of the M2 transformation contains mapping information for each literal value for
correct lookup in the M1 transformation step.

GUID and ID Handling. Each element, be it either graphical concrete or abstract
syntax, needs an Id property, which contains a generated GUID that uniquely
identifies said element. When transforming from EMF to MSDVKS, these GUIDs
have to be explicity generated when the elements are created. Mappings inside
the DslDefinition.dsl file cross reference these IDs and thus providing the linking
functionality in the Visual Studio IDE and the correct code generation capabilities.
Therefore, when transforming, a lookup of already created elements when the XML
tree is filled is done with the help of these Id attributes. As a result, EAttributes in
EMF which are named Id cannot be transformed trivially, because in MSDKVS
this reserved field is a necessary property of every element. Thus, Id names are
always transformed lowercase and the applied naming conventions can be looked
up in the generated mapping information file.

Duplicate DomainRole Names. When transforming EReferences to DomainRela-
tionships, no two DomainRoles, either used as Source or Target, can have the same
PropertyName when their other end of the relationship is the same. Example:
ClassA has relationships to ClassB and ClassC. If the transformation results
in, e.g., having a DomainRelationship from ClassA to ClassB with its target role
PropertyName being "Target" and the same applies for relationship ClassA to
ClassC, then naming conventions have to be executed on the second relationship
target role. The naming strategy employed updates a counter variable for how
often the same target or source base names has been used, applies it to the newly
create role and increments it. In the example above this results in relationship
ClassA to ClassC having its target domain role renamed to Target_1.

Duplicate DomainRelationship Names. Same as for DomainRoles, no two Domain-
Relationships must have the same name. The similar renaming conventions apply,
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counting the number of already recognized equal names and adding the updated
count to the newly created relationship.

6.1.4 MSDKVS2EMF

Relationship Roles. Domain Relationships in MSDKVS differ from their required
representation on the target EMF side in so far, that the source and the target
entities of said relationships are referencing the corresponding domain classes
through monikers. Source and target domain roles can have different names
attributed to them compared to their actual classes used for creating the domain
relationship. This construct has to be considered when transforming from EMF
to MSDKVS too, as for every EReference at least one role has to be created in
MSDKVS. Domain classes are then referenced through moniker types by their
unique names. When transforming from MSDKVS to EMF, the transformator
has to look up the source and the target domain classes and transform these
DomainClasses into the EReferences’ eTypes and eOpposites accordingly.

Attributable Relationships. In MSDKVS not only classes but also relationships can
have attributes. As has already been mentioned in [13], the behavior can be
implemented similarly here, meaning that domain relationships with attributes
attached to them are mapped to classes that are referenced from both transformed
domain classes, leading to additional EClass and EReference entities on the target
EMF side. Multiplicities are transformed accordingly to maintain the original
behavior. An example for the implemented behavior and its results are given in
Figure 6.12. Furthermore, if a Connector is attached to this Domain Relationship,
it has to be transformed to a NodeMapping with two EdgeMappings in Sirius
as well. When tooling is involved, its ConnectionTool has to be transformed to
a NodeCreation tool with two EdgeCreation tools in order to be able to create
these special structures in EMF. Although this does function for simple references
between two classes, containment references have to be handled differently, as they
are represented via CompartmentShapes, whereas the containment relationship is
used to show the inner structure of the containment. Thus, if an embedding domain
relationship contains attributes and has to be transformed to an EReference in
EMF, the relationship’s attributes are attributed to the targeted, inner EClasses.

Shape Inheritance. MSDKVS allows inheritance on the graphical representation of
classes and relationships. Therefore, the M2 Transformator has to check possible
inherited shape classes and transform them accordingly. Especially, when a base
shape targets the BaseClass of a DomainClass, and the inherited shapes target the
inherited classes of said BaseClass, it has to be verified if either the base or the sub
shape is target of a tool, as in EMF with Sirius this would result in two shapes for
the same entity on the canvas.

Implicit Modeling Tool Capabilities. MSDKVS supports only the definition of ele-
ment creation tools on domain classes and domain relationships, while other tooling
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capabilities that can be explicitly defined in Sirius are inherently available on
MSDKVS’ modeling canvas. To achieve an equivalent experience, the number of
tools on EMF thus must be typically higher because the M2 Transformator has to
generate these additional tools for every Node or Edge Creation Tool defined in
MSDKVS.

Color Naming. MSDKVS supports a variety of of colors for graphical properties (e.g.,
FillColor, TextColor, and BackgroundColor). Sirius only supports a small subset
of these named colors, e.g., standardized system colors like white, black, and green.
To be able to transform said colors from MSDKVS into equivalent colors in EMF,
the M2 Transformator looks up the composing red, green, and blue color values for
MSDKVS’ named colors and transforms them to Custom User Palettes used by
Sirius which can be named by the designer.

6.2 M2 Transformation Examples

In this section, the previously defined mapping and transformation implementation on
layers M3 and M2 of the metamodeling stack are used on the example metamodels defined
in Chapter 3.

Besides the analysis in Chapter 7 for the feasibility and usability of this approach through
exhaustive evaluation, this section aims at guiding through the execution of the M2
transformator by using these metamodels as a template and for better understanding
the approach in general. After the familytree example, additional use cases are listed to
further explain some of the frameworks’ more unique features mentioned above.

6.2.1 MSDKVS2EMF

The DslDefinition.dsl file containing the syntax defined in MSDKVS is set as input
for the M2 transformator. First, Figure 6.4 shows a basic DSL created in MSDKVS
depicting a familytree hierarchy with an additional residence relationship to the town
class, whose elements are contained within countries. Figure 6.5 shows the output files
that can be used in EMF in addition to the generated log files with information on how
the transformation was executed and what syntax elements have been created.

The .ecore metamodel file and the .genmodel file are then copied to a modeling project
in EMF that corresponds to the name of the generated output, i.e., familytree. To check
if the files were transformed correctly they are simply opened inside the editor. Both
files display a tree editor. By right-clicking the FamilyTree package inside the .ecore
view, a new representation based on sirius class diagrams can be generated, as well as
validating the metamodel’s structure becomes possible. When opening the .genmodel
file, the package FamilyTree and its properties regarding code generation in EMF are
displayed, By right-clicking this root element or the package, the available generators are
listed inside the context menu and can be executed sequentially, or, if available, "Generate
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Figure 6.4: Basic familytree DSL designed in MSDKVS used as input for the M2
transformator

Figure 6.5: Output files for M2 Transformation MSDKVS2EMF for familytree example
DSL

All" executes these steps in one go. If the transformation has created no error-prone code
thus far the validation of the metamodel and the generation of code are deemed valid.

Looking at the transformed .ecore file (see Figure 6.7), all nodes have been transformed
correctly as well as the inheritance relationships for the Person class, multiplicities,
containment references, abstract classes and bidirectional references. To start the runtime
instance of the modeling editor in Eclipse, the generated familytree.editor project has
to be executed and selected to run as an eclipse application. An additional Eclipse
process is started where a modeling project can be created to define a model based on
the transformed metamodel with its file endings and its VSMs (if available).

Now, in order to be able to use the generated .odesign file, a VSP (Viewpoint Specification
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Figure 6.6: Generated .genmodel structure with context menu and resulting generator
projects in EMF

Figure 6.7: Transformed Ecore metamodel

Project) has to be created where this file is then copied into and referenced from the created
model file to adapt the transformed graphical appearances and layout (i.e., transformed
concrete syntax). The tree structure of the .odesign file is shown in Figure 6.8, having
some elements expaned to show the results.

To get a glimpse of what is happening inside the code and how it is structured when
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Figure 6.8: Generated Sirius VSM containing the concrete syntax on M1 layer

consulting the different code snippets that emerged from the rule mapping requirements,
following listing 1 shows the transformation code for the basic transformation of a
DomainClass to a target EClass.

For getting a quick look on the involved model editors in both frameworks, Figures 6.9
and 6.11 depict run-time editor instances of the source and target metamodels of the
familytree transformation example.

The model editor, as seen in Figure 6.9, situated on the M1 layer of the metamodeling
stack, which is opened in a separate Visual Studio runtime instance, is similar in its
layout to the M2 representation for MSDKVS. On the left hand side the toolbox contains
tools defined in the Toolbox Tab region on M2, the modeling canvas in the middle is used
for adding, removing and editing models available through creation tools from the model
toolbox, the property editor window when an entity has been selected on the bottom
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Figure 6.9: Snapshot of a model based on the previously defined metamodel in MSDKVS,
modeled after the partial family tree of the royal House of Windsor [15]

right shows the available and configurable properties.

Regarding the modeling canvas, the Man and Woman Entities, which inherit their
domain properties and possible domain relationships from the Person Entity, are now
modelled with their specific shapes. The compartment shapes, which are used for
displaying Country entities and their inner lists of Town entities, are listed as green,
gradient rounded rectangle shapes in the top right of the canvas area. In each of these
compartments, a list of referenced towns is displayed. For adding reference relationships
between Town entities and other model entities, these towns are also represented through
separate shape objects when being added to the list. These Town entities are displayed
as white circles, with a black straight border line and their name centered, with a bigger
font size than the Man and Woman entities. Each Person entity references their town of
birth / residence relationships through connectors to those separate town shapes. The
connectors can be created by using the ResidenceBuilder tool in the FamilyTree
toolbox and by selecting one entity type of Person and Town each. Besides these residence
relationships, the children relationships are also available and visible in Figure 6.9. To
distinguish these reference links, each connector was attributed with a different line style
on the M2 layer. As mentioned before, MSDKVS comes with additional functionality in
form of T4 templates used for text or code generation. An example of a T4 template
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that uses our model and the resulting text file are given in Figure 6.10

Figure 6.10: T4 template and text file result for displaying Person entities, their birth
places and their children indented

Figure 6.11: Manually created model in EMF with transformation results from the
MSDKVS familytree DSL

Special Use case #1 - Shape Inheritance

The transformation demonstrated previously serves as an example for this first explicitly
presented use case, where MSDKVS’ shape inheritance is being applied. ManShape
and WomanShape inherit their shape properties from PersonShape 6.4, overwriting
its DecoratorMaps in the process, thus resulting in different text label styles for the
DomainProperty name 6.9 and 6.11.
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Special Usecase #2 - DomainRelationship as DomainClass and with
DomainProperties

Figure 6.12 shows source DSL and target Ecore metamodel of a transformation targeting
a specific example where a DomainRelationship is defined as a DomainClass, i.e., it can
be used as a Source or Target role inside another domain relationship. Several different
DomainProperties have been added to this relationship.

(a) MSDVKS DSL with DomainRelationship used
as a class and with several DomainProperties

(b) Transformed Ecore Metamodel

Figure 6.12: Usecase #2 - DomainRelationship used as a DomainClass with Domain-
Properties in a DSL (left) vs. transformed result in EMF (right)

Special Usecase #3 - Port to BorderedNodeMapping Transformation

One of Visual Studio’s default templates when creating a DSL project uses port shapes
that can be attached to other shapes in order to decorate and create more complex shape
structures and define specific visual points (i.e., ports) of a shape that can be the source or
target of other relationships. The following Figure 6.13 shows how visually equivalent such
Port shapes can look like when transformed to Sirius’ equivalent BorderedNodeMapping,
contained either within a NodeMapping or a ContainerMapping object. This usecase
also demonstrates the combination of a domain relationship with attributes, which is
transformed to an EClass and therefore a separate NodeMapping, and port shapes, thus
resulting in an additional default shape between the connecting link of an incoming and
outgoing port entity. The subfigure a depicts the transformed Ecore metamodel result of
the port example template from Visual Studio.

6.2.2 EMF2MSDKVS

When transforming from EMF to MSDKVS, the .ecore metamodel file is required to
execute the transformation, the .genmodel and .odesign files are optional. If provided,
shapes and toolbar behavior among other concrete syntax elements will be transformed
accordingly.
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(a) Transformed Ecore metamodel from Port DSL template in MSDKVS

(b) MSDKVS model using ports (c) Equivalent Ecore model using Bor-
deredNodeMappings

Figure 6.13: Usecase #3 - Model using Port shapes in MSDKVS (left) vs. transformed
result in EMF with BorderedNodeMappings (right)

Special Usecase #4 - Multiple Inheritance

Figure 6.14 and 6.15 show example transformations on the M2 level where in the former,
an Ecore metamodel containing a multiple inheritance structure has been defined, the
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Figure 6.14: Usecase #4.1 - Multiple Inheritance in Ecore metamodel (left) vs. trans-
formed result in MSDKVS (right)

latter containing multiple superType references inside one EClass. These metamodels
are then being transformed to corresponding DSLs in MSDKVS, having applied the
Expansion Strategy pattern mentioned in Section 6.1.3 respectively.

In Figure 6.14, the DClass entity uses multiple inheritance references to both BClass
and CClass. The XClass references the CClass. This usecase is inspired by the Adapted
Expansion Strategy example shown in Figure 6.3. On the right hand side, we see the
transformed result in MSDKVS, whereas the DClass was duplicated, resulting in DClass
with BClass as the base class, and DClass_1 inheriting from CClass (black arrows).
Thus, the XReference relationship is also duplicated (orange arrows) to connect CClass
and DClass respectively, as the DClass loses its inherited features of CClass.

Figure 6.15 shows an example of multiple inheritance as well, this time containing a
class having three supertype relationships and the transformed result. The Fan class
inherits features from the FlowElement, Powered and Named classes. This results in two
additional classes on MSDKVS side, namely Fan_1 and Fan_2 on top of the transformed
Fan class (black arrows). The references from System to FlowElement are also duplicated
for the additionally created subclasses (orange arrows).

Special Usecase #5 - EDataType and EEnum Transformation

As the special types of EClasses, namely EDataTypes and EEnums, were not included
in the previous transformation example of the familytree ecore metamodel, this usecase
shown in Figure 6.16 demonstrates the transformation approach regarding these special
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Figure 6.15: Usecase #4.2 - Multiple Inheritance with multiple superTypes in Ecore
metamodel (bottom left) vs. transformed result in MSDKVS (top left and right)

class types in EMF. The custom datatypes result in additional, template C# classes
which must be included in the MSDKVS’ project folder.

6.3 Metamodel collections

To be able to answer the research questions given in Chapter 1, and to validate the
transformation approach with recent technologies, a collection of diverse metamodels has
to be acquired first. Many metamodels are contained within so-called metamodel zoos that
are available either inside a zipped container or downloadable separately. For EMF, there
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Figure 6.16: Usecase #5 - Ecore metamodel with EEnum and EDataType definition
(left) vs. transformed result with DSL Explorer in MSDKVS (right)

exist well established zoos such as the AtlanMod (now known as NaoMod1) zoos2, called
"Atlantic Zoos", where a huge amount of metamodels modelled in different frameworks,
like Ecore or UML, and for a variety of domains, exist. These metamodels range from
Ecore-based language definitions for different well known software applications (e.g.,
LaTeX, GraphViz, Mantis) to programming language syntaxes (e.g., C, Java, HTML,
Pascal) and other different domain specific metamodels like airport traffic or movie
databases. A selection of these metamodels is done with regards to their sizes, complexity
and their overall structures, whereas more sophisticated metamodels in terms of number
of classes and relationships are in addition explicitly selected and where features like
inheritance and containment references have been used more frequently to model the
underlying domain. On top of these zoos, [34] also offers a search engine available as a web
application where Ecore models can be searched among by using different filter criteria
such as desired metamodel syntax or user-defined keywords. These diverse metamodels
are then fed into the M2 metamodel transformator part of the M3B and the output is
then evaluated against certain criteria defined in the subsequent Chapter 9.

Metamodel zoos for MSDKVS do not explicitly exist. Therefore, the aggregation of
metamodels has to be done differently. Several source code repositories, like Github and
Google Code, are filtered accordingly to retrieve the DslDefinition.dsl files for MSDKVS.
As the framework itself is not as popular as EMF, less metamodels are found using said
approach. Overall, after filtering out duplicates and removing empty or almost empty
metamodels, a collection of 40+ metamodels has been collected.

1https://naomod.github.io/, last accessed on 04.01.2023
2https://github.com/atlanmod/atlantic-zoo, last accessed on 04.01.2023
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CHAPTER 7
Evaluation of M2 Transformation

This chapter describes the results from executing the first part of the transformation
bridge, namely the metamodel transformation, which takes as input the necessary files
for designing a metamodel from the source framework and transforms them to the
corresponding output files for the target framework. The transformation, as mentioned,
is implemented in both directions, which means that either MSDKVS metamodels (files
ending with *.dsl) and EMF metamodels (files ending with *.ecore) can be transformed.
When transforming metamodels from EMF to MSDKVS, it suffices to specify only the
abstract syntax information of the Ecore metamodel file, the genmodel and odesign
files are optional. On top of the resulting output files, a mapping information file,
named mapping.json, is created containing necessary information for the following model
transformation, such as applied naming strategies and specially applied transformation
patterns for backtracking and entity lookup.
The results are analyzed and described based on quantitative and qualitative metrics
to answer parts of the research questions proposed in Chapter 1. First, a quantitative
analysis in Section 7.1 is performed based on input and transformed metamodel metrics,
where aspects like class count, relationship count, datatype conformity, shapes, tool
similarity etc. are compared. Depending on the results, possible findings may give
insight about how the metamodel is changed based on certain criteria in the source
metamodel in the course of the transformation. Afterwards, the qualitative analysis in
Section 7.2 lists the results of the transformation’s success rate on the set of selected
input metamodels and their validity check inside the target platforms. Finally, the
transformation’s semantics are investigated in Section 7.3 regarding a subset of source
and target metamodels in terms of platform interactivity, behavior and, if available, their
graphical representations.
The analysis is conducted as follows: First, a set of metamodels is collected from the
previously mentioned, publicly available pools of metamodels contained either within
source code repositories or maintained on several websites. An input collection of 44
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metamodels for the MSDKVS and 75 for the EMF side, containing not only Ecore
metamodel files, but also Sirius representations, is used to survey the transformation
bridge’s overall performance and feasibility. The list of selected metamodels with their
source of origin is given in this thesis’ appendix section D, some of them related to [41],
where different grammar-based sources were fetched and their notations, usually available
in (E)BNF, transformed to equivalent Ecore models and other frameworks as well. To help
with the analysis, additional methods were implemented to create detailed textual output
in addition to the resulting metamodels to list the steps the transformator has executed
and the entities it has created on the target side in comparison to their corresponding
representations in the input framework. After traversing through every metamodel and
transforming them to the target framework, the source input and generated output files
are compared to give a statistical overview on different selected criteria regarding their
entity counts, number of inherited classes and shapes, etc., which not only describes the
abstract concepts but also , if present, the concrete graphical syntax notations abstracted
and generalized in Chapter 3. To suit the evaluation approach, statistics about syntax
element distribution were also gathered and listed in the form of a .csv file for better
readability and the ability to import it into an Excel sheet. Questions regarding the
validity and executability of the transformed metamodels are then answered accordingly
using the resulting data. These answers will then be used later on to fully discuss and
revisit the initial research questions asked in Chapter 1.

7.1 Quantitative Analysis
This section dives deeper into the analytical aspects of the transformation approach on
the M2 layer, the metamodel level. First, quantitative aspects are listed and compared.
Analytical results and concrete findings for determining the outcome beforehand are
discussed according to the source and target metric values. The used source metamodels
were selected to contain a set of different domains and unique features regarding their
platform, e.g., DomainRelationships with attributes in MSDKVS or multiple inheritance
relationships in EMF. Tables 7.1 and 7.3 list statistical information about the source
metamodels used in the following transformation runs. Tables 7.2 and 7.4 on the other
hand show the statistical information about the resulting transformed metamodels of the
target framework.

The selected metrics, especially the abstract syntax related metrics, have been chosen in
accordance to their relevance and based on the analysis done in [8]. In addition, relevant
metrics regarding the concrete graphical syntax elements have also been identified based
on their occurrence rate among the source metamodels.

7.1.1 Abstract Syntax

Regarding the source metamodel characteristics given in Table 7.1, it can be concluded
that the selection of retrieved DSLs for MSDKVS used as input for the M2 transformation
is smaller on average regarding their abstract and also their graphical concrete syntax
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elements (see Table 7.3) compared to the ones selected from the available metamodel
repositories for the Ecore environment. Many of the DSLs describe small domains
with more understandable and simpler class and relationship hierarchies. Excluding the
enumeration and attribute values, one can see that the used subset of available metamodels
in Ecore has much higher maximum values for, e.g., defined classes and relationships,
as opposed to MSDKVS. This comes from the fact that some Ecore metamodels were
selected for transformation purposes that have multiple EPackages and ESubPackages
defined, in addition to also referencing additional Ecore metamodels through relationships
and inheritance structures.

The investigated and evaluated syntax elements where mainly adapted from the core
M3 concepts identified in Section 3.5, thus distinguishing between classes, relationships
and their attributes and enumeration values. Explicit attention was also given to more
unique and complex features such as abstraction and inheritance relationships, to be
able to apply the transformation rulesets defined in the previous chapters and to give an
insight on how these platform-unique features are dealt with inside the transformator.
The values are retrieved while the transformation code is executed, as mentioned before,
and collected inside additional .csv files, one for abstract and one for concrete syntax
statistics, which are then imported and aggregated inside Excel for evaluation purposes.

EMF MSDKVS
Min Med Max Avg Min Med Max Avg

Grouping 1 2 50 2.83 1 1 1 1
Classes 1 12 300 33.56 2 8.5 39 10.55

Abstract Classes 0 2 83 5.77 0 1 9 1.61
Inherited Classes 0 7 335 31.79 0 3.5 34 5.20

Multiple Inheritances 0 0 134 4.75 - 1 - - -
Relationships 0 11 437 36.23 0 9 40 10.86

Inherited Relationships -2 - - - 0 0 4 0.30
Relationships as Class -3 - - - 0 0 15 1.18

Attributes 0 10 98 21.32 1 17.5 170 29.11
Enumerations 0 0 18 1.36 0 1 21 2.43
DataTypes 0 0 60 0.92 0 0 9 1.36

1 MSDKVS does not support multiple inheritance structures
2 EMF does not support inheritance among relationships
2 EMF does not support attributing relationships and using them as classes

Table 7.1: Source metamodel abstract syntax metrics used in experimental transformation
runs

Based on these results, following observations about abstract syntax transformations can
be made, grouped and discussed accordingly for each transformation direction.
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MSDKVS EMF
Min Med Max Avg Min Med Max Avg

Grouping 1 1 1 1 1 1 1 1
Classes 1 13 346 38.92 2 10 47 11.57

Abstract Classes 0 1 109 6.59 0 1 9 1.61
Inherited Classes 0 7 335 31.79 0 3.5 34 5.20

Multiple Inheritances - - - - 0 0 0 0
Relationships 0 12 3750 130.83 0 13 79 18.20

Inherited Relationships 0 0 0 0 - - - -
Relationships as Class 0 0 0 0 - - - -

Attributes 0 11 236 28.28 1 17.5 170 30.27
Enumerations 0 0 18 1.36 0 1 21 2.43
DataTypes 0 0 60 0.92 0 0 9 1.36

Table 7.2: Transformed metamodel abstract syntax metrics used in experimental trans-
formation runs

EMF to MSDKVS

Grouping. Only one root layer is available in MSDKVS, transforming to exactly one
EPackage element as well.

Number of classes. When regarding the number of classes from the Ecore metamodels
and the transformed MSDKVS DSLs, one can infer, as multiple inheritance struc-
tures lead to duplicated classes and relationships, the average and maximum values
are higher on the target side. When consulting the number of multiple inheritances
used in the source metamodels, on average around 6 multiple inheritance structures
are present, although more than half of the source metamodels do not use this
feature, signaled by the median value being 0. This feature in addition to the one
being the generation of root elements if no suitable source class can be found in the
Ecore metamodel, add to the fact that the med, max and avg values are generally
higher in terms of classes in MSDKVS.

Number of abstract classes. One of MSDKVS’ requirements is that the root class,
i.e., the diagram element, must not be abstract. When selecting a suitable root
element from the Ecore metamodel and the found element is flagged as abstract,
its transformed domain class looses said property. This is a possible explanation
for the median value being lower than its source counterpart. Resolving multiple
inheritances to multiple single inheritances, where abstract classes are possibly
duplicated, results in the other values, max and avg, being higher than their source
values.

Number of inherited classes. The number of inherited classes should generally not
change, as multiple inheritances with multiple classes being referenced inside the
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subclasses’ ESuperType attributes are transformed into duplicated classes in
MSDKVS with each having one BaseClass reference.

Number of multiple inheritances. As MSDKVS does not support multiple inheri-
tance structures, and only single inheritance structures are possible, the resulting
values are not defined.The resolution of such structures are affecting the other
abstract syntax values though, like additional relationships and (abstract) classes.

Number of relationships. Typically, when leaving out multiple inheritance structures,
relationship counts in MSDKVS should be lower as bi-directional references from
EMF, which account for two EReferences, transform to one Domain Relationship.
As few of the used Ecore metamodels contain multiple EPackages and are therefore
quite large regarding their class and relationship counts, it is not unusual for them
to contain also a large number of multiple inheritance structures, leading to copied
Domain Classes and, as a result, also duplicated Domain Relationships. The median
value before and after the transformation differ only slightly, whereas the average
and maximum value of relationships transformed from larger metamodels with a
lot of multiple inheritance structures lead to disproportionate sums.

Number of inherited relationships. This feature is not present in EMF.

Number of relationships as class. This feature is not present in EMF.

Number of attributes. The number of attributes on average is nearly double the
amount in the source platform, stemming from the fact that multiple inheritances
also amount for more attributes as the attributes of super classes have to be copied
to duplicated, detached sub classes.

Number of enumerations. As enumerations are both defined separately (own EClass
type in EMF and separate section in serialized XMI format in MSDKVS), the
transformation is a 1:1 mapping between both platforms, generated identical values.

Number of datatypes. Same as for enumerations, custom and external datatypes can
be mapped directly to their identical feature on the other platform.

MSDKVS to EMF

Grouping. In MSDKVS, only one root language element is present, wrapping all abstract
syntax element into one layer thus resulting in only one EPackage on the target
side.

Number of classes. As some of the DSLs used for the transformation define domain
relationships as classes, the resulting Ecore metamodels contained EClasses trans-
formed from domain classes and domain relationships, leading to higher counts of
EReferences in EMF as well.
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Number of abstract classes. As abstracted domain classes can be directly mapped
to EClasses marked as abstract, this value is the same for every DSL.

Number of inherited classes. Same as abstract domain classes, inherited domain
classes are also directly mapped to EClasses and their superTypes attributes
referencing only one super class.

Number of multiple inheritances. Multiple inheritances are not available in MSD-
KVS, thus transforming to zero multiple inheritance structures in EMF.

Number of relationships. The number of relationships is higher as domain relation-
ships that were used as classes, contained attributes or were used inside domain
relationship inheritances transformed to EClasses having one EReference to the
source class and one EReference to the target class of the original relationship.
Domain relationships, that also transform to bi-directional references in EMF,
result in two EReferences as well. If a domain relationship had domain properties,
but was used as a containment reference, these properties are added to the targeted
transformed EClass.

Number of inherited relationships. Domain relationships, that contain the attribute
BaseRelationship, are rarely present inside DSLs. Four out of all the used DSLs
for this evaluation use this feature. Normally, the relationship that is being inher-
ited from contains attributes, thus being transformed to an EClass entity as well,
resulting in higher EClass and EReference counts in EMF.

Number of relationships as class. Domain relationships that either contain attributes
or are marked as classes and thus being able to be targeted by other domain rela-
tionships are transformed to EClasses, as EMF does not offer this feature, leading
to higher numbers in terms of class and reference counts.

Number of attributes. In contrast to the transformation direction EMF to MSDKVS,
here, no multiple inheritance structures are available thus no attributes have to
be duplicated to cloned subclasses. When domain relationships contain attributes
themselves, they are transformed to classes, therefore normally resulting in the same
number of attributes, except when these relationships are defined as containment
relationships, then the attributes are added to the referenced EClass, if no attribute
with the same name and type is available. If only the name exists in the target
EClass, then the added attribute is renamed accordingly. This behavior results in
fewer EAttribute counts on average.

Number of enumerations. As enumerations are both defined separately (own EClass
type in EMF and a separate section in MSDKVS), the transformation is a 1:1
mapping between both platforms, thus generating an equal number of enumeration
types.

Number of datatypes. Same as for enumerations, custom and external datatypes can
be mapped directly to their identical part in the other platform.
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7.1.2 Graphical Concrete Syntax

EMF & Sirius 1 MSDKVS
Min Med Max Avg Min Med Max Avg

Class Shapes 0 0 12 0.60 0 2 16 3.48
Inherited Class Shapes - - - - 0 0 10 0.43

Icon Shapes 0 0 18 0.77 0 0 11 0.39
Relationship Shapes 0 0 39 1.73 0 2 10 3.30
Containment Shapes 0 0 27 0.79 0 0 5 1.23

Tools 0 0 398 9.81 0 6 25 7.84
1 22 out of 75 Ecore metamodels had a Sirius VSM

Table 7.3: Source metamodel concrete syntax metrics used in experimental transformation
runs

MSDKVS EMF & Sirius
Min Med Max Avg Min Med Max Avg

Class Shapes 0 0 12 0.60 0 3 23 4.27
Inherited Class Shapes 0 0 0 0 - - - -

Icon Shapes 0 0 18 0.77 0 0 11 0.39
Relationship Shapes 0 0 39 1.73 0 2 17 3.98
Containment Shapes 0 0 27 0.79 0 0 5 1.20

Tools 0 0 14 1.39 0 10 41 13.82

Table 7.4: Transformed metamodel concrete syntax metrics used in experimental trans-
formation runs

Regarding Table 7.3, the minimum values are all zero, which comes from the fact that
all Ecore metamodels were looked at in the course of the quantitative analysis and, as
mentioned before, only 22 of them did include a Viewpoint Specification Model in Sirius.

EMF to MSDKVS

The following comparisons deal with the analysis on the graphical concrete syntax
layer, where multiple inheritance structures, as opposed to the abstract syntax, are not
specifically reflected in the transformed values, as only additional ShapeMaps have to
be defined when a class is duplicated in order to result in multiple single inheritance
relationships. As mentioned before, min and med values are zeroed out as only a small
subset of the selected metamodels in the evaluation also contained a Sirius VSM.

As MSDKVS offers graphically enhancing the abstract syntax element out of the box
and the tools for doing so are integrated into the editor’s toolbox, the barriers of defining
a visual representation are easier to overcome as no additional framework is needed, thus
leading to more metamodels containing shape definitions than there are VSMs defined
for Ecore metamodels.
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The most affected features are of course the values for tools, as Sirius offers a vast variety
of additional functionalities on top of the basic requirements for creating, editing and
deleting abstract syntax elements.

Number of class shapes. The number of class shapes is identical when comparing
source and target metamodel concrete syntax metrics. As mentioned before, if a
VSM targets an EClass that uses multiple inheritance and thus has to be duplicated
in MSDKVS, only additional ShapeMaps from the initial transformed shape have
to be duplicated, and no additional shape has to be generated.

Number of inherited class shapes. As shape inheritance is not available in Sirius,
the resulting values are all zero.

Number of icon shapes. Same as class shapes, icon shapes are transformed equally,
resulting in all cases in a 1:1 mapping.

Number of relationship shapes. As all EReference types, except containment refer-
ences, are transformed to domain relationships, their EdgeMappings are transformed
to Connector shapes as well, resulting also in a 1:1 mapping.

Number of containment shapes. ContainerMappings are equal to MSDKVS’ Com-
partment shapes, thus resulting also in a 1:1 mapping between the frameworks.

Number of tools. Regarding the number of tools transformed to the target framework,
many of them are lost as their functionality is typically not supported by MSD-
KVS’ simple graphical tooling framework. Only the required creation tools for
relationships and classes can be integrated within MSDKVS, resulting in lower tool
values compared to Sirius, where much more sophisticated tooling can be done in
the form of query languages like Acceleo, OCL or operation trees.

MSDKVS to EMF

Regarding the shape distribution after transforming from MSDKVS DSLs to EMF
equivalent metamodels, the differences concern mostly platform unique features like using
DomainRelationships as classes and the implicitly available tooling capabilities of the
framework, as references and classes can be deleted and edited out-of-the-box.

Number of class shapes. The different class shapes and their geometries are usually
transformed to equal representations on the Sirius side, but, as some of the DSLs
contain DomainRelationships that are used as classes, some Connectors have to be
transformed to NodeMappings, with 2 additional EdgeMappings, resulting in higher
numbers in both class shapes and relationship shapes in EMF. If such a domain
relationship is targeted by a connector, the number of resulting EdgeMappings is
first reduced by 1, then the NodeMappings are incremented by 1 and the additional
EReferences result in the target EdgeMappings being incremented by 2.
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Number of inherited class shapes. As inherited class shapes are not available in
Sirius, the inherited decorator maps of these shapes are used to overwrite the super
shape’s decorator maps, resulting in equal representations on both sides for all
domain elements.

Number of icon shapes. Same as for class shapes, the transformation of IconShapes re-
sults in a 1:1 mapping to NodeMappings with style type WorkspaceImageDescription.
As the resulting NodeMappings retrieved from dissolving attributed relationships
and their connectors, which cannot have an icon attributed to them, to normal
class shapes, this behavior does not affect the icon shape mapping.

Number of relationship shapes. Connectors are transformed to equivalent EdgeMap-
pings, and generated EdgeMappings from DomainRelationships being transformed
to EClasses result in higher relationship shapes in EMF.

Number of containment shapes. CompartmentShapes are transformed to their sim-
ilar ContainerMappings, resulting in a 1:1 mapping.

Number of tools. MSDKVS only offers the possiblity to define creation tools for model
entities like domain classes and domain relationships. When transforming, corre-
sponding creation tools are created in Sirius. Additionally, deletion functionality,
which is automatically supported in MSDKVS modeling canvas, has to be generated
on top of these transformed creation tools to offer semantically equivalent interaction
within both frameworks, thus leading to higher med, max and avg tooling values in
EMF. DomainRelationships used as classes that are targeted by ConnectionTools
have to be also considered, resulting in additional Sirius tool descriptions of type
NodeCreationDescription, one per eliminated ConnectionTool, as well as two
new ConnectionTools referencing the generated relationships.

7.2 Qualitative Analysis
To analyse the qualitative aspects of the transformed metamodels, the transformed results
are opened in the target framework editor. For this, a project is created beforehand that
takes the name of the transformed metamodel (i.e., the name of the source metamodel)
as the project name and namespace. Both of the frameworks offer automatic validation,
meaning that when the project files are opened, their internal structure is looked at and
checked against a standardized schema. Validation errors, if existent, are listed accordingly.
If a metamodel cannot be opened, it is deemed as faulty and the transformation on the
M2 layer has to be adapted. As MSDKVS diagram editor on the M2 layer offers the
ability to define concrete syntax elements upon the abstract syntax entities, the validation
step checks both areas for errors. On EMF, the optional .odesign files containing the
definitions for graphical concrete syntax mapping have to be validated separately.

If the validation step finds no error, the frameworks’ functionalities upon creating models
are tested (i.e., starting of run time instances, model canvas editing through toolbox
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Table 7.5: Transformation success rates

Direction Abstract Syntax Concrete Syntax
Cases Errors Rate Cases Errors Rate

MSDKVS → EMF 44 0 100% 44 0 100%
EMF → MSDKVS 75 0 100% 221 2 2 90.91%

1 Only 22 collected metamodels were bundled with custom .odesign files
2 VSMs contained references to multiple Ecore metamodels

tools). Table 7.5 lists the amount of metamodels used for the transformation experiments
on the M2 layer and the number of cases which returned an error and the overall success
rate of both abstract and concrete syntax transformation validation results.

Success Rate MSDKVS → EMF For the evaluation, the transformed EMF files,
including the .ecore, .genmodel and .odesign files, were copied to a suitable Ecore
Modeling Project, having the same name as these files, thus overwriting the default
files in the process. Every copied file was then opened. If the content of the file
contained an error, the IDE would display these errors accordingly. If no errors
were present, the file contents could be investigated, edited and validated in detail.
In terms of transforming DSLs to EMF-equivalent metamodels, no errors were
present while opening the resulting files, meaning the generation of editor and model
code can be successfully executed and the Sirius VSM can be used for graphically
enhancing the underlying models.

Success Rate EMF → MSDKVS The transformed .dsl file is imported into an
empty Domain-Specific Language Designer project inside Visual Studio in order
to examine the M2 transformation’s validity in the direction of EMF2MSDKVS.
Regarding the abstract syntax validation, no error messages were produced when
the generated file was opened inside the editor. Although the validation process
takes both abstract and concrete syntax specifications into account, based on the
error message description, one can infer which area of syntax the error is targeting.
Regarding the concrete syntax validation, two DSLs were deemed invalid, resulting
from the fact that the Sirius shapes were targeting multiple Ecore metamodels,
thus also referencing abstract syntax elements that could not be transformed.

7.3 Semantic Analysis

As a final part of the evaluation process for the M2 transformator, a selection based on
the source and their transformed target metamodels used for each direction are collected.
These metamodels are analyzed more in-depth regarding their behavior while creating
and operating with models inside their generated runtime environments. The goal is to
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investigate the metamodel functionalities and their correctness to further strengthen the
interoperability aspect of this thesis’ transformation approach.

Following aspects, comprising mainly of the mapping of meta-metamodel concepts from
one framework to the other, were chosen to analyse and investigate semantical equivalence
between the two platforms:

• Class Mapping: Correct mapping of class entities has to be evaluated, their
names, number of attributes, inheritance relationships and, if applied, possible
renaming strategies on the target framework are looked at.

• Relationship Mapping: Multiplicity mapping, source and target class mappings
and the special types of relationships like containment and bi-directional references
have to be evaluated. This includes, e.g., a correct cascading of delete behavior in
containment references.

• Attribute and Enumeration Mapping: Attribute mapping analysis includes
datatype conformity, identical default values and enumeration literals (taking into
account the naming conventions listed in Section 6.1.3)

• Class Shape Mapping: The mappings between abstract syntax element and
graphical shape are to be investigated and compared between source and target
framework. Especially in terms of correct coloring and styling of attributes as well
as mapped geometries.

• Relationship Shape Mapping: Same as class shape mapping, relationship shape
mappings have to be evaluated and compared. Routing styles, source and target
styling, line styles and much more attributes must be considered.

• Tool Mapping: Sectioning of tools, tool icons and their interaction with the mod-
eling canvas has to be compared and evaluated, especially for creating relationships
that the same valid source and target entities have to be selected.

Regarding the evaluation process, subsets of ten metamodels for each direction used in
the quantitative and qualitative analysis are selected for the investigation of these defined
aspects. The metamodels are chosen by setting up scattered plot diagrams, each for
two selected metamodel characteristics standing in correlation to one another based on
representative metrics calculations discussed in [20]. These metamodels then also act as
the referencing metamodels for the M1 transformation evaluation done in Chapter 9, as
they have already been deemed as semantical correct metamodels.

The steps taken in order to evaluate the semantic properties of the selected metamodels,
are the following:

1. Transforming source to target metamodel
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2. Copy the resulting files into the target environment

3. Confirm the validity of both abstract and concrete syntax

4. Generate executable code based on the metamodel

5. Run an experimental instance of the platform

6. Create empty model files based on the transformed metamodel

7. Initialize the graphical modeling canvas, if available

8. Interact with the modeling canvas and the tree editor, i.e., create classes and
relationships, edit attributes, delete elements

9. Investigate the resulting shapes and compare their properties to the source definiton

7.3.1 EMF to MSDKVS

Due to the evaluation process being a time consuming and manual task, not every
metamodel transformation conducted in the previous steps could be investigated in
detail. By having selected a subset using a variety of different aspects spread among all
the available metamodels, this evaluation thus gives a fairly adequate overview on how
semantic equivalence regarding model behavior and interaction is achieved.

Figure 7.1 shows the approach used for selecting the set of metamodels that have to
be investigated further for semantic evaluation. Each diagram, having 2 distinct but
connected metamodel metrics as its x and y axes, gives further insight on how distributed
the values among the collected source metamodels are. The yellow dots resemble the
x and y coordinates, i.e., metric values, for the metamodels that have been chosen for
semantic evaluation, which will be listed afterwards in Table 7.6. The blue dots visualize
the remaining metamodels used inside the feasibility approach in the previous section.

When looking at Table 7.6, four of the ten selected metamodels had graphical representa-
tions available, namely poosl, behaviortree, sensorProject and simplePDL. Their
shape mappings to abstract syntax elements and their tooling sections were transformed
and usable in MSDKVS correctly.

The ATL and KDM metamodel definitions could also be transformed eventually, after
some minor fixes had to be made in order for MSDKVS’ code serialization to work, as
two XmlRelationshipData constructs for the same DomainClass or its base classes
must not have the same RoleElementName attribute, or else a validation error would
be thrown.

The more cumbersome metamodels deemed to be UML2 and c_sharp, as they contain
multiple inheritance structures with many super type definitions and a number of
SubEPackages. This made evaluating the correct naming convention for domain roles
and domain relationships difficult at first, since also opening the resulting DSLs in Visual
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(a) (b)

(c) (d)

(e)

Figure 7.1: Scatter charts of metric distribution and highlighted metamodels used for
manual evaluation for EMF.

Studio resulted in performance issues due to their sizes. The problems during validation
of the transformed c_sharp DSL were eventually eliminated, as they only resulted from
duplicated source domain role names. The UML2 DSL on the other hand could not
be solved completely as of yet, as 1) the amount of relationships being rendered on
the metamodeling canvas made the interaction and finding the source of the problem
impossible and 2) the amount of faulty domain relationships with errors due to the
applied nested renaming strategies as the Ecore metamodel contained multiple eSuperType
relationships with these super types also having multiple eSuperType relationships was
still error-prone during model evaluation, thus resulting in the UML2 metamodel not
being targeted in the model transformation evaluation. As this metamodel far exceeds
the average representation value of multiple inheritance structures being 4.75 contained
within the source metamodels used for the feasibility study of the M2 transformation,
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namely 42 in combination with 437 relationships (i.e., the highest value of all used
source metamodels), further investigation has to be done for these large metamodels in
order to achieve better interoperability.

MM Validity
Classes Relationships Attr./Enums Shapes Tools

Ant - -
ATL - -

behaviortree
c_sharp - -
HAL - -
KDM - -
poosl

sensorProject
simplePDL

UML2 - -

Table 7.6: Semantic evaluation results for transformation direction EMF to MSDKVS.

7.3.2 MSDKVS to EMF

With regards to the sizes of the selected metamodels in EMF, DSLs in MSDKVS usually
have a much smaller amount of domain elements contained within, making it easier to
test the transformation appropriately. Figure 7.2 displays five scatter plot diagrams
for the source DSLs used for the evaluation of the M2 transformation, each containing
different metric values on their respective x and y axes. Identical to the diagrams for
the transformation direction EMF to MSDKVS, the yellow dots symbolize the selected
DSLs. Table 7.7 displays the evaluation results. Every language definition, except
fwk_dsl, contained at least one attributed DomainRelationship, resulting in an EClass
with additional EReferences from and to it. In terms of their counts, cqrsdsl contained
15 class-like relationships and could not be rendered by Sirius in general as the references
were all embedding relationships and for each contained class a separate model instance
had to be created in order to cross reference them, thus resulting in invalid shape and
layout analysis but valid abstract syntax. Furthermore, this DSL uses containment
references for source domain classes that are mapped to GeometryShapes, which, in the
transformator’s current state, is not possible to visualize correctly after being transformed
to EMF and Sirius, as no sub nodes can be added to the resulting NodeMappings, and
containment references cannot be visualized by EdgeMappings. A possible solution for
future work would be the generation of a Sirius representation per such containment
structure in order to visualize them appropriately from separate model files.

Question #1: Validity of transformed metamodels As mentioned before, the trans-
formation validity not only concerns the abstract syntax, it also targets the constraints
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Figure 7.2: Scatter charts of metric distribution and highlighted DSLs used for manual
evaluation for MSDKVS.

on the concrete graphical syntax. MSDKVS and EMF with Sirius offer out-of-the-box
validation functionalities, per default automatically executed when the metamodel files
inside the editors are opened. A list of possible validation errors and warnings is given
on both platforms if something has not been serialized correctly.

Table 7.5 gives an insight on the success rates of the transformation runs regarding these
validation constraints for both directions of the transformator. It can be derived that
no erroneous cases regarding the abstract syntax transformation was found, resulting in
a 100% success rate for both platforms, thus proving that M2 transformator is able to
transform every identified and mapped abstract syntax element from one platform to the
other without breaking.
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DSL Validity
Classes Relationships Attr./Enums Shapes Tools

agilemodeler
candle
cqrsdsl
fwk_dsl

generatorlanguage
hostdesigner
mbrdcmdmi
mobiledsl

nhmodelinglanguage
spllanguage

Table 7.7: Semantic evaluation results for transformation direction MSDKVS to EMF.

Regarding the validity of the concrete graphical syntax, no error was identified while
transforming from MSDKVS to EMF. Having transformed the Ecore metamodels to
MSDKVS, the additional Sirius validation considered the 22 metamodels which contained
a graphical concrete syntax specification. In the runs that followed, two out of 22 were
faulty, stemming from the fact that multiple Ecore metamodels were referenced from
within the .odesign file, therefore creating shapes for not available entities.

As the M2 Transformator is implemented as a bridge between two XML serialization
formats, most of the initial problems that occurred originated from deserializing the
input metamodel files to a corresponding data structure used to traverse through each
syntax element. XML namespace errors were among the most common types of excep-
tions because of limitations the default C# library provides when deserializing Ecore
metamodel files, as they contain numerous classes using the same typed attributes (e.g.,
firstModelOperations and subModelOperations in tool sections). These errors could be
eliminated eventually by changing the content of the metamodel files before deserializing
to suit the libraries capabilities (i.e., implementing a pre-parsing string manipulation on
the input XML metamodel files).

Question #2: Executability of transformed metamodels The executability as-
sumes a valid metamodel in order to run the code generators for creating and executing
modeling runtime instances in the frameworks. When the code generation throws errors
or the modeling canvas cannot be initialized, the transformed metamodel files are deemed
faulty with regards to their executability and semantic evaluation. All transformed
metamodels, that threw no errors during their validation phase, could be used to generate
model code on the target platforms and thus initialize runtime editor instances for further
modeling purposes.
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7.4 Difficulties during implementation of M2
transformation

A few difficulties arose during the implementation of the metamodel transformation in
C#, especially in combination with using the XML serialization approach on the Sirius
VSM files, as some of the used attributes, especially type attributes, could be set to
different namespaces. Examples for this behavior are the firstModelOperations and
subModelOperations for tooling. In order to define different types for a namespace of
an attribute, they first have to be defined as subclasses of the XML element itself via the
XmlType code attribute referencing the correct namespace. These types are then used
as annotation in the main class, using the XmlInclude attribute in order to deserialize
the incoming XML contents appropriately. The problem with this approach is that a
type can only be used inside one XML serialization class at a time. When looking again
at the firstModelOperations and subModelOperations for example, they both use the
description namespace types SetValue, CreateInstance and ChangeContext,
to name a few. To tackle these obstacles, the .odesign file contents are manipulated before
being loaded into a corresponding data structure in order to eliminate such duplicate
type attributes and errors during deserialization.

Difficulties in testing and opening the resulting files inside the IDEs were also discovered
when some files had not been properly closed before overwriting the metamodel definition
files in the editor, leading to error messages that, if closed and reopened, were not present
anymore. The dynamic diagram file for graphically displaying the content sometimes
had to be deleted when a different metamodel was opened inside Visual Studio, in order
to regenerate the correct diagram display.

Another problem arose with regards to the transformed DSL sizes in MSDKVS, as some
of the bigger Ecore metamodels that were tested resulted in about 50.000 - 100.000 lines of
XML, which took a considerable amount of time to load and then could not be displayed
properly inside Visual Studio, as some classes and relationships were overlapping one
another. In order to "clean up" these overlapping entities, they had to be reordered
manually.

As EMF and Sirius are defined in separate files, the separation of concerns lead to a better
overview on implementing the M2 layer, whereas on the other hand, the DslDefinition.dsl
files in MSDKVS containing the DSL’s abstract and concrete syntax could be filled with
irrelevant information for the task at hand, especially in terms of moniker usage and
cross referencing entities within several different areas, making finding bugs and fixing
them a tedious task.

For the validity check, the experimental run time instances of Visual Studio sometimes
did not load the Toolbox tabs correctly, displaying either only a subset of tools or no tools
at all. The MSDKVS API documentation lists possible solutions to this known problem,
resetting the experimental instances before rebuilding the solution as an example. This
did lower the amount of such faulty behavior, but not entirely.
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7.5 Limitations
A few limitations adhere to the transformation approach based on the M2 layer. The
M2 transformator is specific to the EMF and MSDKVS metamodels. Each additional
platform requires a mapping according to the identified rule sets and each rule requires
an implementation in C#. For serializing new metamodel representations from different
frameworks, the XML schema has to be analyzed and corresponding data structures for
(de-)serialization have to be added. Existing transformations can afterwards be reused,
thus creating M3 level bridges spanning multiple metamodels. Another limitation is the
realization of the transformator on the current versions of the platforms. Core updates
to these platforms and their metamodel serialization therefore require similar updates of
the transformator as mentioned before.

Regarding the involved metamodel entities and unique features of each platform, some
limitations in the tranformation’s current state are present as well. For instance, query
languages like OCL, Acceleo and AQL, which are part of the Eclipse family, offer filter
mechanisms for manipulating models. These queries can differ in their complexity, making
more sophisticated queries hard to transform as they can be seen as languages themselves
with their own syntax and grammar. The same can be said for supplemented code
snippets (Java services or C# code) which are used for restricting the set of operations
on underlying models, customizing different behavior resulting from tool usage, extending
generated classes or dynamically changing shapes based on control patterns or queries.
The possibility to filter visible model elements is also a feature that some GUIs offer.
Sirius contains two kinds of filter mechanisms, namely Mapping Filters and Variable
Filters, which use customizable conditions for filtering. These kinds of filters, written
using the previously mentioned query languages, are also not part of the transformation
implementation.

Many of the advanced tooling operations supported by Sirius (e.g., filtering using query
languages, flow control operations like Begin, For and If, Dialog, and Model Representa-
tions operations) cannot be mapped directly to available operations in MSDKVS. As
mentioned in Section 3.5, only element creation tools are supported, which target specific
metamodel entities. These features are correctly mapped to and from Sirius’ model
operations Change Context, Create Instance, and Set.
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CHAPTER 8
M1 Layer Transformation

Based on the previous steps, this chapter provides detailed explanations of the final tasks
of the transformation process, namely the transformation of models themselves based on
the results from the metamodel transformation. Before that, an analysis on how models
are represented in each platform is given and their serialization formats are compared
accordingly.

8.1 Serialization of Models

Each platform executes separate runtime environments for creating models conforming
to metamodels. A second instance of the IDE is opened and contains references to the
previously (auto)generated modeling files from valid metamodels in order to use them
properly. Each model is graphically represented by their metamodel’s available graphical
concrete syntax, be it either directly inside the framework or in EMF with its Sirius
component. If no graphical concrete syntax has been defined, the tree editor of each
modeling instance can be used for creating classes and relationships instead by using the
available context menu commands.

Each model file has its own extension, conforming to its metamodel name, namespace
or file extension attribute, if present. Regarding the serialization of these model files
inside MSDKVS and EMF, both use the XML Metadata Interchange (XMI) format,
thus making the M1 transformation easier to implement as both are based on the same
technology as opposed to platforms that use different serialization approaches, like
ADOxx [9]. Furthermore, the XMI serialization format is in general more understandable
for humans, making comparing both platforms’ representations more comprehensible and
implementing the following model transformator an easier task to follow. The Listings in
Appendix B juxtapose the contents of each model file based on the familytree example
mentioned in Section 6.2.
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8.2 M1 Layer Transformation
Typically, one cannot find concrete examples of models based on defined metamodels
contained within zoos. Most or nearly all of the retrieved repositories contain only the
metamodel definitions (either within .ecore files for EMF or .dsl files for the MSDKVS)
and no concrete models conforming to these definitions are available. To examine the
feasibility of this part of the transformation, a random model generator [2] is being used
to generate models as input on the EMF side. For transforming MSDKVS models to
EMF models, they have been created manually to best represent the underlying domain
and its features. Refer to Section 9.3 for possible limitations regarding these employed
model generation libraries and techniques as well as the future work section where model
generation in MSDKVS is mentioned as a proposal for future work.

The M1 transformator is written in Java, as the Ecore Java API [1], in particular the
Reflection API for Ecore modelling, can be seamlessly integrated as such into a java
project for importing the model and metamodel files based on Ecore to be iterated over,
serialized and deserialized as well. This section gives detailed information on how model
transformation has been achieved by using said API and explain the transformation
approach in both directions using again the familytree examples based on the UML class
diagram established in Chapter 3. In the next Chapter 9, the implementation is tested
based on concrete examples retrieved from selected metamodel transformations executed
in particular in Chapter 7, the results are analyzed and possible improvements based on
discovered limitations in terms of usage will be listed.

When comparing EMF and MSDKVS models directly, one can infer that each (simple)
attribute from a source class maps to an equivalent attribute on a target class. The
transformation of relationships acts as the main difficulty here, because in EMF, references
look like attributes (when speaking about XML syntax), whereas in MSDKVS they are
expanded by default, creating sub elements of the DomainClass element. Furthermore,
when looking at the example model files, it can be concluded that containment references
(e.g., Countries with their lists of Towns) are handled differently than simple reference
types.

Regarding the concept of inheritance, EMF adds an xsi:type attribute containing the
subclass type to the superclass entity, whereas in MSDKVS, the name of the subtype is
used directly as a tag.

In MSDKVS models, each DomainClass element and DomainRelationship element obtains
a unique identifier (i.e., GUID) to be referenced from inside other elements. These GUIDs,
like in the M2 transformator, have to be generated manually when transforming from
EMF to MSDKVS on the M1 layer. Special consideration must be given to these GUIDs,
as different attributes can be flagged as the identifying attribute, like the name attribute
of a Person entity in the familytree example. These class elements are then referenced
by using the generated GUID from the diagram element (i.e., the root element) and the
value of this unique attribute value. EMF also uses a referencing technique regarding
relationships by giving each class a number based on their position in the model’s list of
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type-equivalent XML elements, which, in addition to their class name, can be used for
interpreting simple and bi-directional references.

Diving into MSDKVS, different serialization behavior techniques can be applied to every
domain entity (class, property or relationship). When a model is saved, two files are
created, similar the the DSL functionality, namely the main file ending with the custom
FileExtension attribute, and the diagram file used for storing the entity positions
and other dynamic appearances, like reference line lengths or colors.

8.2.1 EMF to MSDKVS

Using again said JSON mapping file retrieved from the M2 transformation step, containing
mapping transformations for each abstract syntax element regarding their eventual
renaming in the target framework and platform unique flags, the model transformation
from Ecore-based models to DSL-based models in MSDVKS is executed.

The files containing the source metamodel and its model are used in addition to the gener-
ated mapping file. An iterator steps over each EClass and then every EStructuralFeature,
i.e., EAttributes and EReferences, contained within these class elements. Transformation
rules apply and take into consideration the mapping file, whereas each and every abstract
syntax element is mapped to one or more target framework elements.

The difficulty hereby in loading the model file into the M1 transformator was, that after
investigating the models either randomly generated via the library mentioned in 9.1 or
manually created inside EMF, their root XML tags could differ. As MSDKVS has to
have a class defined as the diagram’s root class on the M2 layer, where all other classes
and references can be stepped over, the generated model file also has to have that same
class as the root of its content. If that is not the case, the first element corresponding to
the identified or generated root element, extracted from the generated mapping.json file
in the previous transformation step, is used.

The following list contains information on how the M1 transformation tackles the mapping
of the abstract syntax elements from the platform’s metamodel layers using the created
mapping.json file from the M2 step:

Class mapping

When a class entity is transformed, the target name is extracted from the generated
mapping file and with it, an XML tag in the resulting modeling representation is created.

Attribute mapping

Attributes from one class entity can be mapped using the naming conventions documented
in the mapping.json file to a target attribute contained within the previously transformed
target class entity. Attributes are used the same way in both platforms, as the M2
transformator does not attribute the resulting DomainProperty XML data with the
ElementReference indicator.

93



8. M1 Layer Transformation

Relationship mapping

Relationship mappings are the most challenging mappings when transforming from EMF
to MSDKVS, as they can be represented in different ways depending on their types.

Containment references are contained within the compositing class. When regarding
their XML representations in EMF, such compositing classes are displayed with their inner
classes as, if correctly formatted, indented sub elements. In MSDKVS, additional XML
tags have to be generated to achieve the same structural functionality when transforming
a containment reference. As mentioned before, simple and bi-directional references
use a numbering mechanism to target other class elements inside the model. When
transforming such relationships, the list of available elements filtered by the target classes
has to be collected and the right index selected in order to correctly transform the
relationship.

Inheritance mapping

Inheritance mapping is cumbersome when multiple inheritance relationships are involved,
as they are distributed among several single inheritance relationships and copied classes
in MSDKVS as a result of the M2 transformator. Thus, the mapping.json file has to be
consulted when transforming on the M1 layer in order to find the correct inheritance
structure to use for transforming the model entity. Each class mapping contains a
superclass mapping, referencing the transformed superclass.

Additional information

Information such as namespace declarations inside the models’ root tags or the root
class mapping have to be handled accordingly. The mapping file contains additional
information on how the transformed metamodel and its file extensions where named after
having executed the M2 transformations in order to add said namespaces into the XMI.

Regarding the transformation code itself, following code sections are executed sequentially
in order to retrieve the transformed result, the MSDKVS model file:

1. Setting the transformation direction: For determining the direction from
which platform the model has to be transformed the first argument when executing
the transformator from the command line has to be EMF2MSDKVS.

2. Loading the file contents: The submitted files must contain the Source Ecore
metamodel, the Source Ecore model based on the metamodel and the Mapping file
retrieved from the previously executed M2 transformation. The mapping file is
deserialized into a data structure identical to the one created during the M2 trans-
formation. The Ecore metamodel is loaded into an EMF Resource to create the
EPackage and its EFFactory instances used for reading the model file contents.
To dynamically deserialize the model contents, the XMIResourceFactory is used
for reading said model.
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3. Reference the model’s root element: The root element of the Ecore model is
saved into a static variable to be stepped through and retrieve its contained EClass
objects with their EReferences and EAttributes accordingly.

4. Transformation of the root element: The first element to transform is the
root element of the model file. In order to be able to deserialize every model file
based on any Ecore metamodel, a List of DynamicEObjectImpl objects is used
for keeping track of already transformed class entities used later on for resolving
the remaining relationship links. The root element has to further contain the
namespace declarations and the dslVersion attribute to be a valid MSDKVS
model.

5. Transformation of remaining classes: Before the relationships are solved, the
class entities are transformed and every relationship is put into a map variable
for looking up related relationships later on. Classes are transformed by looking
up the appropriate ClassMapping information created in the M2 step in order
to get the name of the resulting DomainClass if their source names have been
adapted by any renaming strategies resulting from containing reserved keywords in
their original names or duplication of elements resulting from multiple inheritance
structures. EStructuralReferences of type EAttribute are transformed next,
being themselves either a simple value attribute or an enumeration literal, where a
lookup on the class mapping’s AttributeMappings is done in order to retrieve
the target domain property name or enumeration name with the correct literal.
Every subsequent transformed class is added to the target model’s root element as
an Element class with key-value pairs resembling these attributes.

6. Transformation of relationships: Each class element contains a list of Dynamic
EObjectImpl elements, resolved after every class entity has been transformed,
thus adding the correct relationship structures. Until then, it temporarily contains
all references to other dynamic EObjects, uniquely identified by their dynamic
values set inside the Ecore Reflection API through deserialization. Inheritance
relationships are retrieved by resolving the SuperClassMappings inside the
appropriate ClassMapping recursively in order to get the correct base class,
having possibly been renamed as a result of multiple inheritances in the source
metamodel.

7. Serializing the MSDKVS model file: The created Element tree based on
the previous steps is traversed and saved with the help of a StringBuilder
in order to generate the MSDKVS-readable model file. Each class and reference
element is represented by an Element object, each attribute is represented via
a class element’s ValuePair object, having the Key parameter define the name
of the attribute of the resulting DomainClass, and the Value parameter define
the value of said attribute. Nested Element objects signalize the usage of different
kinds of relationships, i.e., inheritance, containment or reference relationships.
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8.2.2 MSDKVS to EMF

When transforming models from MSDKVS to EMF, the transformed Ecore metamodel
in combination with the Reflection API is used to create the target model entities. The
procedure differs in terms of loading the model files into code, MSDKVS’ models are
available in XMI format but Java does not know how to interpret them. Thus, a basic
XML reader library is used for deserializing the generic XMI structure of the model
into code. Identical to the serialization structure of the transformation result for the
direction of EMF to MSDKVS, the models are deserialized to a tree based data template
containing several key-value pairs resembling their various tags and attributes referencing
the metamodel attribute definitions. The resulting EMF model is then saved as an XMI
serialized file with the help of EMF’s persistence framework.

The following list contains detailed information on how the M1 transformation tackles the
mapping of the abstract syntax elements from the metamodel layer using the mapping.json
file from the M2 step:

Class mapping

Class mappings are transformed to corresponding class name tags in Ecore. Lists for
each classes already transformed are maintained to get their exact index inside the XML
file for reference transformations that are not containment references.

Attribute mapping

Same as for transformation direction "EMF to MSDKVS", attribute elements are added
to the transformed class elements as attributes as well. Important to note here is that
the serialization of attributes can be different for each attribute, depending if their
Reference flag has been set to, e.g., "Element". Thus, the mapping file has to be
consulted for each attribute to retrieve the mapping information containing the value
of said flag. Normally, the flag defaults to "null", meaning the attribute is used as a
normal attribute. When the flag’s value is "Element", the attribute has been deserialized
to a separate sub element with one ValuePair object, where the key is the name of the
attribute and the value equals the attribute’s value, easily being translatable to an EMF
model entity’s attribute.

Relationship mapping

Contained classes are wrapped inside their compositing class, with additional tags denoting
their domain relationship names. Other type of relationships, i.e., bi-directional references
with source and target domain roles, are serialized differently. Similar to the M2 layer,
target classes of relationships are referenced through monikers, their name assembled
as follows: <class_name>Moniker. If such a class has an attribute other than their
GUID attribute set as their naming attribute (i.e., IsMonikerKey), the value of this
naming attribute, which must be unique, is used for further referencing the correct target
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classes. Examples can be seen in Figure 8.4a, where children relationships contain
manMoniker and womanMoniker types referencing the corresponding class entities
by their naming attribute name in addition to the root element familyTreeModel’s
unique GUID. Domain relationships, that were transformed to EClasses, are flagged
specifically, as the model transformator has to do a class lookup and add two additional
references to solve the "Relationship as a Class" functionality correctly. Depending on
the UseFullForm and OmitElement attributes for the XML serialization behavior
defined on the M2 layer, the relationships have to be transformed differently, analyzed
and detailed later in subsequent sections.

Inheritance mapping

As the transformed Ecore metamodel cannot contain any multiple inheritance structures,
this makes it easier to find the target element as opposed to their transformed single
inheritances from EMF to MSDKVS.

Additional information

As most of the features are directly translated to Ecore features, except having domain
relationships used as classes with attributes or inside a domain relationship inheritance,
additional information needed to correctly transform are kept manageable and at a
minimum.

Regarding the transformation code itself, following code sections are executed sequentially
in order to retrieve the transformed result, i.e., the serialized Ecore model:

1. Setting the transformation direction: For determining the direction from
which platform the model has to be transformed the first argument of the program
has to be MSDKVS2EMF.

2. Loading the file contents: The transformation’s generated Ecore metamodel
file, the MSDKVS XMI source model file and the mapping file are loaded into
corresponding structures. An empty Ecore Resource is created based on the
metamodel content and the resulting EPackage element retrieved and pinned for
finding the correct EClass elements later on after being registered as a daynamic
package in the EPackage Registry Instance. The mapping file, based on
the JSON serialization format, is deserialized with the help of the FasterXML
Jackson 1 library into a corresponding data structure, identical to the one being
generated inside the C# code portion, i.e., the M2 transformator.

3. Deserializing the MDKVS model: The MSDKVS model file, saved as an XMI
resource, is deserialized into a tree of Elements, retrieved from the XML tags
and containing key-value pairs resembling the tag’s attributes, if present. These

1https://github.com/FasterXML/jackson, last accessed on 04.01.2023
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tag elements are then traversed and used for looking up the target Ecore entity, be
it either an EReference or an EClass, via the mapping info generated in the M2
step of the transformator, if a suitable candidate has been found.

4. Transformation of the root element: The root element has to be the first
node in the Element tree serialized from the model’s XMI contents. This element,
as well as each subsequent element, is matched against the mapping information,
the root element being a ClassMapping. If a mapping corresponding to the
current tag’s name has been found by comparing the mapping’s From value,
this AbstractMapping is then parsed and used for creating the corresponding
EObject by looking up its To value inside the generated EPackage container. If
an EClass has been retrieved, it is transformed to a unique EObject by using the
EFactoryInstance’s create method with this class.

5. Transformation of nodes: As our source model data is only comprised of
elements resembling the model’s XML tags and their attributes, the traversal of
the content differs greatly from the other transformation direction, as no element
can be automatically distinguished out of the box. As mentioned before, every
Element object is checked against the mapping data, comparing its From and
To parameters. As MSDKVS offers different identifying strategies based on the
IsMonikerKey flag of the domain properties of a domain class, a separate table
is maintained, containing the created EObjects and their moniker key values. This
is done for every node of the model file. Each element is flagged if it has been
traversed already as to avoid duplicate EObject creation. Each class element’s
key-value pairs are iterated in order to transform them to corresponding EAttribute
values. The correct data types and enumeration literals are looked up accordingly.

6. Transformation of relationships: First, the mapping information of the refer-
ence itself is retrieved based on the tag’s name, which was saved as the From value
of the reference mapping. Based on the different flags that indicate if elements were
skipped or not inside the model’s XML file thus resulting in fewer or more Element
tags, the Element tree is further traversed in order to get the correct mapping
source. A list of references that could not be solved immediately, as the referencing
classes may not have been transformed yet, is maintained and, after further classes
have been added as EObjects, checked for references that can now be properly
added as both parts are available. Based on the reference mapping, an EReference
object is created with source and target EClasses retrieved by the ClassMappings
of the "Source" and "Target" parameters of said mapping information.

7. Saving the Ecore model file: The resulting Ecore model is saved based on the
identified file ending inside the mapping information and the root EObject is added
to an EMF Resource object’s contents and afterwards saved accordingly to an
output file.
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8.3 Examples
The following examples, one for each direction, based on the familytree metamodels
created in Chapter 3 and described in the metamodel transformation sample in Section 6.2,
should give an insight on how the models change when put through the M1 transformator,
how the mapping file is used and how the special serialization characteristics of each
platform are considered accordingly. The example contains the most prominent abstract
syntax capabilities, inheritance relationships, attributes, containment relationships and
bi-directional relationships. On top of that it also shows how references to classes that
are themselves part of a containment reference are handled.

8.3.1 EMF to MSDKVS

The Ecore metamodel used for this direction’s transformation is the one created based
on the UML class diagram mentioned in Section 3.2. The Ecore metamodel had to
be adapted, adding an additional containment reference from family to countries, and
changing the type of relationship of members to composition, in order to have a root
element containing both country and person entities for cross referencing on the M1
layer. This root element is then transformed accordingly to a root element in MSDKVS,
thus enabling the correct model transformation setup. Regarding MSDKVS’ serialization
of models, the transformation on the M2 layer results in the following default values
for the XML serialization, thus setting the OmitElement attribute and UseFullForm
attribute for domain relationships to "false" and the Representation value to an empty
string (i.e., defaulting to "Attribute") instead of "Element" for domain properties to best
resemble the representation of models on the EMF side. As the API documentation
states, the OmitElement should always be set to "false" in case there is more than one
relationship between source and target class present, thus being on the saver side.

For demonstration purposes, the source model for the Ecore metamodel is generated
using the model generator used in the next chapter for evaluation. Figure 8.1 shows the
generated model file in EMF and its transformed equivalent for MSDKVS. Figure 8.2
shows an excerpt of the resulting mapping file from the M2 transformator, depicting the
Person class info for the M1 transformator.

8.3.2 MSDKVS to EMF

The familytree DSL and its model used for the transformation are taken from Section 6.2.1.
XMI structures of both EMF and MSDKVS models are shown in Figure 8.4. Depending
on the applied serialization techniques mentioned in Section 8.2, the handling of attributes
and references can differ. As mentioned before, omitting elements and using the full form
defaults their respective attributes to "false" when transforming from EMF to MSDKVS,
but these values have to be considered when transforming in the other direction. Therefore,
each transformed domain element on the M2 layer saves this additional information
inside their relationship or attribute mapping in the generated mapping.json file that
is used as input for the M1 transformation, signaling what kind of XML serialization
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(a) Adapted source familytree model in EMF

(b) Transformed familytree model in MSDKVS

Figure 8.1: Model Transformation Example MSDKVS to EMF, MSDKVS model (top)
and transformed result in EMF (bottom)

the domain element uses and adapting the deserialization of the model file into data
structures used to traverse each element, skipping not needed containment reference
structures or attribute tags.

The XML serialization for DomainProperties contains a settable boolean flag named
IsMonikerKey, defining how to reference the attributes inside the models’ schema.
If no domain property with said flag is set to true, then the entity’s GUID is used
for referencing it from other eligible entities, called Id Moniker cross referencing[35] .
As opposed to this Id moniker, when a designated domain property is flagged, then
it is called Qualified Key Moniker cross referencing, where the automatic validation
ensures the uniqueness of this property’s values. Figure 8.3 shows the differences in
model serialization in terms of this behavior. The Town element which is also part of a
containment reference inside Country is targeted by its unique GUID with no moniker
key having been flagged. Different outcomes based on containment references, domain
classes’ named attributes and XML serialization of these attributes can be seen here.
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Figure 8.2: Example class mapping of class Person resulting from the M2 transformation

When a domain relationship has been defined as a domain class and contains attributes,
the UseFullForm attribute is automatically set to "true" to resemble class entities,
meaning the model content is also affected.
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(a) Simple familytree model having IsMonikerKey for name attributes of Town and Country
set to false / null

(b) Simple familytree model having IsMonikerKey for name attribute of Town set to true and
for Country set to false

(c) Simple familytree model having IsMonikerKey for name attributes of Town and Country
set to true

Figure 8.3: Examples for IsMonikerKey effects for cross referencing model entities102
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(a) Excerpt from source familytree model in MSDKVS

(b) Transformed familytree model in EMF

Figure 8.4: Model Transformation Example MSDKVS to EMF, MSDKVS model (top)
and transformed result in EMF (bottom)
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CHAPTER 9
Evaluation of M3 Bridge

In addition to the feasibility study of the first part of the transformation (see Chapter 7),
this chapter considers the transformation implementation, including the aforementioned
transformation of models, in terms of investigating the complexity and also the degree of
completion, i.e., if and how all possible definitions can be transformed.

9.1 Model Generation
For testing the transformation approach on the M1 layer, a random model generator
customizable with several parameters, presented in [2], is used for generating different
models based on an Ecore metamodel. A selection of previously transformed metamodels
is used, with the generated mapping.json file, for evaluating the model transformation
approach for the direction EMF2MSDKVS. For the direction MSDKVS2EMF, the
underlying models have been generated manually as no generator of models is available.

For the Ecore model generator, a variety of optional parameters can be used to generate
models based on one’s own needs, like the average size of a model regarding its elements,
an average number of reference per class element as well as attribute value lengths. For
this thesis’ purposes and for better readability of the generated model files, an average
size of 20 was used to make the models still readable and understandable for humans,
as well as a reference degree of 4 per object and a average variable length of 8
for attributes.

After having tried to generate some models based on the selected source Ecore metamodels,
some limitations could already be recognized. The input metamodel file must not
contain more than one EPackage definition, or else the generator’s internal diagnostic
functionalities reports an error that additional metamodels have to be explicitly referenced.
Additionally, many of the source Ecore metamodels, as they were themselves generated,
did not have their EPackages’ namespace prefix, namespace URI and instance
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type name defined, leading to errors inside the generator as well. These errors had
to be fixed manually, thus being able to generate the amount of models used for the
M1 evaluation. If a metamodel had additional EPackages, typically the PrimitiveTypes
EPackage, existing references had to be resolved manually as well, resulting in one
EPackage in general for proper usage. These changes made to the source metamodels
were checked beforehand for validity, as to not use invalid metamodels for the purpose of
evaluating the model transformation.

9.2 Transformation Results

Following Tables 9.1 and 9.2 list the selected transformed metamodels used in the M2
transformator previously discussed in Chapter 9, the number of manually created or
generated models based on these results and the execution results of the M1 transformator.
Each category identified in Section 8.2 is listed as a separate column for structured evalu-
ation and the numbers depicted show how many of the generated models result in valid
transformed models on the target platform. Next, each column is analyzed individually,
explaining its purpose and results regarding the source and their transformed models,
listing found errors or unintended behavior and possible solutions and improvements
for future releases. Afterwards, the limitations of the M1 transformator based on the
Ecore Reflection API for EMF2MSDKVS and JAXB library for serializing and dese-
rializing the input models of MSDKVS, used for the direction MSDKVS2EMF, and
output models are discussed. As the semantic evaluation regarding the interactivity of
models based on the M2 transformation results has already been done in Chapter 7, the
following results take only the validity of the transformed models into account, especially
regarding the validity of the mapping strategies discussed in Section 8.2 in addition to the
comparison of their graphical representation, if available, depicted in column "Layout".
If no graphical concrete syntax is available, the model explorer’s embedding tree is used
for investigating the model contents. Reference relationships are not available inside
this tree editor and are only visible if a Connector has been defined for these types
of relationships, therefore they cannot be checked for validity inside the modeling run
time in Visual Studio. As currently no model generator in MSDKVS is available, basic
reference links are added inside the model’s XMI representation file in order to check the
validity of those.

9.2.1 EMF to MSDKVS

A subset of eight Ecore metamodels was chosen based on the previous quantitative
metrics distribution and qualitative analysis. The following Table 9.1 displays the results
of the validity checks for different criteria in addition to the layout of the transformed
Sirius components in terms of coloring, labeling and more. Each metamodel was used to
generate ten model files. These files were then transformed using the M1 transformation
of the M3B.

106



9.2. Transformation Results

MM Validity
# Class Attribute Rel. Inh. Layout

Ant 10 10/10 10/10 10/10 10/10 -
ATL 10 10/10 10/10 10/10 10/10 -

behaviortree 10 10/10 10/10 10/10 10/10 10/10
c_sharp 10 10/10 10/10 0/10 0/10 -
HAL 10 10/10 10/10 10/10 10/10 -
KDM 10 10/10 10/10 10/10 10/10 -
poosl 10 10/10 10/10 10/10 10/10 10/10

sensorProject 10 10/10 10/10 10/10 10/10 10/10

Table 9.1: Model transformation results for transformation direction EMF to MSDKVS.

• Class transformation: For every model used, the class transformation resulted
in correctly mapped class entities on the target platform, having the correct naming
based on the mapping information created in the M2 transformator. If a class had
been duplicated and renamed by applying the strategies on the M2 transformator
as a result of the expansion strategy, transforming multiple inheritance structures
to single inheritance structures, the correct type could be identified accordingly.

• Attribute transformation: Same as for the class transformation, every class
entity contained the correctly mapped attributes, correctly mapped data types,
default values and enumeration literals.

• Relationship transformation: Regarding the validity of the relationship trans-
formation part, only the c_sharp metamodel proved to be invalid, as it contains
multiple inheritance structures nested within multiple inheritance structures, thus
resulting in wrongly resolved references during the M1 transformation. Regarding
the containment, simple and bi-directional references, the transformed MSDKVS
model’s proved to be valid in terms of syntax and semantic.

• Inheritance transformation: As mentioned before, inheritance relationships
regarding nested multiple inheritances was the only recognized error-prone aspect
of the M1 transformation. As nearly all of the metamodels used in the M2
transformator did not use such complex multiple inheritance trees, one can infer that
these occur very rarely. Nonetheless, these errors will be looked at accordingly and,
possibly with the help of enhanced mapping information from the M2 transformator
or additional data structures maintained inside the M1 transformator for storing
inheritance depths.

• Layout behavior: As for the layout, i.e., the correct and identical display of
model content on the modeling canvas inside the platform’s run time instances, half
of the models had a Sirius VSMs available, all of them showing valid and identical
model shapes based on the transformed metamodel files. If there was no graphical
representation available, the inherent tree structures were used for comparing both
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model contents, which is reflected in the abstract syntax information listed in the
other columns.

9.2.2 MSDKVS to EMF

As opposed to EMF, there is no model generator currently available in MSDKVS. In the
scope of this thesis’ M1 transformator evaluation, models for the selected DSLs have been
created manually, best resembling the mentioned parameterized generation of models on
the EMF side. Thus, as creating different models based on the transformed metamodels
in MSDKVS is a time-consuming task, only 4 models per DSL have been created to show
the feasibility and validity of the M1 transformator.

Table 9.2 shows the selected DSLs, the amount of valid models for different validity
criteria and also the three important flags mentioned before that influence how the model
entities are serialized inside the XML files. Typically, OmitElement has not been set in
any of the looked at DSL definitions. As UseFullForm is per default set to true when
a domain relationship is created, most DSLs use this feature. In the subset of DSLs
selected for M1 evaluation, only one DSL, namely hostdesigner, did not set any domain
relationships to use their full form representation. Regarding serializing attributes as
separate XML elements instead of a domain class or domain relationship’s attribute by
setting the Representation attribute for XmlPropertyData to "Element", the candle
DSL was the only language making use of this feature.

DSL Validity
# Class Attribute Rel. Inh. Layout OE1 UFF2 ER3

agilemodeler 4 4/4 4/4 4/4 4/4 4/4
candle 4 4/4 4/4 4/4 4/4 4/4

fwk_dsl 4 4/4 4/4 4/4 4/4 4/4
generatorlanguage 4 4/4 4/4 4/4 4/4 4/4

hostdesigner 4 4/4 4/4 4/4 4/4 4/4
mbrdcmdmi 4 4/4 4/4 4/4 4/4 4/4

mobiledsl 4 4/4 4/4 4/4 4/4 4/4
spllanguage 4 4/4 4/4 4/4 4/4 4/4

1 Indicator for containing at least one OmitElement XmlRelationshipData
2 Indicator for containing at least one UseFullForm XmlRelationshipData
3 Indicator for containing at least one XmlPropertyData data having Representation attribute set
to "Element"

Table 9.2: Model transformation results for transformation direction MSDKVS to EMF.

• Class transformation: Regarding the transformation of domain class entities to
EClass objects, no significant differences or error-prone behavior occurred during
the M1 transformation and during the final examination.

• Attribute transformation: Every DSL except candle uses the default serial-
ization technique for attributes, i.e., identical to an XML tag attribute. Candle
DSL uses customized serialization data for one or more domain properties, such
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that the model attributes are serialized as subsidiary XML tags for the domain
class or domain relationship. The M1 transformation works for both ways and all
transformed models were interpreted and displayed correctly.

• Relationship transformation: The MSDKVS relationship serialization is pri-
marily influenced by the OmitElement and UseFullForm flags attached to a
domain relationship’s XML data. The mapping information created in the M2 step
attaches each of these flag values to the resulting reference mapping, thus being
able to check the valid structure in the model deserialization to an element tree
used for traversing and transforming to the correct representation on the EMF
side. Regarding our input DSLs, typically, elements were not flagged as omitted, as
this is the default setting. The hostdesigner DSL was the only one, were no full
form of relationships was serialized, thus skipping the XML tags named after the
domain relationship name itself. The M1 transformator works either way, correctly
identifying and looking up the corresponding EReference based on the Source and
Target values available through the Class Mappings retrieved from the Reference
Mappings.

• Inheritance transformation: As MSDKVS only offers single BaseClass refer-
ences from domain classes and even domain relationships, no complex structures as
opposed to EMF’s c_sharp metamodel were present in the source model collection
used for the M1 transformation evaluation, therefore resulting in equal single inher-
itance ESuperType relations on the target side, making finding the correct type of
an EClass easier, with or without having multiple nested inheritance relationships.

• Layout behavior: As opposed to EMF, MSDKVS elminates the requirement
on defining graphical concrete syntax on top of the abstract syntax elements by
integrating the necessary tools into the DSL creation interface, thus resulting in
nearly every DSL found containing graphical syntax elements. This results in
Sirius VSMs on the target side after transformation, making it also possible for
every Ecore metamodel and model to validate the correct visualization properties.
Regarding the input set of manually created models on top of selected DSLs, the
M1 transformation produced satisfying and graphically similar results on the target
side, with some minor changes regarding especially the sizes of produced shapes
when the diagram representation is first opened, as these values are dynamically
created inside the .aird files.

• OmitElement behavior: As no DSL contained domain relationships flagged by
the "OmitElement" attribute, this behavior could not be evaluated entirely.

• UseFullForm behavior: As mentioned before, by default this is set to true,
meaning that the references inside the model classes result in more subsequent
XML tags. The M1 transformator adapts its deserialization of the model file based
on the instructions received from finding the correct reference mapping.
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• ElementReference behavior: While discussing the attribute transformation
behavior and mentioning MSDKVS’ different styles of serializing domain properties,
both styles (as Attribute and as Element) resulted in valid target models
correctly interpreted by the Ecore system.

9.3 Limitations
One major limitation is the requirement of always having an element from the abstract
syntax definition acting as the root element, be it either in MSDKVS, where this
requirement for the M2 transformator originated (see Chapter 6), or EMF, in order to
read the model file correctly. The generator [2] used for generating a number of models
based on Ecore metamodels, as stated, targets "... any non-abstract EClass without a
required containing EReference ..." for a potential root element. This sometimes results
in XMI model files with no concrete metamodel root element as the XML root tag,
making transforming them impossible based on the current approach. When a model is
manually designed in a runtime instance of a metamodel in Eclipse, one has to define
the root element beforehand when the model file is created. Therefore, only metamodel
instances in EMF where a designated root element could be extracted that is able to
contain all other syntax elements were used for model generation and evaluation of the
M1 transformator.

This also leads to the M1 transformation only being able to transform one model file at
a time, thus no referencing model entities in other files, especially in EMF, is supported.

The other limitation, with regards to the evaluation procedure, was the unavailability of
a model generator in MSDKVS. Although, with the help of the framework’s API and the
T4 templating engine, it would be possible to edit model files in the experimental runtime
instances of Visual Studio programmatically and thus eventually realizing a rudimentary
model generator, the evaluation mentioned above relied on manually creating the source
models as the creation of such a model generator has not been done yet. This can be
added to the list of future work regarding improvements upon the evaluation method.
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CHAPTER 10
Conclusion

In the course of this scientific thesis, interoperability between the EMF and MSDKVS
platforms by conceptualizing and implementing a bidirectional transformation bridge able
to transform metamodels and their models defined within both platforms was established.
The evaluation was conducted by choosing a representative set of publicly available
metamodels and a set of generated or manually created models thereof.

By providing mapping rules also for the graphical notations available in both metamodel-
ing platforms, it proved to be possible to transform means of graphically representing
these elements of transformed metamodels to achieve not only syntactic but also visual
interoperability.

A new conceptualizing approach in identifying common graphical concrete syntax features
of metamodels based on the chosen platforms and abstracting them to possibly also fit
other metamodel features as well has been done and applied in the form of additional
mapping rules for transforming these new syntax elements. An in-depth look at the
metamodeling platforms was given in the beginning, which also describes how these
frameworks tackle the requirement of graphically representing metamodels and models in
their environments respectively, later on used for the comparative analysis not only on
the abstract syntax but also on a graphical layer.

Based on previous work, an interoperability approach between the formerly known
DSL Tools for Visual Studio and EMF has been achieved through ATL transformations
that uses a pivot KM3 metamodel to be transformed to and from for reusability has
been analysed. This thesis shows the differences to the M3B methodological approach
mentioned here and also uses the most current versions of the platforms, reviving,
adapting and extending the knowledge made in the previous approach to fit the needs
of today’s modeling environments. Furthermore, an exhaustive analytical feedback is
given, which also differs from the previous approach as there were no concrete statistical
resources available to look into how feasible and valid the former approach was regarding
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the executability of the transformed metamodels and models in the target platforms,
especially focusing on the core differences and unique abstract syntax features that
both platforms contain, such as Multiple Inheritance in EMF and DomainRelationship
Inheritance in MSDKVS.

Based on the results of this research process, a new M3 level-based bridge was proposed
and its concrete implementation described for each direction (either from EMF to
MSDKVS or MSDKVS to EMF). The evaluation was done using a representative set of
distinct metamodels found within a variety of publicly available sources, mainly code
repositories. By transforming and executing these metamodels, relevant data was filtered,
e.g., class and reference counts in source and target metamodel, and their behavior
was tested, such as deletion of containment references or inheritance structures to show
semantic equivalence when working with both platforms. Most of the metamodels used
in this scenario could be transformed and evaluated with regards to their executability
and validity. Specific erroneous cases, if existent, were listed and possible solutions for
future adaptations of the transformation code were given.

Based on the output on the M2 layer, the resulting files where then used to transform
models from one framework into the other, giving a detailed insight on how this was
achieved and the obstacles that had to be considered. Afterwards, the full workflow of
the M3B was considered and evaluated based on a set of models conforming to a subset
of metamodels used in the M2 step of the transformation, either manually created or
generated through the means of available libraries.

10.1 Research Questions
Regarding the design science methodological approach of this work, following research
questions were posed in Chapter 1. The answers to the relevant questions given during the
M2 transformation evaluation in Chapter 7 are integrated and adapted with additional
remarks regarding the M1 transformation to give a final answer to the initial questions
suiting the M3B as a whole:

RQ1: What is the degree of interoperability between MSDKVS and EMF
in terms of user interaction and framework behavior? The M3B proposed
and implemented in the course of this thesis takes as input any available and
valid Ecore metamodel and, if available, its Sirius VSM, or MSDKVS DSL and
transforms them accordingly to equivalent representations on the target framework.
For every metamodel used in the experiment, a verification process was followed
through by opening the transformed metamodel in the target platform, checking
for errors and applying the platform specific validation techniques. Afterwards, a
selection of metamodels was used to look at a variety of important criteria in terms
of syntax and interaction in particular.
Models that were either generated or manually created were used to analyze the
model transformation of the M3B in terms of validity and interaction on the mod-
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eling canvases inside the platforms. For the M2 layer, a diverse set of collected
metamodels from various sources was used to successfully show the feasibility of
the M3B approach from a practical point of view. Combining M1 and M2 trans-
formation, it can be concluded that interoperability in today’s versions of both
EMF and MSDKVS can be achieved, not only on an abstract, but on the concrete
graphical syntax layer as well. The transformation approach resulting from this
thesis shows that syntactical and semantic equivalence can be accomplished, even
considering many platform-unique features like multiple inheritance, attributable
domain relationships and even explicitly definable XML serialization techniques
for the M1 layer that are not existent on other platforms. Simple metamodels
regarding their class and relationship entities achieved near lossless transformation.
More complex structures and features also turned out to be translatable correctly,
by loosing as little original structural integrity as possible. The error cases identi-
fied only resulted in having complex inheritance hierarchies present in the EMF
metamodel instances, making finding the correct element to use cumbersome and
error-prone in the M1 transformator.

By extending the available mapping information file resulting from the M2 transfor-
mation with additional information, the transformation approach can be adapted
and further improved upon in the future, possibly leading to even better results in
terms of semantic equivalence on more metamodels or future framework updates.

RQ2: What are the quantitative differences and similarities of transformed
metamodels and models in the target framework compared to the origi-
nal? This question was partly answered in Chapter 7, where the M2 transformator
was looked at in detail, comparing the input and output values and discussing the
discovered differences from source to target framework. Many of the quantitative
differences occur when a platform unique feature has been employed during the
metamodel design phase, e.g., multiple inheritance structures, resulting in higher
metric counts of different abstract and even graphical concrete syntax elements.
With regards to the model transformation, these platform unique features also play
a significant role in how the models are represented and the serialized model files are
interpreted by the platforms’ runtime environment. In MSDKVS, the file sizes are
much larger in general than in EMF and Sirius combined, as they contain multiple
cross referencing functionalities between abstract and concrete graphical syntax and
serialization behavior. When regarding the M1 transformation, each element from
the source environment can be mapped, using the mapping file from the M2 step,
to its counterpart inside the target framework. The main and possibly only major
difference deduced from analyzing the modeling capabilities in both platforms is
the number of XML tags needed for representing, e.g., a containment reference,
an inheritance relationship or other types of nested abstract syntax formations, as
they add much more lines of code to MSDKVS and make it harder for a simple
XML parser to generate structures that can be iterated effectively, in addition to
the dynamically changing content of a model based on serialization configurations
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in MSDKVS.
An important part, that fortunately both frameworks employ, although differently,
is the referencing of other modeling elements inside the serialized model file. EMF
uses the @ declaration, whereas MSDKVS relies on the moniker type references
using GUIDs or manually defined key attributes. But, as both methods are used
for targeting model elements based on reference entities, a mapping could be easily
established and implemented.

10.2 Future work
As this thesis provides a novel approach in regard to transform graphical concrete syntaxes
and only lists possible factors of graphical concrete syntax elements contained either
within MSDKVS or EMF, a further possible research direction could analyze the graphical
representations available among a wider range of metamodeling platforms and compare
them accordingly, adapting the proposed abstraction of recognized features from this
thesis.

Furthermore, the realization of roundtrip transformations based on defined mapping
tables could be relevant, where a source metamodel created in one metamodeling platform
is first transformed to an equivalent metamodel in another metamodeling platform and
afterwards, as such bridges are typically realized as bidirectional or two unidirectional
transformations, the result of the first transformation is again transformed back to the
original source metamodeling platform. Depending on special use cases and different
functionalities implemented on these different platforms, the original source metamodel
and the roundtrip metamodel usually will not be identical.

This information loss could be avoided with the help of additional transformation
information logging created during the first transformation. Using the source and target
metamodel together with the adapted mapping file for this thesis’ M2 transformation
log, it seems feasible to transform the target metamodel back into the source one,
reconstructing the state before the first transformation, thereby achieving lossless round-
trip interoperability between metamodeling platforms. This would be interesting for
cases, where two teams of language designers each work on different platforms, meaning
changes on the same metamodel made in one platform should immediately be reflected
in the other and vice versa.

As mentioned in Chapter 8, the source models for the M1 transformation from MSDKVS
to EMF were created manually. Possible future work, also in terms of better evaluating
this thesis’ M3B with arbitrary MSDKVS models, would be the implementation of a
model generator for DSLs designed for today’s version of MSDKVS, ideally in the same
notion as has been done on the EMF side.

In addition, further research could be made in the direction of possibly resolving the
limitations mentioned in Section 7.5 for the metamodel transformation and in Section 9.3
for the M1 transformation, respectively. Especially with regards to the additional Sirius
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operation structures and transforming the validation constraint query languages, like
OCL, AQL, Acceleo and also external services and data, this would be an interesting
consideration, as well as for dynamically changing shapes indicated by a traversal of valid
entity states and based on different criteria, supplied either via external code or directly
in the DSL schema, if supported.

Last but not least, the bridge’s code and metamodels used in the evaluation will be
deployed open source for the modeling community and the transformation bridge will be
available as a usable service at: http://me.big.tuwien.ac.at/.
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Appendix A - Code Snippets

/// <summary>
/// DSL.R1
/// DomainClass −> EClass
/// DSL.R1/1 − Abstract ion ( Inhe r i t anc eMod i f i e r = " Abstract " −>

abs t r a c t=" true " )
/// DSL.R1/2 − I n t e r f a c e ( not a v a i l a b l e in MSDKVS)
/// DSL.R1/3 − Documentation ( Notes −> EAnnotation )
/// </summary>
/// <param name="domainClass"></param>
/// <returns ></returns>
pr i va t e s t a t i c EC l a s s i f i e r s

TransformDomainClass2EClass i f i er ( DomainClass domainClass )
{

EC l a s s i f i e r s e C l a s s i f i e r = new EC l a s s i f i e r s ( )
{

Name = domainClass .Name,
Type = " ecore : EClass " ,
Abstract = " f a l s e " ,
EStructura lFeatures = new List<EStructura lFeatures >()

} ;

i f ( ! s t r i n g . IsNullOrEmpty ( domainClass . I nhe r i t anc eMod i f i e r ) )
{

i f ( domainClass . I nhe r i t anc eMod i f i e r . Equals ( " Abstract " ) )
{

e C l a s s i f i e r . Abstract = " true " ;
}

}

i f ( ! s t r i n g . IsNullOrEmpty ( domainClass . Des c r ip t i on ) )
{

var d e t a i l s = new De ta i l s ( )
{

Key = " documentation " ,
Value = domainClass . Des c r ip t i on

} ;

e C l a s s i f i e r . EAnnotations = new EAnnotations ( )
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{
Source = "Tags "

} ;
e C l a s s i f i e r . EAnnotations . De t a i l s .Add( d e t a i l s ) ;

}

i f ( domainClass . P rope r t i e s != nu l l &&
domainClass . P rope r t i e s . DomainProperties != nu l l &&
domainClass . P rope r t i e s . DomainProperties . Count > 0)

{
fo r each (DomainProperty domainProperty in

domainClass . P rope r t i e s . DomainProperties )
{

e C l a s s i f i e r . EStructura lFeatures .
Add( TransformDomainProperty2EAttribute ( domainProperty ) ) ;

}
}

re turn e C l a s s i f i e r ;
}

Listing 1: M2 Code Snippet, mapping of DomainClass to EClassifier
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Appendix B - Model XML
Representations

<?xml ve r s i on=" 1 .0 " encoding="UTF−8" ?>
<fami lytree :Fami lyTreeModel xmi :ve r s i on=" 2 .0 "

xmlns:xmi=" h t tp : //www. omg . org /XMI"
xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
xmln s : f am i l y t r e e=" h t tp : //www. example . org / f am i l y t r e e ">

<Persons x s i : t y p e=" fami lytree :Man " Name="King George VI "
BirthYear=" 1895 " DeathYear=" 1952 " Chi ldren=" //@Persons . 2 "
Towns=" //@Countries . 0/@Towns . 1 " />

<Persons x s i : t y p e=" familytree:Woman " Name="Queen El i zabeth "
BirthYear=" 1900 " DeathYear=" 2002 " Chi ldren=" //@Persons . 2 "
Towns=" //@Countries . 0/@Towns . 0 " />

<Persons x s i : t y p e=" familytree:Woman " Name=" El i zabeth I I "
BirthYear=" 1926 " Chi ldren=" //@Persons . 3 //@Persons . 5 "
Parents=" //@Persons . 0 //@Persons . 1 "
Towns=" //@Countries . 0/@Towns . 0 " />

<Persons x s i : t y p e=" familytree:Woman " Name=" Pr ince s s Anne "
BirthYear=" 1950 " Parents=" //@Persons . 2 //@Persons . 4 "
Towns=" //@Countries . 0/@Towns . 0 " />

<Persons x s i : t y p e=" fami lytree :Man " Name=" Prince Ph i l i p "
BirthYear=" 1921 " DeathYear=" 2021 " Chi ldren=" //@Persons . 3
//@Persons . 5 " Towns=" //@Countries . 3/@Towns . 0 " />

<Persons x s i : t y p e=" fami lytree :Man " Name=" Prince Char les "
BirthYear=" 1948 " Parents=" //@Persons . 2 //@Persons . 4 "
Towns=" //@Countries . 0/@Towns . 0 " />

<Countr ies Name=" England ">
<Towns Name="London " Persons=" //@Persons . 1 //@Persons . 2

//@Persons . 3 //@Persons . 5 " />
<Towns Name=" Sandringham " Persons=" //@Persons . 0 " />
<Towns Name="Windsor " />

</Countr ies>
<Countr ies Name=" Scot land ">

<Towns Name=" Edinburgh " />
</Countr ies>
<Countr ies Name="Wales ">

<Towns Name=" Ca rd i f f " />
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</Countr ies>
<Countr ies Name=" Greece ">

<Towns Name=" Corfu " Persons=" //@Persons . 4 " />
</Countr ies>

</ fami lytree :Fami lyTreeModel>

Listing 2: XMI content of model file based on familytree example in EMF

<?xml ve r s i on=" 1 .0 " encoding=" utf−8" ?>
<familyTreeModel

xmlns:dm0=" ht tp : // schemas . m i c ro so f t . com/Visua lStud io /2008/ DslTools /Core "
d s lVer s i on=" 1 . 0 . 0 . 0 " Id=" 77 a64f61−7e6e−4868−a1a1−e8d1d59389bb "
xmlns=" h t tp : // schemas . m i c ro so f t . com/ d s l t o o l s /FamilyTree ">

<persons>
<man Id=" 20 a1cfbd−24f2−4c71−a9c1−f 0b e67 f 8 c79 f " name="King George

VI " birthYear=" 1895 " deathYear=" 1952 ">
<ch i l d r en>

<womanMoniker
name=" /77 a64f61−7e6e−4868−a1a1−e8d1d59389bb/El i zabeth I I "
/>

</ ch i l d r en>
<towns>

<re s i d en c e Id=" dcae3049−d3cd−4760−b3d6−61e87b0 f80e f ">
<townMoniker Id=" be4de858−b072−4754−a2cd−917 f ca6a f674 " />

</ r e s i d en c e>
</towns>

</man>
<woman Id=" 73 f3deb4−c176−49ea−82cd−872dafd7e2b5 " name="Queen

El i zabeth " birthYear=" 1900 " deathYear=" 2002 ">
<ch i l d r en>

<womanMoniker
name=" /77 a64f61−7e6e−4868−a1a1−e8d1d59389bb/El i zabeth I I "
/>

</ ch i l d r en>
<towns>

<re s i d en c e Id=" 153b8adc−da94−459d−a83a−83e67e39556f ">
<townMoniker Id=" 610d309d−3d8f−4855−9db1−5462481243d0 " />

</ r e s i d en c e>
</towns>

</woman>
<woman Id=" f87eee5e −437d−4a8f −8758−419 f4bbd7de6 " name=" El i zabeth

I I " b irthYear=" 1926 " deathYear=" 0 ">
<ch i l d r en>

<manMoniker
name=" /77 a64f61−7e6e−4868−a1a1−e8d1d59389bb/Prince
Char les " />

<womanMoniker
name=" /77 a64f61−7e6e−4868−a1a1−e8d1d59389bb/ Pr ince s s
Anne " />
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</ ch i l d r en>
<towns>

<re s i d en c e Id=" a53b61ee −262a−4e28−ad6f−83ce65daf956 ">
<townMoniker Id=" 610d309d−3d8f−4855−9db1−5462481243d0 " />

</ r e s i d en c e>
</towns>

</woman>
<man Id=" 47326798−5d09−4b47−a6b1−3b8d23e6764a " name=" Prince

Ph i l i p " b irthYear=" 1921 " deathYear=" 2021 ">
<ch i l d r en>

<manMoniker
name=" /77 a64f61−7e6e−4868−a1a1−e8d1d59389bb/Prince
Char les " />

<womanMoniker
name=" /77 a64f61−7e6e−4868−a1a1−e8d1d59389bb/ Pr ince s s
Anne " />

</ ch i l d r en>
<towns>

<re s i d en c e Id=" 9 f968be1−f6d0−4e23−8f f 5−e0e4909821d4 ">
<townMoniker Id=" d05c547e −2231−42d9−8c f f −da993964b180 " />

</ r e s i d en c e>
</towns>

</man>
<man Id=" 8ab0fd1e−bee4−4b5e−82d7−f0b800e8fbcb " name=" Prince

Char les " b irthYear=" 1948 " deathYear=" 0 ">
<towns>

<re s i d en c e Id=" 62 f e407 f −6980−46d1−b12d−6e817d5ccb7f ">
<townMoniker Id=" 610d309d−3d8f−4855−9db1−5462481243d0 " />

</ r e s i d en c e>
</towns>

</man>
<woman Id=" b913f7bb−5eb6−433e−92e9−bfc93e869152 " name=" Pr inc e s s

Anne " birthYear=" 1950 " deathYear=" 0 ">
<towns>

<re s i d en c e Id=" 87161d7a−9ea6−4239−a1c2−588 f5e946526 ">
<townMoniker Id=" 610d309d−3d8f−4855−9db1−5462481243d0 " />

</ r e s i d en c e>
</towns>

</woman>
</persons>
<coun t r i e s>

<familyTreeModelHasCountries
Id=" 517 ec3b1−a2a6−4b6f −8049−62a1fdddfe50 ">

<country Id=" 536 e795b−c5e7−42b4−9349−1 eaa225 f43 f3 "
name=" England ">

<towns>
<countryHasTowns Id=" 8 cec4 f63 −7f61−4d93−abcd−355535 f 1007 f ">

<town Id=" fc7b00d6−ea8d−4a65−ad0b−77cbc358bde1 "
name="Windsor " />
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</countryHasTowns>
<countryHasTowns Id=" c70655a5−1b36−4b1b−b6e7−1226d6b7f8b1 ">

<town Id=" 610d309d−3d8f−4855−9db1−5462481243d0 "
name="London " />

</countryHasTowns>
<countryHasTowns Id=" 774 e624a−9ee4−4769−a3bd−f57bb43a3bb0 ">

<town Id=" be4de858−b072−4754−a2cd−917 f ca6a f674 "
name=" Sandringham " />

</countryHasTowns>
</towns>

</country>
</ familyTreeModelHasCountries>
<familyTreeModelHasCountries

Id=" 4422 c21e−16df−4da8−b2c3−73 fd f0605809 ">
<country Id=" 7d454b3c−3376−4061−9e10−1a975746cec7 "

name="Wales ">
<towns>

<countryHasTowns Id=" 88b5ad2a−5b71−4599−87 f2−b1a7655055dc ">
<town Id=" 87299 cb1−148d−4c6e−aebe −061053a8dba2 "

name=" Ca rd i f f " />
</countryHasTowns>

</towns>
</country>

</ familyTreeModelHasCountries>
<familyTreeModelHasCountries

Id=" 78264054−e1dc−45fb −9590−673 f6a8dbbfb ">
<country Id=" 94e1d69a−4204−4231−b22b−b7c98454df6b "

name=" Scot land ">
<towns>

<countryHasTowns Id=" eb14d71c−9435−475a−9b87−87382208 f25b ">
<town Id=" ddebf0b6−133a−40b2−813d−76d1596b6e1c "

name=" Edinburgh " />
</countryHasTowns>

</towns>
</country>

</ familyTreeModelHasCountries>
<familyTreeModelHasCountries

Id=" c9d60115−4dee−407d−8c4a−7a959368136e ">
<country Id=" 5179 af5e−de44−460e−9031− f 66393383 f1a "

name=" Greece ">
<towns>

<countryHasTowns Id=" 29031a79−1a24−4a07−8294−b60 f c f 21 f 193 ">
<town Id=" d05c547e −2231−42d9−8c f f −da993964b180 "

name=" Corfu " />
</countryHasTowns>

</towns>
</country>

</ familyTreeModelHasCountries>
</ coun t r i e s>
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</ familyTreeModel>

Listing 3: XMI content of model file based on familytree example in MSDKVS, having
UseFullForm set to true and OmitElement set to false
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Appendix C - List of Metamodels
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