
A Langium-based approach to
BigER

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Business Informatics

by

Tobias Jordan, Sebastian Zib
Registration Number 11902127, 11907072

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr. Dominik Bork
Assistance: Philipp Glaser, BSc

Vienna, 7th February, 2024
Tobias Jordan, Sebastian Zib Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Tobias Jordan, Sebastian Zib

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Februar 2024
Tobias Jordan, Sebastian Zib

iii

Acknowledgements

We would like to express our deepest gratitude to our advisor, Assistant Prof. Dr.
Dominik Bork, for making this project possible by helping us on every step of the way:
From recommending the topic over pointing us in the direction of related projects to
giving feedback to our work.

Furthermore, we are indebted to Philipp-Lorenz Glaser, BSc, whom we could count on
for support with technical problems and answers to questions concerning the bigER
extension.

Lastly, we would like to thank our families for their continued support during the
development of the project.

v

Abstract

Although the Language Server Protocol (LSP) enables the division of language smarts
and user interaction, a lot of language engineering tools do not use its full potential.
Among them is the bigER modeling tool, which uses technologies and programming
languages not well suited to the client-server structure. This problem can be overcome
by updating its foundation to a framework that was made with the web-stack in mind.
This thesis therefore presents a reworked version of the bigER tool, which is no longer
based on Xtext, but instead on Langium. For this, features are translated from Java
to TypeScript, including the code-generation, validation and graphical representation.
The intention is to gain an insight into whether moving the project onto this new base
is viable. During the practical work, there are some difficulties associated with lack of
features as well as documentation for both Langium and Sprotty, which is due to them
being new technologies. Despite these issues, the results overall suggest that this move
can be achieved with further work.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1

2 Background 3
2.1 Xtext . 3
2.2 Language Server Protocol . 3
2.3 Langium . 4
2.4 Sprotty . 5

3 Related Work 7
3.1 BigER Tool . 7
3.2 LSP functionality and evaluation . 8
3.3 Arrangement of model elements with libavoid-js 10
3.4 DSL readability and transformations 10

4 Development of BigER Langium 13
4.1 Grammar . 13
4.2 Code Generation . 18
4.3 Validation . 25
4.4 Sprotty Model-Generation . 27
4.5 Toolbar . 32

5 Conclusion 35
5.1 Findings . 35
5.2 Further Research . 36

List of Figures 39

List of Tables 41

Acronyms 45

ix

Bibliography 47

Source Code 51
ER Langium Grammar . 51
BigER Langium Textual Concrete Syntax Example 53

CHAPTER 1
Introduction

Many of the current approaches to language engineering, like the Eclipse Modeling
Framework[SBMP08], are fairly heavyweight in terms of disk-space and memory used.
This is due to the fact that they are designed to be used locally on each machine and
must therefore be standalone products, which naturally shifts focus from lightweight
applications to better integration. While this means they can offer an unparalleled depth
of features, it also means that the number of supported languages or meta-languages has
to remain low, as language smarts have to be implemented for each and every one of
them. Not only is this partly responsible for the aforementioned bloating of the software,
but it also means developers of different frameworks working on support for the same
language are implementing the same features over and over again without being able to
reuse what has already been done [BK20].

This problem can be solved by strictly dividing editor and language features with a
standardised interface between them [REIWC18]. However, even those approaches
intended to use such a server-client structure, including the subject of this thesis, the
bigER Modeling Tool, primarily use technologies not made for, but rather fitted to
the use of language servers. This introduces all kinds of avoidable constraints, like the
inclusion of memory-intensive programming languages like Java, which is running in its
own Java Virtual Machine.

In this sense, the aim this thesis is to overcome these problems by reworking the current
bigER tool to use Langium1 as its technological foundation, a technology created with
distributed systems in mind, replacing Xtext. While Xtext is a well-established language
engineering framework with more than 15 years of incremental development behind
it, the fact that it was not designed for a client-server system from the start becomes
apparent when considering the programming languages used. The current bigER tool is

1https://langium.org/.

1

https://langium.org/

1. Introduction

dominated by Java and Xtend, the latter of which is a Java dialect, meaning it is still
compiled to Java at runtime [Foub].

Naturally, it follows that one of the goals we want achieve by transitioning to a new,
Langium-based framework is to replace Java with TypeScript. As a scripting language
compiled to JavaScript at run-time, it is more lightweight, faster and, as we will see
during the practical implementation, adds flexibility. This makes it an overall better fit
for a language server.

At the same time, it is important to maintain the modularity of language services
achieved by the original bigER. The reason behind that is to keep the code readable
and subsequently maintainable, but also to efficiently use the Language Server Protocol,
which connects client and server through standardized categories of requests[BL23]. In
this, we are aided by the numerous LSP-features pre-defined in Langium as well as the
ease of declaring and registering new ones.

The overarching purpose of doing all this is to investigate whether it would be viable as
well as worthwhile to bring the whole bigER project over to Langium. Answering this
question involves explaining both the technologies we build upon and the work that has
been done so far, before then detailing our part of translating and improving the current
state. Therefore, this thesis starts by giving some theoretical background, which includes
explaining the terms used in this Introduction, and continues on to discuss papers related
to the creation of bigER or similar projects. The main chapter will then go into detail
about how each component functions, what changes we have made, what peculiarities we
encountered and how they affect the extension. Lastly, the thesis will present an answer
to the central question and the nuances behind it as well as offer some points of interest
that may be used as guideposts for future research.

2

CHAPTER 2
Background

2.1 Xtext
Xtext is a language engineering framework published in 2006 [EV06] and at present
constitutes the base of the bigER project. The main IDE XText was developed for
is Eclipse, since it is still being maintained by the Eclipse Foundation, although there
are also extensions available for other environments like VSCode. While there are still
regular updates being released, they mainly bring Xtext up to date with newer versions
of dependencies and there have been few further developments of the framework in the
last couple of years. The reason for this given in the release notes is the declining number
of contributing users [Foua]. On the bright side that also means that since major features
have been around for a while with only small changes made to them, they are thoroughly
documented and there is a lot of community material, such as tutorials, example projects
and articles, as well.

2.2 Language Server Protocol
The Language Server Protocol (LSP) is a protocol used for communication between
development tools (such as VSCode or Eclipse) and language servers. LSP is developed
and maintained by Microsoft. The protocol operates using a JSON-RPC. It supports a
wide range of features to enhance the usage of development tools. These features range
from validation checks to quality of live features such as refactoring[Corb].

The development tool sends a request (for instance, for validation of a piece of code) to
the language server. The language server then processes this request and sends a reply
to the development tool, which can act accordingly (in this example: notify the user
about the error). The advantage of language servers in conjunction with LSP is that the
same server can be used by multiple tools, provided both the development tool and the
language server are capable of LSP.

3

2. Background

Figure 2.1: Usage Language Server Protocol

Without LSP each combination of editing software and programming language has to
have an individual language server. Meaning that, by default, a language server will
only understand one language for one software. With LSP each editor and each language
server needs to understand LSP. However once an editing tool fulfils this requirement, it
can make use of each language server that also supports LSP and vice versa.

For the development of the bigER Langium Tool, LSP will provide the communication
between VSCode and the language server based on Langium.

2.3 Langium
Langium is an open source meta modelling tool. Similarly to Xtext it can be used
to create Domain-Specific Language (DSL). The framework is written in the Type-
Script programming language [Gmbc]. The grammar language, also called Langium, is
recursively-defined in Langium [Gmbd]. For readability purposes, we will refer to the
grammar language as Langium grammar language in this thesis to avoid confusion with
the Langium tool used to generate language servers. The tool was first released to the
public in August 2022 by TypeFox GmbH [Gmbb]. It should be noted that Langium is
still in active development and for the practical part release version 1.1.0 was used. The
source code for Langium is open and can be found on GitHub [Gmbb].

Langium was chosen to eliminate the need for Java dependencies in the bigER Visual
Studio Code extension 1. Langium uses TypeScript, which incorporates well with VSCode.

1https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram

4

2.4. Sprotty

Langium generated language servers support communication through the Language Server
Protocol. The LSP functionality is partially predefined. This includes the rename and
document symbol features. Further LSP features can be implemented using TypeScript
and the abstract syntax tree generated by the Langium grammar language.

This allows for a variety of customization options which can be employed depending on
the desired DSL. For this thesis the following LSP features will be implemented:

• validation

• hover

• completion suggestions

• go-to

• rename

• document highlight

It should be noted in advance that due to the in-development status of Langium, some
features of the framework are not fully implemented or may contain bugs. Furthermore,
the documentation is very sparse and much of the information required for this thesis
was either discovered through testing or GitHub discussion pages where the developers
actively engage with issues from the community.

2.4 Sprotty
While Langium will be used to implement the language server which will be directly used
for textual editing, Sprotty will be used for the graphical representation.

Sprotty is a web-visualization tool made by the Eclipse Foundation, released in 2017
[Fouf]. It was also used for the original bigER Tool [GB21]. To work in conjunction
with Langium and VSCode further integration code is required. This comes in the form
of the "sprotty-vscode" package, which allows Sprotty to work inside VSCode windows.

Much like Langium, Sprotty is written in TypeScript and has strong native support for
VSCode. It is a web-based visualization tool. It uses Scalable Vector Graphics which can
be styled with CSS. Sprotty is open source and the code is available on GitHub [Fouc].
The main advantage of Sprotty is that it can be used as a visualization tool in a web
environment. It works by binding input values to graphical models. These models are
defined using HTML and rendered as SVGs. Sprotty is also able to make the generated
graphical models interactive, allowing for features such as drag and drop or in-graph
editing. Some of the interactive features are predefined, while others have to be expanded
by developers who employ the tool.

Sprotty, by default, is used for web-applications, however through the additional sprotty-
vscode glue code it is also able to run within VSCode webviews [Foud].

5

CHAPTER 3
Related Work

This chapter will focus on discussing papers related to the original bigER tool, as well as
papers relating to Langium, Sprotty and the Language Server Protocol in general. The
aim is to explore state-of-the-art approaches to problems faced when developing language
servers, as well as to provide insight on the background of the original bigER tool and
how it differs to the implementation using Langium.

3.1 BigER Tool
The paper "The bigER Tool-Hybrid Textual and Graphical Modeling of Entity Rela-
tionships in VSCode" deals with the implementation and functionality of the original
bigER tool [GB21]. The original bigER tool is also the basis of the Langium-based
approach. Therefore, a lot of similarities can be seen between the functionalities of both
tools. Both allow for textual editing and the creation of a visual representation based
on the code. bigER and bigER Langium also both allow for code generation, however
the original bigER Tool only allowed for SQL generation. Later updates to the tool
introduced the additional languages, which are also supported by bigER Langium. The
biggest difference between the original modeling tool and the Langium-based approach is
that in-graph editing is not possible in the Langium version. This is due to the lack of
documentation for the Langium and Sprotty integration, which could not be resolved
otherwise during the development of the tool for this thesis.

Graphical editing allows for further accessibility and a broader usage. Meaning that also
providing a WYSIWYG type editor for graphical modeling has major advantages over
only being able to edit the model with the textual WYSIWYM editor [Fuh11, p. 7-8].

The architecture explained in the paper by Glaser and Bork is similar to the architecture
in the Langium-based approach. Both use a client-server architecture, where the client
communicates to the server via JSON in the form of the Language Server Protocol. The

7

3. Related Work

client in this case is VSCode, whereas the server is a language server hosting the Entity
Relationship language.

The implementation of the original bigER Tool uses Xtext for the realization of the
language server. This creates an issue compared to Langium as Xtext requires Java to
run the language server. Langium on the other hand requires only TypeScript. VSCode
also requires TypeScript, but not Java, reducing the amount of dependencies to run
the language server. In terms of LSP features, the paper by Glaser and Bork mentions
that the original bigER Tool supports a variety of rich editing features [GB21]. The
same is true for the Langium-based approach. A big difference between language servers
implemented with Xtext compared to Langium is that both frameworks use a different
parser and lexer. Xtext uses ANTLR while Langium uses Chevrotain [Gmbd]. The lexers
use the grammar provided by the Xtext or Langium grammar language respectively and
create an Abstract Syntax Tree (AST). The AST is then extended with the contents
of files (.erd for bigER, .er for bigER Langium) by the parsers. How the lexers and
parsers behave and which rules they follow dictate how the grammar has to be written.
ANTLR uses the ALL(*) algorithm [PHF14], while Chevrotain by default uses A LL(k)
algorithm (with a default of k=4)[Gau]. The amount of lookaheads for Chevrotain can
be increased in the configuration file, however this comes at an extreme performance cost
since the algorithm the lexer uses is not intended for higher lookahead amounts. Thus,
the algorithm effectively dictates how many lookaheads the lexer can make. Lookaheads
are necessary to distinguish between different options within EBNF grammar.

lookahead = "1" "2" "3" "4" "5" | "1" "2" "3" "4" "10";

In the case of the grammar given above, an ALL(*) lexer would be able to parse the
grammar while a LL(4) lexer would not. This is because the LL(4) grammar would
only take into account the first 4 terminals of each option before making a decision. An
ALL(*) lexer on the other hand would consider all terminals.

This would be a big disadvantage for Langium as this would severely limit the grammars
possible with the language. However TypeFox, the developers of Langium modified
Chevrotain to also use the ALL(*) algorithm. This change was implemented in version
1.0 of Langium [Spo].

3.2 LSP functionality and evaluation
The paper "Decoupling language and editor - the impact of the language server protocol
on textual domain-specific languages" by Hendrik Bünder aims to explore the functionality
and possibilities of the language server protocol [Bün19].

At the time the paper by Bünder was written, Xtext was the only language modeling
toolkit able to support the usage of LSP. Now, Langium is also capable of utilizing the

8

3.2. LSP functionality and evaluation

protocol. Furthermore, there are now over 40 [Cord] different editing tools supporting
LSP and over 200 supported languages [Corc] according to the official LSP documentation,
with some having different language servers for the same language to choose from. These
lists contain almost every major language and tool, showing that the language server
protocol certainly has had success with the functionality it provides. In comparison in
2019 when the paper by Bünder was published only about 50 languages supported LSP.
The paper points out that a big advantage of the usage of LSP over individual language
support built into the editor is the avoidance of tool-lock in. Different tools have different
advantages and disadvantages, and being able to work on the desired language in the
desired tool improves the quality of live for developers. It allows developers to choose
their configuration according to their needs and can better accommodate niche cases. The
paper points out that the increased variety of supported tools is also a issue of accessibility
[Bün19]. Seasoned IT-developers may be used to working with different development
tools or in different IDEs. However casual users or users with a non-IT-background
may have difficulties understanding tools they are not used to. This becomes more
apparent when looking at the context of DSLs and graphical interaction with models. A
person working in management may be able to create a UML diagram, but might not be
knowledgeable on how to use a complex IDE such as Eclipse. However the usage of a
DSL might require them to use Eclipse since the language is only supported for that tool
as the developers prefer Eclipse.
In larger companies where many people of different backgrounds work with the same DSL,
this problem will inherently arise without the usage of LSP or the continuous support of
multiple editors. However, developing for and continually supporting multiple editors
is very cost-intensive. Using LSP, the development effort for the DSL stays the same
while users still are able to choose between their preferred editing tools (provided that
the software supports LSP).
According to the paper, LSP has two big issues: the performance issues with running
multiple language servers on a client machine and the requirement of access to the same
file system for both the server and the client. Bünder points out that the name "language
server" is misleading, as in most cases the language server runs on the same machine as
the client, since both need access to the same file system. When an editor requires the
interpretation of more than one language, multiple language servers need to be hosted
simultaneously. This can lead to performance problems, as language servers can be
resource-intensive [Bün19].
There are however ways of solving these issues. One would be to run both the client
and language server on a server with better performance capabilities using web-based
editing software such as Theia [Fouh]. Since the paper was written, Microsoft has also
introduced an addition to LSP called LSIF. LSIF (Language Server Index Format) is a
way for using LSP without the requirement of both the client and server having access
to the same file system [Core]. This would effectively solve both of the issues as the
language specifications could be hosted on servers which can also be updated by the
maintainers of the language and when multiple languages are required the client connects

9

3. Related Work

to multiple different language servers. In the future, it would also be interesting to see
what this would allow for graphical and textual editors such as bigER.

3.3 Arrangement of model elements with libavoid-js

A good graphical representation is essential for visual models [BDC23]. Having a model
which is well distributed over the drawing area requires a good algorithm, especially
with cyclic graphs [RESvH17]. In an ER-diagram, graphs may quickly become cyclical.
In Chapter 4.1 a small example graph is shown, which already presents multiple cycles
despite its small scope. Developing an algorithm that is both fast and able to output
a good looking representation is difficult to develop. Sprotty already implements a
layouting engine for the whole graph by default, the Eclipse Layouting Kernel (ELK)
[Foug]. This engine may be replaced by another layouting engine to modify the way
Sprotty arranges the elements inside graphs, depending on the use case.

Libavoid-js is the library used by the original bigER tool to increase the readability of
diagrams. The library is a web-viable translation of the Adaptagrams libavoid library
and is designed to be used in conjunction with Sprotty [Hna23]. For the graphical
representation of the model, it is important that the readability is preserved. Making the
model easily understandable and more readable at a glance is one of the major advantages
of having a graphical model over a textual one. By default, Sprotty is adequate at
aligning the default graph. It is also possible for the user to rearrange the graph and align
it according to personal preferences. However, having a well aligned graph generated
by default can remove the step of realigning the graph to be readable. The graph may
also often change due to changes in the textual concrete syntax. This will require the
generation of a new graph, which should then also be readable. Thus, having a good
standard graph can save time during the development of a model.

Libavoid-js is a library designed to improve the standard representation of graphs provided
by Sprotty. The original Adaptagrams libavoid library is written in C++. It is a library
for interactive diagram editors to allow for object-avoiding orthogonal and polyline
routing [Ada]. The tool is used to better space out lines and objects inside a diagram to
make it more readable. However, the original implementation is not well suited for web
applications as it is written in C++. The libavoid-js library solves this issue as it is a
translation of the library in JavaScript with type mappings for TypeScript.

3.4 DSL readability and transformations

A similar project to the bigER Langium tool is the DSL for System-Theoretic Process
Analysis by Jette Petzold [Pet22]. The paper is concerned with the development of a
domain-specific language for a risk analysis technique. Langium and Sprotty are both
used in the creation of the DSL, making the aim of the paper similar to that of this.
For this thesis the main focus will not lie in defining the ER DSL as the language of

10

3.4. DSL readability and transformations

the original bigER tool will be continued. In the paper by Petzold, the creation of the
underlying DSL is the main focus.

A good DSL is able to model its domain in a concise and readable way. This is true for
both the textual aswell as the graphical concrete syntax. In the case of the ER DSL
much of the graphical components can be taken from other visual models of ER diagrams
such as UML. Meanwhile, the textual syntax may take inspiration from class notations
of object-oriented programming languages. In the bigER tool the graphical notation
can be defined to mimic a variety of common visual modeling languages and the textual
notation is not dissimilar to Java or JavaScript.

In their section on future work, Petzold mentions that a filter function improves the
readability for graphical models. For complicated models such as the System-Theoretic
Process Analysis DSL described in their paper, a filter function will have an immediate
positive effect on the readability of and ease of understanding for a model. For ER
diagrams, a filter function may not have an effect on small models. However for larger
models such a function may prove invaluable. Designing a large IT-infrastructure with an
ER diagram will require a large amount of entities and relations. Having a way to filter
them could allow for easier creation, modification and observation. This leads towards
the topic of model transformation, highlighting parts of the model for the respective
observer. In the bigER tool, this is implemented on a small scale as the tool allows users
to define their desired visual representation. In the future, it may be valuable to have a
way to translate a bigER ER diagram into a UML class diagram or any other common
model.

Another project related to bigER Langium through a similar technology stack is the
DescribeML tool, created by Joan Giner-Miguelez, Abel Gómez, and Jordi Cabot in
2022. Their paper, titled ‘DescribeML: A Tool for Describing Machine Learning Datasets’
[GMGC22], presents the tool as a model-driven approach based on a DSL designed for
describing datasets for machine learning.

The aforementioned similarity in technologies used becomes apparent when looking
at the generation process of the tool. It is available as a VSCode extension using its
own Langium grammar with EBNF syntax and provides additional language services
implemented in TypeScript as well as code generation for valid documents.

DescribeML’s Grammar relates to the relevant aspects of a dataset. These include
metadata like the title of the set and its version, the composition of the data, for example
attributes of instances, and information regarding its provenance, such as details of the
gathering and labeling processes. In addition, it allows for denoting social concerns
with the data set, which are an issue across industries [BOJC16][CSM18][LP20] and may
include sensitive attributes or protected groups.

The custom language services offered by DescribeML are syntax highlighting, which is
done through a TextMate grammar like in bigER, as well as validation and hints for
correct usage of the provided features. Additionally, the paper mentions a preloader
service, which automatically sets up a file by deriving basic information from the data.

11

3. Related Work

Lastly, the code generator creates an HTML file documenting the description file using
a predefined template compiled by Pug [Com]. The paper especially emphasizes the
discoverablity, as in how well the content can be discovered by search engines, of the
generated documentation, which it attributes to the vocabulary used in populating it.

12

CHAPTER 4
Development of BigER Langium

In this chapter, we document and explain the practical work done to bring the bigER
tool to the Langium framework, describing both convenient and inconvenient aspects to
deliver a balanced view meant for evaluating the feasibility of larger model engineering
projects in Langium. We will go into detail about the translation of the grammar, the
generation of SQL code from a textual model, the validation of element names or syntactic
rules and the graphical representation of the model and toolbar via Sprotty.

Figure 4.1 shows a high-level overview of the project. Communication between the
language server and the webview are handled by the VSCode extension. The extension
communicates to the language server via, LSP while the webview and the extension
communicate through VSCode and Sprotty actions. The marked components are the
ones who differ most from the original bigER and are further explained in this chapter.

4.1 Grammar
Translating grammar from Xtext to Langium is made easy as both meta-languages are
based on EBNF-notation and they have only minor differences between themselves in
most other aspects as well. One thing to note is that default terminals like ID are not
imported but instead have to be defined in each file, though files created through the
yeoman generator will contain them. This makes creating files without the generator
tedious but also makes them entirely self-sufficient.

The most important distinction, however, is that Langium does not offer a construct
for enumerating options that would be a functional equivalent to Xtext’s ’enum’. For
the grammar, this problem can be solved by defining rules which return a value from a
series of alternative integers or strings. The drawback of this solution lies in the fact that
these rules are not resolved to tangible elements in the abstract syntax tree and therefore
cannot be referenced. The effects of this become apparent in later sections like 4.3

13

4. Development of BigER Langium

ER Concept Concrete Textual Syn-
tax in bigER Langium

Differing bigER nota-
tion

entity entity
weak entity weak entity
inheritance A extends B
attribute attribute: type
optional attribute attribute: type optional
primary key attribute: type key
partial key attribute: type partial-key
derived key attribute: type derived
multivalued key attribute: type multivalued
public modifier + (alt.: public)
private modifier - (alt.: private)
protected modifier ~ (alt.: protected)
package modifier # (alt.: package)
relationship naming rel relationship relationship relationship
binary relationship A -> B
recursive relationship A -> A
ternary relationship A -> B -> C
left aggregation A o- B
right aggregation A -o B
left composition A *- B
right composition A -* B
one cardinality A[1] -> B
zero or one cardinality A[0..1] -> B
zero or more cardinality A[0..N] -> B
exactly one cardinality A[1..1] -> B
many cardinality A[N] -> B
one or more cardinality A[1..N] -> B
cardinality with role A[1..N|role] -> B

Table 4.1: Entity Relationship concepts and their bigER Langium concrete textual
syntax translations

14

4.1. Grammar

Figure 4.1: High-Level Overview of the bigER Langium Structure (highlighted compo-
nents are discussed in detail)

Table 4.1 shows how the ER concepts have been captured by the concrete textual syntax
of the bigER Langium textual notation. This syntax envelops the same concepts covered
by bigER Version 0.5.0. Even though the underlying technology is different, the textual
representation is still largely the same, as seen in Table 4.1. The resulting textual concrete
syntax supports the most important features of Entity-Relationship diagrams, such as
aggregation and composition relations. Some features like enumerations and primitives
are not yet supported [BJR00, cha. 2 p. 77-85].

Highlighting of the textual syntax, as in coloring for categories of keywords, is done
through a TextMate grammar file located in the ‘syntaxes’ folder. TextMate is an
open-source text editor that is highly customizable as it allows the user to create their

15

4. Development of BigER Langium

own grammar files [Ltd]. This makes it a quasi standard for projects related to word
processing, such as VSCode [Cora] and its extensions [ARB+22] [GMGC22], LATEX[SK07]
and web IDEs [GL21]. Entries of a TextMate grammar use regular expressions to find
keywords and link them to a highlighting style through the ‘name’ field before the
expression. This style can be customized as well, although for this project, the predefined
styles proved sufficient. Overall, the highlighting is largely the same as in the original
bigER, although some changes have been made to incorporate lookaheads allowing for
more complex keywords as in the case of relationships. Figure 4.2 and Figure 4.3 compare
the differences in highlighting of cardinalities and relationship types. This applies in the
same way for aggregation (-o/o-) and composition (-*/*-).

Figure 4.2: Highlighting in original
bigER tool

Figure 4.3: Highlighting in bigER
Langium tool

Figure 4.4: Graphical Concrete Syntax Example in bigER Langium

The textual syntax is then converted to a graphical syntax using Sprotty. Figure 4.4
shows how the generated graphical syntax is displayed. This representation is similar
to standard UML. The full corresponding textual concrete syntax can be found in the
appendix. Every entity, relationship, attribute, cardinality, visibilty and property that is
defined in the textual concrete syntax is also shown in the graphical representation.

16

4.1. Grammar

entity Customer {
+ id: INT key
+ birthdate: DATETIME
+ age: INT derived
- returningCustomer: BOOL

}

Listing 4.1: Customer entity in the ER
example

Figure 4.5: Customer ER Diagram
For instance, the customer entity seen in Listing 4.1 is shown as a rectangle with the
title customer and a list of its attributes in the visual representation. The primary
key is signified by the underscore while the derived attribute is displayed with a gray
color. The relationship placedOrder shown in Listing 4.2 is signified by lines leading
from each involved entity to a diamond shaped rectangle containing the name of the
relationship. The lines leading to each of the entities also has a label showing their
respective cardinality.

rel placedOrder {
Customer[1]
->
Order[N]
->
BillingInformation[1]

}

Listing 4.2: placedOrder relationship in
the ER example

Figure 4.6: Placed Order ER Diagram

Like mentioned in Chapter 2 on Langium the grammar has to be defined in the Langium
grammar language. When the Langium grammar is compiled, the lexer (Chevrotain)
iterates through the grammar creating an abstract syntax tree in the process. This
abstract syntax tree is the basis for all other modules and features the language server
has. Once the AST has been created, the language server can already be run and will
also have limited verification. This is not validation which will be created in a later step,
but simply a check whether the content of the file matches the layout of the AST. For
this process, the language server accesses the file and creates a concrete syntax tree using
the parser (also Chevrotain). If the concrete syntax tree does not match the abstract
syntax tree, an error is thrown in the form of an LSP response. This process can be seen
in Figure 4.7. This also explains why LSP requires both the client and server to be able
to access the same file system. The Concrete Syntax Tree is built on the server side only
with information coming from the file that has been created or edited by the client.

The creation of the AST is part of the meta-modelling process and it is generated when

17

4. Development of BigER Langium

the grammar is compiled. It can then be used in code for creating modules. Therefore
the AST can also not easily change during runtime and requires a new compilation
of the grammar, meaning a new creation by the lexer. Meanwhile, CST is generated
during runtime and used for any operations used in the language server modules. It
is required for almost all LSP features as it is the basis on which the language server
modules operate.

Figure 4.7: Interaction between AST, CST, Modules and the Client

4.2 Code Generation
This task was mainly focused on extracting the meaning of the original Java code and
implementing a new version in TypeScript that matches it as closely as possible in terms
of structure while improving the process where possible. The reason behind keeping
a similar logical flow is to minimize the relearning effort for developers on one hand
and to keep documentation of previous versions usable for gaining a high-granularity
understanding of the generator. It should also be noted that, since this is primarily a
proof of concept, some functionalities of the original are missing as of writing of this

18

4.2. Code Generation

thesis. Adding support for many different dialects of SQL as well as generation of
different databases proved to considerably increase the amount of work and was therefore
considered out of scope for this project. Instead we settled for a working prototype
generating generic SQL code, which may be translated into the variants available for the
original bigER in the future.

Code generation is implemented as the command ’generateSQL’, available via a command
line interface such as PowerShell. After compiling the project with the ’yarn’ command, it
is always available inside the project folder. Global availability, however, requires adding
the project to the system’s path variable. The command needs to be supplied a path to
the target file the code should be generated from and both relative and absolute paths
are possible. In Addition, it can be supplied with two optional arguments. Option -d
/ –destination allows for supplying a desired file path for the newly generated .sql file.
By default, the file is saved to a ’generated’ folder in the same directory as the target
file. Option -dr / –drop (without arguments) tells the program to create a series of drop
table instructions for removing the tables instead of creating it. A default version of the
command is also available through the right-click menu of the textual DSL as well as as
a button in both textual and graphical representations.

The code works the same as the original bigER, converting entities followed by relation-
ships to table entries. The main process of creating these tables does this by writing a
CREATE TABLE statement and inserting a list of attributes, the combination of primary
keys and the selection of foreign keys. The process of dropping instead writes a DROP
TABLE statement without further details. It is important to note that weak entities
on their own are not persisted at all (since they have no unique identifier), but instead
only when they are part of a weak relationship with a strong "owner" entity in which
case they are entered along with the reference to their owner. The same is also true for
dropping them, where they are automatically removed when their owner is deleted. The
following paragraphs will give a detailed description focused on the main process and the
functions involved.

Once a generation command is issued, the control flow enters through one of the exported
functions, either generate() for creating or generateDrop() for dropping the table. These
functions create a new SQL file at the given path, which includes creating any non-
existent directories along said path. The helper function extractDestinationAndName()
inside cli-utils.ts is responsible for parsing absolute and relative paths to get one uniform
destination directory and file name. Generating the actual content for this file is handed
off from the entry functions to generateFileContent() and the information whether a drop
file is being created is from then on communicated through a boolean named ’drop’ that
is passed on to each function this is relevant for. GenerateFileContent() creates a string
array of the elements in the model, converting entities and relationships to tables in the
form of strings. It first loops through the strong entities, calling entityToTable() to get the
actual content, before doing the same for relationships with weakRelationshipToTable()
and relationshipToTable(). The order of these loops is significant, since relationships
cannot be entered into a database before the entities they concern. The order is reversed

19

4. Development of BigER Langium

for drop statements, dropping relationships before entities to delete the database in an
orderly fashion without relying on cascading deletes.

Figure 4.8: Call Hierarchy of the Code Generator

For the mentioned functions, there is a common core of sub-functions they all call in
the same order and for similar reasons. This core begins with the startTable() function
assembling a statement for creating a new table including the necessary keywords, its
name and opening a bracket for the following content.

CREATE TABLE place_order (

Listing 1: Table Generation: Create Statement

Attributes of entities and relationships have to be given a name that is unique among their

20

4.2. Code Generation

siblings before they can be persisted, which is done in deduplicateAttributes() by looping
through map and array types and generating unique names with findUniqueName(). This
function maintains sets of taken attribute names for each model element, specifically one
for entities and up to four for relationships, where one is for the attributes themselves
and one for the primary keys of each entity in the relationship. Upon reading a name
that is already taken for such a set, it renames the current duplicate by assigning it the
first not-taken number starting from 2 and entering this new name into the set. The final
names resulting from findUniqueName() are finally collected as keys in a map referring
to their respective attributes.

This map is needed for the next step after deduplication, which is generating the code
defining the attributes. The function addAttributes() uses it by iterating through every
key-value-pair and assembling a line of code containing the final name and datatype of
the attribute. If no datatype was provided, the function will default to the ’VARCHAR’
type and assign a size of 255 characters. In this case, a comment documenting this action
is added at the end of the line. The same is also done if the attribute was renamed in the
previous step. This is done through the helper function addComment(), which ensures
that if several comments are added to one line, they are separated by a semicolon.

CREATE TABLE place_order (

id INT,

order_nr INT,

id2 VARCHAR(255), -- renamed from: id; added default type

Listing 2: Table Generation: Attributes

Next, the as of yet unprocessed information about key attributes is handled in addPri-
maryKeys(). Here, an array of all the maps containing keys of the current model element
- such as those created in the case of relationships during deduplication - is converted to
one statement listing all their entries. In the example code, each primary key originated
from a separate map. To facilitate this conversion, the array of maps is first merged
into one map with the helper function mergeMaps(). Since there is no pre-built way
of merging maps in TypeScript, this helper copies every entry of every map into a new
map and returns it. The names of each key are then added to the statement separated
by commas, while the map as a whole is in turn added to a global map effectivePrima-
ryKeys, where it is referenced through the model element it was created for. The map
effectivePrimaryKeys keeps track of all elements that have already been processed during
the code generation process and will become relevant in combination with the function
effectivePrimaryKey() mentioned later in this section.

The last of the core functions, endTable(), simply terminates the table by closing the
bracket opened in start table and appending a semicolon. In addition, there are a few
more functions specific to the kind of model element being processed. Starting with
entities, not only their own attributes have to be processed in the core, but also inherited

21

4. Development of BigER Langium

CREATE TABLE place_order (

id INT,

order_nr INT,

id2 VARCHAR(255), -- renamed from: id; added default type

PRIMARY KEY (id, order_nr, id2),

Listing 3: Table Generation: Primary Keys

ones. To this end, getAttributes() recursively goes through chain of ancestor entities and
compiles an array of all the attributes in it to be passed on to deduplicateAttributes().
For the resulting map, the primary keys have to be determined before they can be added
with addPrimaryKeys(). This is done in primaryKey() by searching the map for the
subset whose type corresponds to ’key’ and returning them as a new map.

For strong relationships, addForeignKey() specifies which of the primary keys reference a
key of an involved entity by adding a ’FOREIGN KEY’ statement for each such case.
This statement contains the key as it is named in the relationship, the entity it was
taken from, the key as it is named in the entity and an instruction to cascade in case the
original key is deleted.

CREATE TABLE place_order (

id INT,

order_nr INT,

id2 VARCHAR(255), -- renamed from: id; added default type

PRIMARY KEY (id, order_nr, id2),

FOREIGN KEY (id) REFERENCES Customer (id) ON DELETE CASCADE,
FOREIGN KEY (order_nr) REFERENCES Order (order_nr) ON DELETE CASCADE,
FOREIGN KEY (id2) REFERENCES Seller (id) ON DELETE CASCADE

);

Listing 4: Table Generation: Foreign Keys

For weak relationships, there are the functions getStrongEntity() and getWeakEntity(),
which determine the strong and weak entity of the relationship respectively. The strong
entity is then used in weakRelationshipToTable() for determining the foreign keys of the
relationship, while the weak entity is used for naming the relationship table. Since the
weak entity has no keys of its own, another function partialKey() is called instead of
primaryKey() to collect those of its attributes marked as partial keys instead of keys,
thereon using them as keys of a strong entity would be used.

Shared between both kinds of relationships is effectivePrimaryKey(). It is used for
retrieving the primary keys of each strong entity - exactly one for weak relationships
and up to three for strong relationships - from the global map effectivePrimaryKeys.
This retrieval doubles as an internal check whether the involved elements exist and were

22

4.2. Code Generation

processed in the correct order, as a relationship referring to an entity that is not contained
in the map will throw an InvalidArgumentError. The resulting code creating relationship
tables will therefore never refer to nonexistent tables.

function effectivePrimaryKey(entity: Entity): Map<String, Attribute> {

const name = entity.name;

if (!effectivePrimaryKeys.has(name)) {

throw new InvalidArgumentError("Entity " + name + " not yet processed.")

} else {

return effectivePrimaryKeys.get(name)!;

}

}

Listing 5: effectivePrimaryKey() keeping a list of processed entities

Figure 4.9: Call Hierarchy when generating a drop

If a drop is to be generated instead of creating the tables, each of the "toTable" functions
will simply start and immediately end the table, resulting in only a drop statement
followed by the name of the entity or relationship. Since the entries to be dropped
are presumed to be valid (as they would have to have been entered into a database
successfully for this feature to be useful in the first place), all functions determining keys
or checking correct order of entries are skipped in favor of quicker code generation. In the

23

4. Development of BigER Langium

same vein functions generating table content such as adding and deduplicating attributes
are skipped as well. This is also reflected by the simpler call hierarchy in Figure 4.9.

DROP TABLE place_order;

Listing 6: A generated drop statement

The main differences to the original generator are the function calls and data types used.
Since TypeScript’s default types are far more limited in number and consequently special-
ization, LinkedHashMaps became Maps, Lists became Arrays and StringConcatenations
became CompositeGeneratorNodes, the latter of which being a replacement class added
by Langium. Furthermore, since TypeScript does not support function overloading in the
same way Java does, any occurrences of such overloading were disambiguated into func-
tions whose names start with the corresponding input. An example of this would be the
toTable() functions for entities and relationships being renamed to entityToTable() and
relationshipToTable(), with weakToTable() being renamed to weakRelationshipToTable()
for naming consistency.

In addition, we added the function getAttributes() for getting attributes of ancestor
entities, as the original code generator did not consider inheritance when compiling
attributes. In this new version, attributes of ancestors will show up as direct attributes
would. This change also works with the other features mentioned in this section, such as
keeping names unique and adding default types. The following code snippet gives an
example of this by assigning both entities an ’id’ attribute with no type.

entity Seller {
id key

}

entity LocalSeller extends Seller {
id key

}

Listing 7: Inheritance: ER example with identical attributes

When invoking the ’generateSQL’ command, this ER input is converted to the following
SQL statements.

We also achieved slight performance improvements by combining loops, such as the
ones for weak and strong relationships inside generateFileContent(), and moving all
calculations irrelevant for dropping tables inside an if-branch reflecting this, such as
placing the determining of keys via effectivePrimaryKey() in relationshipToTable inside
an if(!drop) check.

24

4.3. Validation

CREATE TABLE Seller (

id VARCHAR(255), -- added default type

PRIMARY KEY (id)

);

CREATE TABLE LocalSeller (

id VARCHAR(255), -- added default type

id2 VARCHAR(255), -- renamed from: id; added default type

PRIMARY KEY (id, id2)

);

Listing 8: Inheritance: generated Code

4.3 Validation
Implementing the validator again mainly consisted of translating the xtend code of
the original bigER to TypeScript to achieve the same functionalities with Langium.
The current version is divided into naming checks inside the NamingValidator and
conformity checks inside the EntityRelationshipValidator, both of which are located in
src\language-server\validation.

Figure 4.10: Call Hierarchy of Validation

Naming checks, as their name suggests, concern the naming of elements. Of these,
checkModel() is the most extensive. It checks whether the model is named (ignoring
whitespaces) and whether entities and relationships have unique names amongst them-
selves. An entity and a relationship having the same name is allowed, though, as they
are still identifiable due to their different classes. For attributes within these elements,

25

4. Development of BigER Langium

there is checkAttributeNames() doing the same check for unique names. However, the
scope for the check is now limited to one entity or relationship, meaning names belonging
to different elements may have the same name. If the rules of either checkModel() or
checkAttributeNames() are violated, an error is displayed because this will cause code
generation and graphical rendering to malfunction or crash. This is not the case for the
last function, checkEntityStartsWithCapital, which simply verifies entity names start
with an upper-case letter. Since it only informs the user that lower case entity names are
not formally correct, a warning instead of an error is sufficient.

Conformity checks concern the adherence to rules for entity-relationship-diagrams or
specific forms of notation. The function checkKeys() checks if an entity has at least one
key or if it has at least one partial key and is a weak entity. This is done by searching
all of the entities owned and inherited attributes for one with a type matching a key or
partial key. If one is found, the validation passes. Moving on, some notations allow only
a reduced number of cardinalities. In the current state, these are bachman, chen and
crowsfoot notation. The function checkRelationEntity() handles these cases by filtering
for when one of them is used and then calling checkCardinality() with the RelationEntity
in question and the ValidationAcceptor object used for displaying validation messages
as parameters. checkCardinality() then passes the validation if the cardinality used is
either ’0..1’, ’0..N’, ’1’ or ’N’, since these are the possible combinations of the allowed
cardinalities ’one’ and ’many’ and optional participation as described in [SEP95]

Of the current notations, only UML supports Aggregation and Composition, where
Composition first appeared in Version 1.3 [BJR00]. checkAggregationComposition()
therefore verifies that these relation types are used only in combination with UML
notation and, if that is the case, that they are only used in binary relationships. The
visibility operators offered by the bigER tool are also only meant to be used if the
notation is set to UML, which is validated by checkVisibility(). This does not include
the visibility operator ’none’ as it is just an explicit way of not providing one. Unlike the
naming violations before, conformity checks are altogether presented as warnings instead
of errors, as ignoring them is unlikely to produce fatal errors, although the resulting
diagrams will at best ignore the input and at worst become invalid.

Structurally, this implementation of the validator differs from the original bigER in
the way validation messages are sent to the client. As mentioned in the description of
checkRelationEntity(), instead of the separate warning, error and info methods in Xtend,
there is one ValidationAcceptor object which is supplied with the details of the message.
These details include the severity, which is the functional equivalent to the separate
methods, the content to be displayed to the user and the node to display the message at.

In this section, we find the first widespread use of references to types from a list, such as
attribute types or notation types. In the current state, these references are mere string
comparisons, representing an instance of the recurring hard-coded ’references’ necessitated
by the lack of proper enumerations in Langium. This will be further elaborated on in
Chapter 5

26

4.4. Sprotty Model-Generation

//get a list of all names that are equal

if (entityNames.filter(n => n === name).length > 1) {

accept('error', `Multiple entities named '${name}'.`,
{ node: entity, property: 'name'});

}

Listing 9: Usage of the ValidationAcceptor accept()

if (notation === 'uml') {

// TODO: replace hardcoded references to notation

// and relationship type with AST reference

if (relationship.secondType) {

if (relationship.firstType !== '->') {

...

}

}

}

Listing 10: Example of hardcoded references in the Validator

In terms of improvements, we were able to implement some interesting additional features.
First, the original checkKeys() function would consider only the entity’s own attributes,
displaying a warning for missing keys or partial keys even if one was inherited from
another entity. This has been rectified in tandem with the updated code generator in
Chapter 4.2, meaning the extension as a whole properly handles inheritance now. A
smaller improvement was made to checkAttributeNames(), which used to allow duplicates
in relationships because it was only registered to entities. Harnessing the perks of
TypeScript’s flexible typing, this could be done by simply adding ’Relationship’ as an
alternative class for the ’element’ parameter. Since the structural position of attributes
in entities is the same as in relationships, accessing them as ’element.attributes’ works in
either case.

Lastly, we extended checkAggregation() to checkAggregationComposition by including an
extra check and corresponding warning if a composition was used without UML notation.
The existing warning for using aggregation in a ternary relationship was also improved by
including composition, making the warning show even if only one part of the relationship
was an aggregation/composition and writing a custom warning message for this case.

4.4 Sprotty Model-Generation

This section concerns the server-sided generation of the graphical representation of the
model. This is done through the set of functions located in diagram\diagram-generator.ts
upon receiving a diagram-related request, the most common of which are the ’Open in

27

4. Development of BigER Langium

Diagram’ command in the textual editor and the ’Refresh Diagram’ command in the
graphical editor. Everything visible in the Sprotty diagram is an instance of a Sprotty
interface. These are typically named starting with ’S’ followed by a name corresponding
to their function and will come up repeatedly in this section. While they are not covered
in the Sprotty documentation directly, a description of them can be found in the Sprotty
GitHub repository [Foue]. Due to the lax typing rules of TypeScript, results of functions
are usually returned or pushed to an array as JSON-objects. For reasons of readability
and type-safety, however, they are labelled when their type is not obvious.

return <SCompartment>{

type: 'compartment:attribute-row',

id: attributeId,
layout: 'hbox',

layoutOptions: {

vAlign: 'center',

hGap: 5
},

children: children
}

Listing 11: Example of a Sprotty class in JSON

Each model has one root element of type SModelRoot that is constructed in the ’gener-
ateRoot’ function and contains all other elements. It is also what is returned to the client
at the end of the generation process. The root element directly contains the four distinct
elements that may be used when creating a diagram and are depicted in the example in
Chapter 4.4. These are entities, relationships, relationship edges, and inheritance edges
and are each generated in their own function, called generateNode(), generateRelNode(),
generateRelEdges(), and inheritanceEdges() respectively.

The distinction between relationship and inheritance edges is due to the former connecting
one entity with one relationship, while the latter connects one entity with another entity.
Additionally, it is important to note that relationship edges are generated per relationship,
therefore one call of generateRelEdges() usually results in two or three edges. The order
of these function calls corresponds to the order they were mentioned before. This is
significant for the generation of edges, as they attach to other elements as their source
and target, which naturally need to exist at this point.

The function generateNode() creates the graphical representation of an entity. It consists
of an attribute SCompartment and a name SCompartment, which is made up of a
name SLabel for the entity and a button for expanding the attribute compartment.
SLabel elements contain the text displayed in the graph. The attribute SCompartment
is populated by a number of sub-compartments, one for each attribute, generated in
createAttributeLabels(). Here, the sub-compartments are filled with SLabels for each
property of the attribute, which are its name, its datatype and, if UML notation is used,

28

4.4. Sprotty Model-Generation

Figure 4.11: Call Hierarchy of the Diagram Generator

its visibility operator. Since the styling of an attribute is dependent on its logical type,
each attribute receives a visual type. The visual type is derived from the logical one inside
the helper function getAttributeLabelType(). The datatype is similarly transformed to a
string by the helper function attributeDatatypeString(). It parses the datatype field of
the attribute and returns a representation that depends on whether the field exists and
if a size is attached.

The functions generateRelNode() and inheritanceEdges() are some of the simpler parts
of the generator. The former adds just the relationship node itself, without any lines
connecting it to entities, and then attaches an SLabel giving the name of the relationship.
The latter creates an unlabeled edge between two entities connected through the ’extends’
property. This edge has its source at the child entity (the one extending) and its target
at the parent entity (the one being extended).

The last in the list, generateRelEdges(), is the most complex in both lines of code and
number of subroutines. It is run for every relationship, creating an edge for every entity
involved, which may be up to three in the case of a ternary relationship. For each edge,

29

4. Development of BigER Langium

it first determines a type, which corresponds to the types of the relationship, which may
be either normal, aggregation, or composition. With this type, it then calls createEdge()
to handle generating the actual edge. To achieve this, createEdge() determines many
different properties from different sources. The source and target node are taken from the
model context, the type of the edge is returned by getEdgeType(), the relationship type is
given as a parameter by generateRelEdges() and the cardinality of the edge is determined
by getCardinality(). The two helper functions that were mentioned, getEdgeType() and
getCardinality(), are used for dealing with edge cases while reading the according fields,
like a model in chen notation using a cardinality of ’0..1’ or ’0..N’.

protected getEdgeType(relationEntity: RelationEntity,
notationType: NotationType): string {

if (notationType == 'chen') {

const cardinality = relationEntity.cardinality ?

relationEntity.cardinality : 'NONE'

if (cardinality == '0..1' || cardinality == '0..N') {

return 'edge:partial'

}

}

return 'edge'

}

Listing 12: Edge cases handled by getEdgeType()

In addition to generating the edges, createEdge() also assigns them with labels, which it
gets from createLabels(). These labels include the cardinality, as it was previously only
assigned as a property but not visualized, but also a textual description of the role of the
edge, which can be added with a vertical bar followed by the desired string next to the
cardinality. For handling edge cases for the text, we have two new helper functions in
addition to getCardinality() from before. getEdgeLabelText() omits the cardinality label
for crowsfoot and chen notation, where they are communicated through the edges directly,
while getRoleLabelText() replaces missing role text with a whitespace to avoid null values.
The labels can be distinguished by the id assigned to them. ’.label’ is for the cardinality
and ’.roleLabel’ is for assigning the role. In addition, there are three extra labels that are
currently unused, ’.relationName’, ’.additionalLabel’ and ’.additionalRoleLabel’.

With the structure in place, the last thing left to configure is the styling. This is done
through the assigned types mentioned throughout the previous paragraphs. In the
DiagramModule in di.config.ts, they are resolved to a view representing containing the
details how each element is to be rendered in Sprotty. This view, in turn, can either be
chosen from amongst the number of default representations offered by Sprotty or defined
as an injectable inside the webview as was done for many elements in this project with
the file ’views.tsx’.

Structurally, this implementation of the diagram generator is pretty close to the original,

30

4.4. Sprotty Model-Generation

although there are a few notable differences. One of them is the fact that model elements
used to require manual tracing in Xtend, which is no longer the case in Langium. This
leads to functions and function calls related to this process, such as traceAndMark(),
being omitted in the current version.

def <T extends SModelElement> T traceAndMark(T sElement,

EObject element, Context context) {

return sElement.trace(element).addIssueMarkers(element, context)

}

Listing 13: Tracing method in the original bigER

Furthermore, due to incompatible versions of the same class in Sprotty for VSCode and
the Sprotty protocol on one hand and automatic type inference, which quickly becomes
a nightmare to correct manually, on the other, some functions like those responsible
for relationship edges and labels are defined with return type ’any’. Using ’any’ in this
way circumvents the aforementioned problems through TypeScript’s structural typing,
which allows transferring untyped objects. However, this still means the object has to
be assigned a type eventually and is therefore only possible as long as the object does
not contain properties that are not defined in (or inherited by) said type. If any other
approach is taken, compiling the extension becomes impossible due to errors as shown in
Figure 4.12.

Figure 4.12: Error Message when explicitly typing SLabels

Functionally, there was one significant setback. The expand button in the original bigER,
which would extend and retract attribute lists of entities when clicked, worked through

31

4. Development of BigER Langium

an instance of IDiagramState. This object keeps track of the state of each element
throug a list containing all currently expanded elements. This class, and by extension
the list, is not present in Langium-Sprotty, meaning states can be neither adjusted nor
tracked. Therefore, the expand button in the current version is non-functional, but was
still included as a point of further research.

4.5 Toolbar

The toolbar contains functionality relevant to the traversal and functionality of the
visual representation. It is like part of the Sprotty implementation and functions as an
interface between the client visual representation, the language server, and the client
visual features. Like the graph components explained in Chapter 4.4, the toolbar is
implemented as a combination of Sprotty modules. However, it does not depend on the
.er file that is being edited but rather persists as part of the graphical representation in
the form of an overlay.

Through the toolbar various features are accessible. These features, however, do not all
communicate with the language server. The "fit to screen" button for instance does not
send an LSP request. Instead, it communicates with the web view. While no elements of
the visual model are selected, it will zoom in or out to exactly fit the entire model. When
elements are selected, it will instead try to fit all selected elements. Other features, like
the "reload" button, do require LSP requests to function. The "reload" button requests a
new visual model based on the contents of the textual model. These LSP requests are
not sent by the webview directly. They are first sent to the extension, which translates
them into LSP and relays the request to the language server via LSP.

Figure 4.13: Communication of the toolbar with other components

Figure 4.13 shows how the toolbar communicates with the other components of the bigER
Langium tool. Compared to the toolbar of the original bigER VSCode extension, this
toolbar lacks some features. Most prominently, the creation of attributes and relations is
not yet implemented. In the future, this feature would be used to create both entities
and relations before being able to modify them in the diagram.

32

4.5. Toolbar

export class RefreshButton implements ToolButton {

constructor(
public readonly id = "btn_refresh",

public readonly label = "Refresh Diagram",

public readonly icon = "refresh",

public readonly action = RefreshAction.create()

) {}

}

Listing 14: ReloadButton definition

The interactivity for the toolbar is achieved by using Sprotty buttons. These buttons are
defined in the buttons.ts file. Listing 14 shows how the refresh button was defined. To
implement it in the toolbar, it has to be created as a model. Listing 15 displays the way
the reload button is implemented as part of the toolbar. Finally, the toolbar as a whole
has to be registered in the diagram config file (di.config.ts) as seen in Listing 16. This is
done in order to bind the toolbar to the diagram as a whole.

protected createRightSide(): HTMLElement {

const rightSide = createElement("div", ["toolbar-right"]);

rightSide.appendChild(this.createSeparator());
rightSide.appendChild(this.createToolButton(new RefreshButton()));

rightSide.appendChild(this.createToolButton(new FitToScreenButton()));

rightSide.appendChild(this.createToolButton(new CollapseAllButton()));

rightSide.appendChild(this.createToolButton(new ExpandAllButton()));

rightSide.appendChild(this.createSeparator());
rightSide.appendChild(this.createHelpButton());
return rightSide;

}

Listing 15: Reload Button implementation

33

4. Development of BigER Langium

import { ContainerModule } from "inversify";

import { TYPES } from "sprotty";

import { ToolBar } from "./toolbar";

const toolbarModule = new ContainerModule((bind) => {

bind(ToolBar).toSelf().inSingletonScope();

bind(TYPES.IUIExtension).toService(ToolBar);

});

export default toolbarModule;

Listing 16: di.config.ts file for the toolbar

34

CHAPTER 5
Conclusion

Overall it can be said that the project managed to achieve many of its original goals,
although unexpected difficulties in various parts necessitated a narrowing of the scope.
This culminated in the presented prototype, which is fully functional, but lacks many
quality-of-life features, such as graphical editing and database generation.

5.1 Findings
The unfinished state of Langium at time of development gave rise to a number of
difficulties in implementing this project. First of all, while the documentation provides
a good introduction to how projects are structured and useful pointers on how to get
started, a lot of other important details are missing. For example, the way the command
line is used in the documentation, “./bin/cli <command> <options>” only works for
Linux, which is not acknowledged and there is no alternative provided, leaving users
to figure out the correct command in windows, which is "node bin/cli <command>
<options>", for themselves.

The design of Langium sometimes leads to problems with passing information from the
grammar over the abstract syntax tree to services further downstream like validation or
the diagram generator. The most immediate issue is the lack of enumerations. Inside
the grammar, this issue can be solved by listing a number of rules which each return
a particular string. However, this workaround is not translated into the AST, making
concrete values of the makeshift enum impossible to refer to outside the grammar. As
there is no other solution provided in the documentation, this necessitates a large amount
of hardcoding enum values inside the services, increasing the amount of work needed for
future refactoring.

Sprotty suffers from some of the same issues as Langium, especially in that its documen-
tation focuses on frequently used parts of the code, while leaving many other features

35

5. Conclusion

with only vague descriptions, which quickly become insufficient when working with them
and trying to understand their inner workings. One feature where this becomes apparent
is the “Expandable” interface, which is described as “Model elements that implement
this interface can be expanded/collapsed” with no further elaboration as to how this
works or where further information on it may be found, which became a problem when
the feature did not work as intended.

Despite these issues, we judge the result of our investigation to be in favor of switching
to the Langium framework, due to one important fact. Almost all of the problems we
faced were caused by our usage of rather new technologies, the Langium framework more
so than Sprotty. Accordingly, there are new features being added every few months
[Gmba], which stands in stark contrast to Xtext, where as of writing of this thesis, no
large changes have been made in over a year. This means that in order to take advantage
of new developments in the field of language engineering, the bigER project should not
rely on Xtext going forward.

Besides this, there are other advantages of using the Langium framework. Langium
requires little proprietary languages, only utilizing the Langium grammar language for
the creation of its grammar. Its syntax is very close to that of EBNF and by extension
Xtext. This makes getting started with Langium relatively easy. Building modules with
Langium is done in TypeScript, which is more welcoming and well known than Xtend,
required for LSP features in Xtext. Since both VSCode and Langium are based on
TypeScript it also greatly reduced the code complexity for this project. However language
servers should be able to work with different code editors by design and this was only an
advantage in the case of the development for exactly this tool.

Langium is well suited for web-based application due to its codebase being almost entirely
TypeScript. From what was gathered during research for this thesis, it seems that the
direction language servers are going indicates that future code editors will be more and
more web-based. Langium will be a great toolkit for working with these applications.

5.2 Further Research

The bigER Langium version as it is still requiring a few features to be usable indepen-
dently as a textual and graphical modeling tool for entity relationship diagrams.

The most important aspect is the implementation of graphical editing capabilities. It
should be possible to create a model entirely in the graphical editor and generate a
textual model from there. However, due to scope limitations for this thesis it was not
possible to implement this feature as it would require a lot of additional code since the
integration between Sprotty and Langium does not support this out of the box.

Another feature that should be added to the tool is a way to translate code written
in bigER to the bigER Langium version. This is especially important since bigER
Langium should be backwards compatible to the Xtext based version. Users of the

36

5.2. Further Research

VSCode bigER extension should have a way to translate their work to the new bigER
Langium extension.

To continue using bigER Langium as a replacement for bigER it will also be of essence
to add the additional features currently present in bigER but not in bigER Langium.

Like mentioned in Chapter 3.2, one of the biggest disadvantages of LSP right now is the
performance issue due to the language server needing to run on the same machine as the
client to access the same file system. In the future it would be beneficial to make the
bigER Langium tool accessible for strictly web-based editing tools such as Eclipse Theia.
By doing so the tool would become even more accessible not only eliminating the Java
dependency of bigER but also removing the need for any software installs (VSCode).

As it stands, many of the future features are limited by the current development status of
Langium and Sprotty. As both frameworks are still in active development, many of the
core features are prone to change, as they have done during the development of bigER
Langium. They are both extremely useful tools for the development of language servers
however due to the lack of documentation working with them is limited and very time
inefficient.

37

List of Figures

2.1 Usage Language Server Protocol . 4

4.1 High-Level Overview of the bigER Langium Structure (highlighted compo-
nents are discussed in detail) . 15

4.2 Highlighting in original bigER tool . 16
4.3 Highlighting in bigER Langium tool . 16
4.4 Graphical Concrete Syntax Example in bigER Langium 16
4.5 Customer ER Diagram . 17
4.6 Placed Order ER Diagram . 17
4.7 Interaction between AST, CST, Modules and the Client 18
4.8 Call Hierarchy of the Code Generator . 20
4.9 Call Hierarchy when generating a drop . 23
4.10 Call Hierarchy of Validation . 25
4.11 Call Hierarchy of the Diagram Generator 29
4.12 Error Message when explicitly typing SLabels 31
4.13 Communication of the toolbar with other components 32

39

List of Tables

4.1 Entity Relationship concepts and their bigER Langium concrete textual
syntax translations . 14

41

List of Algorithms

4.1 Customer entity in the ER example 17
4.2 placedOrder relationship in the ER example 17
1 Table Generation: Create Statement 20
2 Table Generation: Attributes . 21
3 Table Generation: Primary Keys . 22
4 Table Generation: Foreign Keys . 22
5 effectivePrimaryKey() keeping a list of processed entities 23
6 A generated drop statement . 24
7 Inheritance: ER example with identical attributes 24
8 Inheritance: generated Code . 25
9 Usage of the ValidationAcceptor accept() 27
10 Example of hardcoded references in the Validator 27
11 Example of a Sprotty class in JSON 28
12 Edge cases handled by getEdgeType() 30
13 Tracing method in the original bigER 31
14 ReloadButton definition . 33
15 Reload Button implementation . 33
16 di.config.ts file for the toolbar . 34

43

Acronyms

ALL Adaptive Left-to-right, Leftmost derivation. 8

ANTLR ANother Tool for Language Recognition. 8

AST Abstract Syntax Tree. 8, 17, 18, 35, 39

CSS Cascading Style Sheets. 5

CST Concrete Syntax Tree. 17, 18, 39

DSL Domain-Specific Language. 4, 5, 9–11, 19

EBNF Extended Backus-Naur form. 8, 11, 13, 36

ELK Eclipse Layouting Kernel. 10

ER Entity-Relationship. 10, 11, 14, 15, 24, 43

HTML HyperText Markup Language. 5, 12

IDE Integrated Development Environment. 3, 9, 16

IT Information Technology. 9, 11

JSON JavaScript Object Notation. 3, 7, 28, 43

LL Left-to-right, Leftmost derivation. 8

LSIF Language Server Index Format. 9

LSP Language Server Protocol. vii, 2–5, 8, 9, 13, 17, 18, 32, 36, 37

RPC Remote Procedure Call. 3

SQL Structured Query Language. 7, 13, 19, 24

45

SVG Scalable Vector Graphics. 5

UML Unified Modeling Language. 9, 11, 16, 26–28

VSCode Visual Studio Code. 3–5, 8, 11, 13, 16, 31, 32, 36, 37

46

Bibliography

[Ada] Adaptagrams. https://www.adaptagrams.org/documentation/
libavoid.html. Accessed: 2024-1-07.

[ARB+22] Sander Albers, Nando Reij, Wouter Brinksma, Lex Bijlsma, and Harrie
Passier. Towards a tool to support students through procedural programming
guidance. In Proceedings of the 11th Computer Science Education Research
Conference, pages 13–23, 2022.

[BDC23] Dominik Bork and Giuliano De Carlo. An extended taxonomy of advanced
information visualization and interaction in conceptual modeling. Data &
Knowledge Engineering, 147:102209, 2023.

[BJR00] Grady Booch, Ivar Jacobson, and Jim Rumbaugh. OMG Unified Modeling
Language Specification Version 1.3. Rational Software Corporation, 2000.

[BK20] Hendrik Bünder and Herbert Kuchen. Towards multi-editor support for
domain-specific languages utilizing the language server protocol. In Model-
Driven Engineering and Software Development: 7th International Confer-
ence, MODELSWARD 2019, Prague, Czech Republic, February 20–22, 2019,
Revised Selected Papers 7, pages 225–245. Springer, 2020.

[BL23] Dominik Bork and Philip Langer. Language server protocol: An introduction
to the protocol, its use, and adoption for web modeling tools. Enterprise
Modelling and Information Systems Architectures (EMISAJ), 18:9–1, 2023.

[BOJC16] Gema Bello-Orgaz, Jason J Jung, and David Camacho. Social big data:
Recent achievements and new challenges. Information Fusion, 28:45–59,
2016.

[Bün19] Hendrik Bünder. Decoupling language and editor-the impact of the language
server protocol on textual domain-specific languages. In MODELSWARD,
pages 129–140, 2019.

[Com] PugJS Community. https://github.com/pugjs/pug. Accessed: 2024-
1-16.

47

https://www.adaptagrams.org/documentation/libavoid.html
https://www.adaptagrams.org/documentation/libavoid.html
https://github.com/pugjs/pug

[Cora] Microsoft Corp. https://code.visualstudio.com/api/
language-extensions/syntax-highlight-guide. Accessed:
2024-1-16.

[Corb] Microsoft Corp. https://microsoft.github.io/
language-server-protocol/. Accessed: 2023-12-26.

[Corc] Microsoft Corp. https://microsoft.github.io/
language-server-protocol/implementors/servers/. Accessed:
2024-1-06.

[Cord] Microsoft Corp. https://microsoft.github.io/
language-server-protocol/implementors/tools/. Accessed:
2024-1-06.

[Core] Microsoft Corp. https://microsoft.github.io/
language-server-protocol/specifications/lsif/0.6.0/
specification/. Accessed: 2024-1-06.

[CSM18] Danton S Char, Nigam H Shah, and David Magnus. Implementing machine
learning in health care—addressing ethical challenges. The New England
journal of medicine, 378(11):981, 2018.

[EV06] Sven Efftinge and Markus Völter. oaw xtext: A framework for textual dsls.
In Workshop on Modeling Symposium at Eclipse Summit, volume 32, 2006.

[Foua] Eclipse Foundation. https://eclipse.dev/Xtext/releasenotes.
html. Accessed: 2023-12-10.

[Foub] Eclipse Foundation. https://eclipse.dev/Xtext/xtend/. Accessed:
2024-01-07.

[Fouc] Eclipse Foundation. https://github.com/eclipse-sprotty/
sprotty. Accessed: 2023-12-18.

[Foud] Eclipse Foundation. https://github.com/eclipse-sprotty/
sprotty-vscode. Accessed: 2024-1-07.

[Foue] Eclipse Foundation. https://github.com/eclipse-sprotty/
sprotty/blob/master/packages/sprotty-protocol/src/
model.ts. Accessed: 2024-01-05.

[Fouf] Eclipse Foundation. https://sprotty.org/. Accessed: 2023-12-18.

[Foug] Eclipse Foundation. https://sprotty.org/docs/svg-rendering/
#server-layout. Accessed: 2024-1-07.

[Fouh] Eclipse Foundation. https://theia-ide.org/. Accessed: 2024-1-06.

48

https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://microsoft.github.io/language-server-protocol/specifications/lsif/0.6.0/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsif/0.6.0/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsif/0.6.0/specification/
https://eclipse.dev/Xtext/releasenotes.html
https://eclipse.dev/Xtext/releasenotes.html
https://eclipse.dev/Xtext/xtend/
https://github.com/eclipse-sprotty/sprotty
https://github.com/eclipse-sprotty/sprotty
https://github.com/eclipse-sprotty/sprotty-vscode
https://github.com/eclipse-sprotty/sprotty-vscode
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty-protocol/src/model.ts
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty-protocol/src/model.ts
https://github.com/eclipse-sprotty/sprotty/blob/master/packages/sprotty-protocol/src/model.ts
https://sprotty.org/
https://sprotty.org/docs/svg-rendering/#server-layout
https://sprotty.org/docs/svg-rendering/#server-layout
https://theia-ide.org/

[Fuh11] Hauke A. L. Fuhrmann. On the Pragmatics of Graphical Modeling. Number
2011-1 in Kiel Computer Science Series. Department of Computer Sci-
ence, May 2011. Dissertation, Faculty of Engineering, Christian-Albrechts-
Universität zu Kiel.

[Gau] bd82 Gaurav, Shahar Soel. https://chevrotain.io/docs/guide/
resolving_grammar_errors.html. Accessed: 2024-1-06.

[GB21] Philipp-Lorenz Glaser and Dominik Bork. The biger tool-hybrid textual and
graphical modeling of entity relationships in vs code. In 2021 IEEE 25th
International Enterprise Distributed Object Computing Workshop (EDOCW),
pages 337–340. IEEE, 2021.

[GL21] Ilya Gornev and Tatiana Liakh. Ride: Theia-based web ide for the reflex lan-
guage. In 2021 IEEE 22nd International Conference of Young Professionals
in Electron Devices and Materials (EDM), pages 503–506. IEEE, 2021.

[Gmba] TypeFox GmbH. https://github.com/eclipse-langium/
langium/blob/main/packages/langium/CHANGELOG.md#
v210-nov-2023. Accessed: 2024-01-06.

[Gmbb] TypeFox GmbH. https://github.com/eclipse-langium/
langium/releases?page=2. Accessed: 2023-12-11.

[Gmbc] TypeFox GmbH. https://langium.org/. Accessed: 2023-12-11.

[Gmbd] TypeFox GmbH. https://langium.org/docs/
grammar-language/. Accessed: 2023-12-11.

[GMGC22] Joan Giner-Miguelez, Abel Gómez, and Jordi Cabot. Describeml: a tool
for describing machine learning datasets. In Proceedings of the 25th Inter-
national Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, pages 22–26, 2022.

[Hna23] Vladyslav Hnatiuk. Adaptagrams/libavoid for sprotty. 2023.

[LP20] Samuele Lo Piano. Ethical principles in machine learning and artificial
intelligence: cases from the field and possible ways forward. Humanities and
Social Sciences Communications, 7(1):1–7, 2020.

[Ltd] MacroMates Ltd. https://macromates.com/. Accessed: 2024-1-16.

[Pet22] Jette Petzold. A textual domain specific language for system-theoretic
process analysis, 2022.

[PHF14] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive ll (*) parsing:
the power of dynamic analysis. ACM SIGPLAN Notices, 49(10):579–598,
2014.

49

https://chevrotain.io/docs/guide/resolving_grammar_errors.html
https://chevrotain.io/docs/guide/resolving_grammar_errors.html
https://github.com/eclipse-langium/langium/blob/main/packages/langium/CHANGELOG.md#v210-nov-2023
https://github.com/eclipse-langium/langium/blob/main/packages/langium/CHANGELOG.md#v210-nov-2023
https://github.com/eclipse-langium/langium/blob/main/packages/langium/CHANGELOG.md#v210-nov-2023
https://github.com/eclipse-langium/langium/releases?page=2
https://github.com/eclipse-langium/langium/releases?page=2
https://langium.org/
https://langium.org/docs/grammar-language/
https://langium.org/docs/grammar-language/
https://macromates.com/

[REIWC18] Roberto Rodriguez-Echeverria, Javier Luis Cánovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. Towards a language server protocol infrastructure for
graphical modeling. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, pages
370–380, 2018.

[RESvH17] Ulf Rüegg, Thorsten Ehlers, Miro Spönemann, and Reinhard von Hanxleden.
Generalized layerings for arbitrary and fixed drawing areas. J. Graph
Algorithms Appl., 21(5):823–856, 2017.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

[SEP95] Il-Yeol Song, Mary Evans, and Eun K Park. A comparative analysis of
entity-relationship diagrams. Journal of Computer and Software Engineering,
3(4):427–459, 1995.

[SK07] Charilaos Skiadas and Thomas Kjosmoen. Latexing with textmate. The
PracTEX Journal,(3), 2007.

[Spo] Miro Spoenemann. https://www.typefox.io/blog/langium-1.
0-a-mature-language-toolkit/. Accessed: 2024-1-06.

50

https://www.typefox.io/blog/langium-1.0-a-mature-language-toolkit/
https://www.typefox.io/blog/langium-1.0-a-mature-language-toolkit/

Source Code

ER Langium Grammar

grammar EntityRelationship

entry Model:
'erdiagram' name=ID

(notation=NotationOption?)
(entities+=Entity | relationships+=Relationship)*;

NotationOption:
'notation' '=' notationType=NotationType;

Entity:
(weak?='weak')? 'entity' name=ID ('extends' extends=[Entity])? '{'

(attributes+=Attribute)*
'}';

Relationship:
(weak?='weak')? 'rel' name=ID '{'

(source=RelationEntity ((firstType=RelationshipType
target=RelationEntity) (secondType=RelationshipType
target2=RelationEntity)?)?)?
(attributes += Attribute)*

'}';

RelationEntity:
target=[Entity:ID] ('['

cardinality=CardinalityType ('|' role=STRING)?
']')?;

Attribute:
(visibility=VisibilityType)? name=ID

(':' datatype=DataType)? (type=AttributeType)?;

DataType:
type=ID ('(' size=INT (',' d=INT)? ')')?;

AttributeType returns string:
ATTR_NONE | KEY | PARTIAL_KEY | OPTIONAL | DERIVED | MULTIVALUED;

51

ATTR_NONE returns string: 'none';
KEY returns string: 'key';
PARTIAL_KEY returns string: 'partial-key';
OPTIONAL returns string: 'optional';
DERIVED returns string: 'derived';
MULTIVALUED returns string: 'multivalued';

CardinalityType returns string:
CARD_NONE | ZERO_OR_ONE | ZERO_OR_MORE | ONE |

EXACTLY_ONE | MANY | ONE_OR_MORE;
CARD_NONE returns string: 'NONE';
ZERO_OR_ONE returns string: '0..1';
ZERO_OR_MORE returns string: '0..N';
ONE returns string: '1';
EXACTLY_ONE returns string: '1..1';
MANY returns string: 'N';
ONE_OR_MORE returns string: '1..N';

NotationType returns string:
NOTA_DEFAULT | CHEN | BACHMAN | CROWSFOOT | UML;

NOTA_DEFAULT returns string: 'default';
CHEN returns string: 'chen';
BACHMAN returns string: 'bachman';
CROWSFOOT returns string: 'crowsfoot';
UML returns string: 'uml';

RelationshipType returns string:
RELA_DEFAULT | AGGREGATION_LEFT | AGGREGATION_RIGHT |

COMPOSITION_LEFT | COMPOSITION_RIGHT;
RELA_DEFAULT returns string: '->';
AGGREGATION_LEFT returns string: 'o-';
AGGREGATION_RIGHT returns string: '-o';
COMPOSITION_LEFT returns string: '*-';
COMPOSITION_RIGHT returns string: '-*';

VisibilityType returns string:
VISI_NONE | PUBLIC | PRIVATE | PROTECTED | PACKAGE | PUBLIC_STRING |

PRIVATE_STRING | PROTECTED_STRING | PACKAGE_STRING;
VISI_NONE returns string: 'none';
PUBLIC returns string: '+';
PRIVATE returns string: '-';
PROTECTED returns string: '#';
PACKAGE returns string: '~';
PUBLIC_STRING returns string: 'public';
PRIVATE_STRING returns string: 'private';
PROTECTED_STRING returns string: 'protected';
PACKAGE_STRING returns string: 'package';

hidden terminal WS: /\s+/;

terminal ID: /[_a-zA-Z][\w_]*/;
terminal INT returns number: /[0-9]+/;

52

terminal STRING: /"(\\.|[^"\\])*"|'(\\.|[^'\\])*'/;

hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;
hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

BigER Langium Textual Concrete Syntax Example

erdiagram example
notation = uml
entity Customer {
+ id: INT key
+ birthdate: DATETIME
+ age: INT derived
- returningCustomer: BOOL

}
entity BusinessCustomer extends Customer {

+ companyName: VARCHAR
~ UID: LONG

}
entity PrivateCustomer extends Customer {
+ firstName: VARCHAR
+ lastName: VARCHAR

}
entity Address {
streetName: VARCHAR multivalued
houseNumber: INT multivalued
doorNumber: INT optional

}
weak entity ShippingInformation extends Address {
}
weak entity BillingInformation extends Address {

orderId: INT partial-key
customerId: INT partial-key

}
entity Order {

orderNumber: INT key
price: DOUBLE

}
entity Product {

price: INT key
name: String

}
entity BrandedProduct extends Product {

brand: VARCHAR
}
rel placedOrder {
Customer[1]
->
Order[N]
->
BillingInformation[1]

53

}
rel previousOrders {
Customer[N]
-o
Order[N]

}
rel favoriteProduct {

Customer[1]
->
Product[1]

}
rel shippingAddresses {

Customer[1]
->
ShippingInformation[N]

}
rel items {

Order[1]
->
Product[N]

}

54

	Abstract
	Contents
	Introduction
	Background
	Xtext
	Language Server Protocol
	Langium
	Sprotty

	Related Work
	BigER Tool
	LSP functionality and evaluation
	Arrangement of model elements with libavoid-js
	DSL readability and transformations

	Development of BigER Langium
	Grammar
	Code Generation
	Validation
	Sprotty Model-Generation
	Toolbar

	Conclusion
	Findings
	Further Research

	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Source Code
	ER Langium Grammar
	BigER Langium Textual Concrete Syntax Example

