
Adaptagrams/libavoid for Sprotty

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Vladyslav Hnatiuk
Registration Number 01613669

to the Faculty of Informatics

at the TU Wien

Advisor: Ass. Prof. Dr. Dominik Bork
Assistance: Dr. Philip Langer

Vienna, 3rd February, 2023
Vladyslav Hnatiuk Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Vladyslav Hnatiuk

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Februar 2023
Vladyslav Hnatiuk

iii

Acknowledgements

I would like to thank my supervisor Ass. Prof. Dr. Dominik Bork for support and
guidance throughout the creation of this thesis. Also, I would like to thank Dr. Philip
Langer for his support and valuable input on the implementation part, especially the
integration of results of this work in sprotty project.

I am also grateful to my wife, who supported me through this venture and the whole
study, and my parents for their unceasing encouragement and attention.

v

Abstract

More and more tools move to the web platform, at least as an optional way of their
use. With the advance of technologies for web development, more complex tools are
implementable. This is also true for software for graphical modelling. Compared with
text editors, algorithms for fundamental tasks such as a representation of a diagram or
editing actions are needed in all of them.

Different algorithms for solving these tasks exist for desktop applications. One of the
most popular set of libraries for solving common problems in diagram building and
editing, such as routing of elements, is Adaptagrams created by Tim Dwyer and Michael
Wybrow.

If someone wants to re-use these libraries in web application, the main problem is that
they are written in C++, which is not supported in the web environment by default.
The most obvious solution way is to rewrite the libraries in Javascript or Typescript.
Still, at the same time, it is also very time-consuming because 4 libraries in Adaptagrams
include many complex algorithms.

A new technology called WebAssembly was designed and implemented in all modern
browsers to make code porting from other platforms to the web possible.

In this work, one part of Adaptagrams, namely ’libavoid’ library, is ported via WebAssem-
bly for usage in web applications and the whole process of creating the’libavoid-js’ library
as a Javascript version of ’libavoid’ is described. Also, a showcase is provided, including a
demonstration of the integration of ’libavoid-js’ in the existing framework for developing
interactive graphical diagrams called Sprotty, as well as a performance comparison of the
routing algorithm from libavoid-js and built-in Sprotty.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1

2 C++ to WebAssembly compilation 3

3 libavoid: Architecture and Usage 9
3.1 Router . 9
3.2 Diagram elements(nodes) . 10
3.3 Element connections(edges) . 10
3.4 Usage Example . 12

4 Using libavoid-js in web projects 19
4.1 Import and Usage . 19
4.2 Integration libavoid-js in sprotty . 20
4.3 Usage of LibavoidRouter . 22

5 Evaluation 25
5.1 Performance Benchmarks . 25

6 Further work & Conclusions 31
6.1 Further work . 31
6.2 Conclusion . 32

Bibliography 33

ix

CHAPTER 1
Introduction

Models are a popular approach to represent complex systems by splitting them into
models and address all relevant concerns. In software engineering, model-driven en-
gineering(MDE) became a popular methodology, which allows to reduce complexity
and to fill the gap between high-level concepts used by domain experts and low-level
abstractions provided by programming languages. It’s possible due to different modelling
techniques and generating system artifacts. Usually, MDE solutions have domain-specific
concepts, this helps to connect the problem space in which domain experts work, and
the programming space(implementation) [BCOR15].
MDE has been actively researched since 90s, and Antonio Bucchiarone with co-authors
in their "Grand challenges in model-driven engineering: an analysis of the state of the
research" publication split this period into two parts: to around 2007 and after. In the
first part modelling language issues were dominating, for example, UML was considerably
changed, and there was plenty of research on both modelling languages and metamodelling.
Significant research challenges such as language engineering, language workbenches, model
management, model analysis, models at runtime, modelling repositories, scalability across
different dimensions and others were identified in the second part. Besides, there are
also technical challenges as well. One of them is the tool and implementation challenge,
and it is often mentioned as a key aspect which makes the adoption of MDE more
harder [BCPP20].
MDE tools are complex solutions, and their development touches many different areas
and includes many tasks, some of which can be challenges on their own. One such
example is the development of a visual editor for graphical models. There are tools for
that, for example, Sprotty framework in case of solution for the web platform. Visual
editor consists of many parts, and one of the essential parts of a graphical diagram
editor is the optimal routing of elements of the diagram. Some commercial products have
built-in solution of this problem, but there is little information about how they work and
almost no open-source reusable and easily integrable solutions.

1

1. Introduction

Michael Wybrow and co-authors created and explained in their articles "Seeing Around
Corners: Fast Orthogonal Connector Routing" [MW10] and "Orthogonal connector
routing" algorithms for polyline and orthogonal routing of diagrams and implemented
them in libavoid library [KM14].

On the time of writing this work there were 3 implementations of routing algorithms
used in libavoid:

• libavoid - original C++ library

• webcola - JavaScript implementation of part of adaptagrams algorithms. Routing
algorithms are tightly coupled with layout constraints, it is hard to test routing
algorithm separately, for this reason it is not used for comparison in this work

• webcola-wasm - fork of webcola, that is partially rewritten in Rust and compiled
to WebAssembly. Routing algorithms are kept in JavaScript, so this library is not
used for comparison in this work

Our goal is to compile the original libavoid library to WebAssembly, compare the perfor-
mance of C++ and JavaScript libraries and integrate it into Sprotty framework. Sprotty
includes routing algorithms as well, but they are too primitive for advanced solutions;
namely, they can find the route between nodes and don’t support object avoiding and
related features to make diagrams as understandable as possible.

In this work, we describe C++ to WebAssembly compilation process(Chapter 2), give
an introduction to libavoid structure and its usage(Chapter 3), show how compiled
libavoid-js can be used in a JavaScript project and compare its performance with the
original libavoid, explain how a new functionality such as router can be integrated into
sprotty framework(Chapter 4). present real-world application of a new libavoid-js router
in sprotty-based modelling tool bigER(Chapter 5). In the last chapter 6, we summarize
the results of this work, make conclusions and describe our vision of further work.

2

CHAPTER 2
C++ to WebAssembly

compilation

JavaScript is the only built-in language of the Web, and it cannot meet all the require-
ments of modern applications that become more complex every day and require better
performance and security. Especially, it is not optimal as a compilation target. These
points motivated engineers of major browser vendors, and in cooperation, they designed
a portable low-level bytecode called WebAssembly [HRS+17]. Because WebAssembly
is a low-level language, it is mostly generated from more high-level languages like C,
C++, Rust, etc.; in other words, code in a more high-level language is compiled to
WebAssembly.

In the history of WebAssembly development, many different tools were able to compile
code from C++ to WebAssembly. Nowadays, the only open-source and actively developed
toolchain is emscripten [Conb]. It supports not only C and C++ but also all languages
that can be compiled using LLVM [Fou], such as Julia, Rust, Objective C, and others. The
toolchain is available for local installation on a PC and for use in a Docker container [Ems].

The main part of emscripten is emcc compiler that can compile C/C++ code to We-
bAssembly. It can be used either directly with source files or as a compiler in existing
C/C++ projects and reuse project build configuration. Still, in this work, it was used
directly due to the simple structure of the library and no need for complex build configu-
ration.

There are two main use cases of emscripten: creating a new library with a WebAssembly
port and a WebAssembly port of an existing library. For the first use case, embind [Cona]
library is included in emscripten. Additionally to library code, simple glue code with
definitions of the external interface should be written. Then the library can be compiled
with emcc compiler without any additional steps.

3

2. C++ to WebAssembly compilation

For the second case, which was also chosen for libavoid, the usage of emscripten is also
simple. If a code with one or few functions with parameters that have simple data
types should be compiled and used in Javascript, it can be achieved by passing correct
parameters such as names of functions to export, but in the case of libavoid library,
with advanced interface that includes many classes, methods and functions it should be
additionally described. For this purpose, WebIDL[Groa] language can be used.

WebIDL

WebIDL is a language used in emscripten to describe the existing codebase’s interfaces.
Let’s assume there is the following C++ code, and we would like to create WebAssembly
bindings for it using the WebIDL definition.

namespace Avoid {
enum RoutingParameter
{

segmentPenalty = 0 ,
ang lePena l ty

} ;

c l a s s Router {
pub l i c :

Router (const unsigned i n t f l a g s) ;
void moveShape (ShapeRef ∗ shape , const Polygon& newPoly) ;
void setRoutingParameter (

const RoutingParameter parameter ,
const double va lue = chooseSensibleParamValue

) ;
} ;

}

WebIDL definition for this piece of code is following:

enum Avoid_RoutingParameter {
" Avoid : : segmentPenalty " ,
" Avoid : : ang lePena l ty "

}

[P r e f i x = "Avoid : : "]
i n t e r f a c e Router {

void Router (unsigned long f l a g s) ;
void moveShape (ShapeRef shape , [Ref] Polygon newPolygon) ;
void setRoutingParameter (

Avoid_RoutingParameter parameter ,

4

double va lue
) ;

}

There are enum RoutingParameter and class Router in a namespace Avoid.

Enum is defined similarly to C++, but the list of values is a list of strings with a
namespace at the beginning split by ’::’. The namespace should also be prepended to the
enum name, but split by ’_’.

Class is defined as an interface with methods. The namespace is set as a prefix above the
interface. WebIDL language has its own set of data types[Grob], they are similar to the
C++ types, but there are also differences, e.g. there is no ’int’ type, and ’long’ should
be used instead. Pointers are passed as values without ’*’, and for references, there is a
[Ref] decorator [Cond].

After defining the interface, WebIDL Binder tool should be applied on .idl files(WebIDL
definitions), and it produces two files: glue.cpp and glue.js. The first one should
be compiled with other sources via emcc, and the second one included in JavaScript
library, emcc has --post-js glue.js parameter for that.

Using generated code in JavaScript environment

emcc tool generates two files: a JavaScript module and a WASM module. The name
of the javascript module can be specified with ’-o’ argument(e.g. ’-o portedLib.js’).
WASM module will have the same name but with a ’.wasm’ extension. This module
includes an exported default function that should be used to initialise the WASM module.
The JavaScript module imports and initialises WASM module, the only thing that the
developer should do with the WASM module is to check that a web server supports
hosting WASM modules and generated WASM module is available.

The current JavaScript standard(ES2021) doesn’t support importing WebAssembly(WASM)
modules in the same way as JavaScript modules yet, what would be a good and simple
way to use WASM modules, but such proposal exists [Ros]. It is also important to note
that instantiation of WASM modules is asynchronous, so using it as an ESM module
is possible only with a top-level await statement, which is also not supported yet, but
proposed for including JS standard [BSEB].
import Module from ’ portedLib . j s ’ ;

Module () . then (module => {
// a f t e r i n i t i a l i z a t i o n the module i s a v a i l a b l e f o r usage
// i n s t a n t i a t i n g compiled C++ c l a s s ’ Router ’
const c l a s s I n s t a n c e = new module . Router () ;
// c a l l i n g compiled C++ func t i on
// ’ c a l cu l a t eD i s t an c e (i n t x1 , i n t y1 , i n t x2 , i n t y2) ’
const d i s t anc e = module . c a l c u l a t eD i s t an c e (12 , 18 , 39 , 5 5) ;

5

2. C++ to WebAssembly compilation

}) ;

Limitations and challenges with WebIDL

The compilation is a complex process, and it makes requirements for tools high both
from the user perspective and internal implementation. Emscripten has extensive docu-
mentation and clear tutorials. The only important aspect, if a compilation error occurs,
is to carefully check the source of the error. It can be wrong idl definition, wrongly
generated code from WebIDL Binder(a bit more about this in the next paragraph),
compiler parameters etc.

WebIDL is an open standard, and there is detailed specification but only a few basic ex-
amples and tutorial on the web. The two largest open-source WebIDL consumers are web
browsers Mozilla Firefox and Google Chrome, and there are many real examples of We-
bIDL usage in their repositories. But they also have their dialects of IDL with additional
functionality, which WebIDL Binder doesn’t support. Generally, WebIDL Binder
doesn’t support all constructions needed to describe interfaces of C++ code, even not very
complex. It was also the case with libavoid, so we forked WebIDL Binder and extended
it with some additional functionality. Details are available in our repository [HtEA]. Also,
all WebIDL bindings created for libavoid are available in libavoid-js repository [Hnab].

Working on libavoid bindings, we encountered the following limitation with overloading
in emscripten: only functions/methods with a different number of arguments can be
overloaded. If a function/method is overloaded with the same number of arguments but
different types, there is no way to compile both using WebIDL+emcc without custom
code.

Another important aspect to keep in mind is that generated library doesn’t check the
correctness of members’ usage like function calls, whether a number of arguments is
correct, they have correct types. And errors in case of wrong usage are not always
self-explaining. To solve this problem at least partially we:

• generated API documentation for libavoid-js to have documentation not only for
the original C++ library but also for generated JS library

• implemented TypeScript typings for libavoid-js

Interface of C++ Arrays in JavaScript

In some cases, JavaScript interface doesn’t correspond interface that the developer
may expect. One simple example of such case is std::vector. Avoid::Polygon
class has attribute ps of type std::vector and in JavaScript, it is an array-like
structure, but access by index like polygon.ps[1] doesn’t work correctly, and methods
set_ps(<index>, <value>) and get_ps(<index>) should be used.

6

Pointers to C++ objects

Assuming there is a C++ class ConnRef(it is a real example from libavoid library, we
will take a look in more detail in the next chapter) for connection(edge) and it has a
method setCallback(void (*cb)(void *), void *ptr) to set callback which
is called when a connection was changed. We set Javascript function as a callback and
pass the second argument, which will be passed to the callback as a parameter.

f unc t i on connCallback (connRefPtr) {
const changedConnRef = Avoid . wrapPointer (

connRefPtr ,
Avoid . ConnRef

) ;
}

const connRef = new Avoid . ConnRef () ;
connRef . s e tCa l lback (connCallback , connRef) ;

We pass connRef in setCallbck as ConnRef instance, however, connCallback
gets pointer identifier(number) to ConnRef instance instead of the instance itself. To be
able to get the class instance by pointer identifier, generated Javascript module, Avoid in
this example, has wrapPointer(identifier, class) function that takes pointer
identifier and class of an instance as parameters.

Debugging

To get logs from C++ code and simplify debugging, printf works in generated We-
bAssembly code by default without additional build parameters.

To allow more advanced debugging, emcc can also generate a source map for .wasm file
if -g4 --source-map-base http://localhost:8080/ parameters are passed.
More details on how libavoid-js can be debugged are available in its repository.

7

CHAPTER 3
libavoid: Architecture and Usage

In this chapter, we will explain libavoid architecture and its features and show a usage
example. API of libavoid C++ library is described in API documentation [Wyb]. It
consists of several classes such as Router, Rectangle, Shape etc. But there is only
one basic documented example and short descriptions of classes and their methods,
making entry-level high. To simplify this for new users or developers who will work
with JavaScript version of libavoid(it has the same API), in this chapter, we share an
introduction and some lessons we have learned working on this thesis. All relevant classes
are also visualized on class diagram 3.1.

libavoid includes tests that are used to check functionality after changes in the library.
We made a fork [Hnaa] of libavoid with refactored tests to allow developers to use them
as usage examples. Also, support for a more modern build system ’CMake’ was added to
simplify development and usage in modern IDEs, CI/CD was configured, and one of the
most important - routing algorithm was improved to better handle hierarchical diagrams.

3.1 Router

The main class that is used to instantiate a router at the beginning, configure parameters
and perform incremental actions with a diagram. On instantiation, you should select
either orthogonal or polyline routing type(see RouterFlag enum in router.h). It can be
overwritten for individual connections later. This class has three main methods for config-
uration: setRoutingParameter, setRoutingOption, setRoutingPenalty(see
enums in method definitions for possible values). Also, Router class has a list of methods
for incremental changes such as moveShape, deleteShape and others.

There are two modes of routing: immediate and queued. By default, queued is used
for maximal performance. setTransactionUse method can be used to switch the

9

3. libavoid: Architecture and Usage

mode. If queued mode is used, processTransaction method should be called after
modifying the diagram to apply all changes.
There are also two methods to output the result of routing either in a text file or in
an SVG file: outputDiagramSVG and outputDiagram. They can be very useful for
debugging and checking whether your canvas implementation works correctly.

3.2 Diagram elements(nodes)
The base class for diagram elements(nodes) is Polygon. It consists of a list of points
and can have arbitrary geometry. There is also Rectangle class to simplify the creation
of blocks that are rectangles. Using a polygon-based object should be created an instance
of ShapeRef that becomes part of the diagram.
There is also Cluster to group the nodes. Then edges between two child nodes inside
of the cluster will be connected so that the edge is only inside of the cluster if possible.
If a child node is connected with a node outside the cluster, the router tries to connect
them so that edge intersects the cluster border only once.
Another kind of diagram element is junctions. A junction is a fixed or free-floating point
connections can be attached to. A router can also improve the positioning of free-floating
junctions, and there is recommendedPosition method in Junction class for this
purpose.

3.3 Element connections(edges)
A connection between two nodes or edges is represented as a Connector object, an instance
of ConnRef class. The connector has two endpoints: source and destination, that are rep-
resented as ConnEnd instances. ConnEnd instances are created used points(instances of
Point class) or ShapeConnectionPin instances. ShapeConnectionPin instances
are points that belong to a certain shape. They can be either fixed relative to the parent
shape or attached, for example, to the centre or side of the parent shape. If a point
belongs to a node, it’s highly recommended to use ShapeConnectionPin because the
router can provide a much better result and use all configuration parameters correctly. If
you use Point and place it on the position so that it visually is in shape, routing may
be wrong. That’s why the proper design of the whole solution, in which all needed data
for router, nodes and edges are available, is important to achieve the best routing result.
The next step after routing is getting its result and displaying it on canvas. To get routes,
there is displayRoute method in ConnRef class. It means all ConnRef instances
should be saved, and then the result of the call is a Polygon instance that can be
iterated, and each point is accessible via at method by its index.
We also encountered a problem [Hnac] in ShapeConnectionPin usage. Its position
is set once on instantiation and cannot be changed later. The only way to do this is to
delete the pin and create a new one with the same properties but another position.

10

3.3. Element connections(edges)

Figure 3.1: libavoid class diagram

11

3. libavoid: Architecture and Usage

3.4 Usage Example

Now we will take a look at step-by-step usage example of C++ libavoid. There are two
parts: creating a diagram and applying incremental changes to the diagram.

3.4.1 Create a diagram and get routed edges

#inc lude " l i b avo i d / l i b avo i d . h "

us ing namespace Avoid ;

/∗ 1 . I n s t a n t i a t e a route r . By de f au l t (without arguments) , i t i s
∗ i n s t a n t i a t e d in p o l y l i n e mode by pass ing ‘ OrthogonalRouting ‘
∗ parameter we change the mode to orthogona l
∗/

auto route r = new Router (OrthogonalRouting) ;

/∗ 2 . Set route r parameters , opt ions and p en a l t i e s (op t i ona l
∗ step , a l l parameters a l s o have d e f au l t va lue s de s c r ibed in
∗ the documentation) . L i s t o f a l l parameters , opt i ons and
∗ p en a l t i e s i s a v a i l a b l e in the documentation as we l l .
∗/

router−>setRoutingParameter (
RoutingParameter : : shapeBuf ferDistance , 4

) ;
router−>setRoutingOption (

RoutingOption : : nudgeOrthogonalSegmentsConnectedToShapes ,
t rue

) ;
router−>setRout ingPenalty (

RoutingParameter : : segmentPenalty , 50
) ;

/∗ 3 . Create an in s t anc e o f Rectangle with the top l e f t corner
∗ (−100 , 100) and r i gh t bottom corner (220 , 350) .
∗ A re c t ang l e s t o r e s only placement in fo rmat ion about f i g u r e s
∗ and has no impact on rout ing .
∗/

Rectangle shape1Rectangle ({ −100, 100 } , { 220 , 350 }) ;

/∗ 4 . I n s t a n t i a t e a Shape on a base o f a r e c t ang l e
∗ ‘ shape1Rectangle ‘ .
∗ I t i s automat i ca l l y added to the router , and from now
∗ the route r takes i t to account (e . g . avo ids i f needed) on

12

3.4. Usage Example

∗ c a l c u l a t i n g edges .
∗/

ShapeRef ∗ shape1 = new ShapeRef (router , shape1Rectangle) ;

/∗ 5 . Create another r e c t ang l e and shape
∗/

Rectangle shape2Rectangle ({ 300 , 400 } , { 400 , 500 }) ;
ShapeRef ∗ shape2 = new ShapeRef (router , shape2Rectangle) ;

/∗ 6 . For the d e f i n i t i o n o f connect ion p ins on shapes , the re i s the
∗ ShapeConnectionPin c l a s s . Shape connect ion p ins can be abso lu t e
∗ or r e l a t i v e l y po s i t i on ed in shape . Create a shape pin with c l a s s
∗ id 1 and abso lu t e p o s i t i o n (0 , 14) in the ‘ shape1 ‘ . The f i f t h
∗ parameter means whether the pin has a r e l a t i v e po s i t i on , the s i x th
∗ i s i n s i d e o f f s e t o f the pin , and with the l a s t one , we s e t p o s s i b l e
∗ edge d i r e c t i o n s from the pin . In t h i s case , the f i r s t edge segment
∗ from th i s pin can go only to the l e f t .
∗
∗ Shape c l a s s id he lps to c l a s s i f y shape p ins and a l l ows l a t e r f o r
∗ example to c r e a t e an edge from/ to one o f the p ins with c l a s s id X.
∗ The best pin f o r t h i s c l a s s w i l l be chosen automat i ca l l y .
∗/

new ShapeConnectionPin (shape1 , 1 , 0 , 14 , f a l s e , 0 , ConnDirLeft) ;
new ShapeConnectionPin (shape1 , 1 , 1 , 0 . 1 , true , 0 , ConnDirRight) ;

/∗ 7 . Create another ShapeConnectionPin in s t anc e with c l a s s id 2 ,
∗ r e l a t i v e p o s i t i o n (0 . 5 , 0) that i s the cent r e o f the top s i d e o f a
∗ node , and a l low the f i r s t segment to go only to the top .
∗/

new ShapeConnectionPin (shape2 , 2 , 0 . 5 , 0 , true , 0 , ConnDirUp) ;

/∗ 8 . To c r ea t e a connect ion between two shapes , we need two
∗ ConnEnd ins tance s , one f o r source and one f o r the de s t i na t i on ,
∗ that are c rea ted by pas s ing parent shape and c l a s s id to
∗ which t h i s end be longs .
∗/

ConnEnd srcPtEnd (shape1 , 1) ;
ConnEnd dstPtEnd (shape2 , 2) ;

/∗ 9 . An edge i s r ep re s en ted as a ConnRef i n s t anc e . I t s con s t ruc to r
∗ takes route r and two ConnEnd ’ s as arguments .
∗/

ConnRef ∗ connect ion = new ConnRef (router , srcPtEnd , dstPtEnd) ;

13

3. libavoid: Architecture and Usage

/∗ 10 . We s e t gene ra l parameters f o r the route r in s t ep s 1
∗ and 2 , and we can a l s o ove rwr i t e some o f them f o r i nd i v i dua l
∗ connect i ons .
∗/

connect ion−>setRoutingType (ConnType_PolyLine) ;

/∗ 11 . By de fau l t , the route r queues a l l changes and app l i e s
∗ them when ‘ processTransact ion ‘ method i s c a l l e d . Al l a c t i on s
∗ are grouped and proces sed toge the r f o r e f f i c i e n c y .
∗/

router−>proce s sTransac t i on () ;

/∗ 12 . Get edge po in t s .
∗/

std : : vector<Point> actualRoute = connect ion−>displayRoute () . ps ;

/∗ 13 . Save the diagram to an SVG f i l e to get a v i s u a l i z a t i o n
∗ o f the r e s u l t .
∗/
router−>outputDiagramSVG (" usage_example ") ;

After execution of this code, we get the diagram illustrated on Figure 3.2.

3.4.2 Applying incremental changes and getting the new result

The next part after creating a diagram is applying changes like moving the shapes,
removing them etc. The following code snippet shows how this can be done in libavoid.
Note that this is a continuation of the code above, it works only after the execution of
the first part above.

/∗ 1 . Change shape s i z e : moveShape method o f the route r can be
∗ used f o r both moving a shape and changing i t s s i z e .
∗ Change s i z e o f shape1 to ({−50 , −50}, {180 , 250}) .
∗/

router−>moveShape (shape1 , Rectangle ({−50 , −50}, {180 , 2 50})) ;

/∗ 2 . Add a new shape with the top l e f t corner (−300 , 260) and
∗ bottom r i gh t corner (−110 , 310) .
∗/

Rectangle shape3Rectangle ({−300 , 260} , {−110 , 310}) ;
ShapeRef ∗ shape3 = new ShapeRef (router , shape3Rectangle) ;
new ShapeConnectionPin (shape3 , 6 , 0 . 5 , 0 , true , 0 , ConnDirAll) ;

14

3.4. Usage Example

Figure 3.2: Result diagram

/∗ 3 . Move shape3 by 20 h o r i z o n t a l l y and by −100 v e r t i c a l l y .
∗/

router−>moveShape (shape3 , 20 , −100);

/∗ 4 . Add a new connector between shape1 and shape3
∗/

ConnEnd srcPtEnd (shape1 , 1) ;
ConnEnd dstPtEnd (shape3 , 3) ;
ConnRef ∗ connRef2 = new ConnRef (router , srcPtEnd , dstPtEnd) ;

// 5 . Apply a l l changes and save the r e s u l t diagram in
// ’ incremental_changes_part1 . svg ’
router−>proce s sAct i ons () ;
router−>outputDiagramSVG (" incremental_changes_part1 ") ;

15

3. libavoid: Architecture and Usage

Figure 3.3: Incremental change: part 1

/∗ 6 . De lete shape2 .
∗/

router−>deleteShape (shape2) ;

// 7 . De lete the connector which was c rea ted in the prev ious
// example
router−>deleteConnector (connect ion) ;

// 8 . Apply a l l changes and save the r e s u l t diagram in
// ’ incremental_changes_part2 . svg ’
router−>proce s sAct i ons () ;
router−>outputDiagramSVG (" incremental_changes_part2 ") ;

16

3.4. Usage Example

Figure 3.4: Incremental change: part 2

17

CHAPTER 4
Using libavoid-js in web projects

In chapter 2, we explained the basics usage of WASM modules generated using emcc,
then in Chapter 3, we showed how the original libavoid library can be used in C++
and in this chapter, we will demonstrate how JavaScript library libavoid-js can be
integrated into a web project.

4.1 Import and Usage
As we showed in chapter 2, after compilation C++ to WASM + JavaScript via emcc, an
asynchronous function is available for initialization of the module, after which it can be
used. In libavoid-js, there is no direct access to this function, instead interface of the
library includes an object AvoidLib with the following methods:

• asynchronous load for loading WASM module

• synchronous getInstance to get an instance of the WASM module after its
instantiation

So to use libavoid-js in a project, a developer should import it, call the asynchronous
load function and wait for its execution. After this API provided by WASM module is
ready for use. The code snippet looks like the following:
import { AvoidLib } from " l ibavo id−j s " ;

async func t i on main () {
const avoidLib = await AvoidLib . load () ;
// use API o f WASM module , example :
const route r1 = new avoidLib . Router (

avoidLib . OrthogonalRouting

19

4. Using libavoid-js in web projects

) ;

// or i f a module i n s t ance i s needed somewhere e l s e (another
// func t i on or another module) , then :
const avoid = AvoidLib . g e t In s tance () ;
const route r2 = new avoid . Router (avoid . OrthogonalRouting) ;

}

Another important aspect is that destructors in C++ are not called automatically. So if
they include custom logic, for example, destructor in Router class removes all related
to router instance elements like nodes, edges etc. To call its destructor, there is a general
Avoid.destroy() function, to which instance, in this example, the instance of the
router should be passed. If the router destructor is not called, it would cause memory
leaks.

4.2 Integration libavoid-js in sprotty

Sprotty framework is based on GLSP(graphical language server protocol) [REIWC18],
and it has a flexible and modular architecture. All features are optional and are connected
to applications with a dependency injection approach(inversify library is used for
implementation). The router is also one of the features.

4.2.1 Router

Router implementation is represented as an injectable class that extends
AbstractEdgeRouter and implements IEdgeRouter interface. All routers available
in sprotty route each edge independently by calling
route(edge: Readonly<SEdge>, args?: Record<string, unknown>):
RoutedPoint[] method of the router. libavoid router has another approach, it
routes all edges together. To make it possible in sprotty, a new interface
IMultipleEdgesRouter was introduced. It has a new method
routeAll(edges: SRoutableElement[], parent:
Readonly<SParentElement>): EdgeRouting; that can be used to route all edges
at once. How it can be used will be shown in section 4.3. Sprotty calls routeAll method
each time when rerouting is needed, but the whole diagram should not always be rerouted,
it would be inefficient if, for example, only one edge was changed. To avoid full rerouting,
LibavoidSprottyRouter saves results after each routeAll call and compares data
passed in the next call with the previous one to detect changes in the diagram. This
way is much cheaper in the sense of resources as the rerouting of the full diagram, but
if sprotty passed only changes in the diagram instead of the full diagram, the routing
would be more performant. Whether the performance of the whole diagram editor would
noticeably increase without adding a lot of complexity, need to be investigated in further
work.

20

4.2. Integration libavoid-js in sprotty

Implementation

All functions in sprotty related to instantiating the diagram editor are synchronous.
As we explained in section 4.1, WASM module can be loaded only asynchronously, so the
developer should call load function from sprotty-routing-libavoid and wait for
its execution.

libavoid-js router is instantiated with LibavoidRouter and the instance has the
same life time as the sprotty router. All parameters can be set using
setOptions(options: LibavoidRouterOptions)method of LibavoidRouter.

Multiple routers can be used in one diagram simultaneously. Edges that should be routed
by the router are determined by routerKind parameter of the edge. And in the router,
there is kind getter that returns the appropriate kind as a string(see example below).

import { i n j e c t a b l e } from " i n v e r s i f y " ;
import {

AbstractEdgeRouter , IMult ipleEdgesRouter ,
SParentElement , EdgeRouting

} from " spro t ty " ;

@ in j e c tab l e ()
export c l a s s LibavoidRouter

extends AbstractEdgeRouter
implements IMult ip leEdgesRouter

{
s t a t i c readonly KIND = " l i b avo i d " ;

r ou t eA l l (
edges : LibavoidEdge [] , parent : SParentElement

) : EdgeRouting {}

get kind () {
re turn LibavoidRouter .KIND;

}

<other methods and a t t r i bu t e s >
}

4.2.2 Edges

There is also a possibility to extend edge information. Edge information is represented
by SRoutableElement class and can be extended as follows:

export c l a s s LibavoidEdge extends SRoutableElement {
routeType = 0 ;

21

4. Using libavoid-js in web projects

s o u r c eV i s i b l eD i r e c t i o n s = undef ined ;
t a r g e tV i s i b l eD i r e c t i o n s = undef ined ;
hateCros s ings = f a l s e ;

}

And then used as a type for edges, one of the examples is above in routeAll method
of LibavoidRouter.

4.3 Usage of LibavoidRouter
The router can be connected to the container module of the diagram editor in the
following way:
import { TYPES } from ’ sprotty ’ ;
import { LibavoidRouter } from ’ sprotty−rout ing−l i bavo id ’ ;

const ed i to rConta ine r = new ContainerModule ((
bind , unbind , isBound , reb ind

) => {
bind (LibavoidRouter) . t o S e l f () . i nS ing l e tonScope () ;
bind (TYPES. IEdgeRouter) . t oS e rv i c e (LibavoidRouter) ;

}

In the case of the router from sprotty-libavoid-routing, there is also a possibility
to set options of the router using setOptions method:
import { RouteType } from ’ sprotty−rout ing−l i bavo id ’ ;

const route r = ed i to rConta ine r . get (LibavoidRouter) ;
r ou te r . se tOpt ions ({

routingType : RouteType . Orthogonal ,
segmentPenalty : 50 ,
idea lNudgingDistance : 4 ,
nudgeOrthogonalSegmentsConnectedToShapes : true ,
nudgeOrthogonalTouchingColinearSegments : t rue

}) ;

LibavoidRouter supports the same options as the original libavoid router.

Edges support the same parameters as ConnRef in libavoid(they are also listed in
subsection 4.2.2). Example of edge object:
{

id : " edge1 " ,
type : " edge : s t r a i g h t " ,
source Id : " node0 " ,

22

4.3. Usage of LibavoidRouter

Figure 4.1: Default look of example application

t a r g e t Id : " node1 " ,
routerKind : " l i b avo i d " ,
hateCros s ings : t rue

}

The whole example, which is also live demo [Hna22a], of sprotty-based application with
libavoid-js router is available in our repository [Hna22b]. There are possibilities to test
diagrams with a different number of nodes and also random placement.

23

CHAPTER 5
Evaluation

In this chapter, we will show a usage of LibavoidRouter from
sprotty-routing-libavoid in a real-world application. This showcase demonstrates
that LibavoidRouter is a production-ready tool and can be successfully integrated
into real sprotty-based applications.

5.1 Performance Benchmarks
To measure the performance of JS bindings of libavoid, performance tests in libavoid
and its port to JavaScript were implemented and performed. In this test, there are:

• 21 shapes

• 20 connections

Mean of 100 iterations(all values in ms):

Test C++ JS
Full reroute 30 327
Moving node 21 169

Measurements show that libavoid-js is 8-11 times slower than libavoid. It’s a
large difference, but in our case, it is sufficient for many use cases(small, medium and
large size diagrams, but not very large).

Performance of sprotty-routing-libavoid is even worse because the integration
of libavoid-js router in sprotty router is not optimal. The router in sprotty has

25

5. Evaluation

Figure 5.1: Diagram used for benchmark

a such interface, with which a diagram is rerouted after each interaction, also, if it is
not needed in cases such as element hover or partial reroute(e.g. node moved) would be
sufficient. libavoid router supports modifications of existing diagrams/incremental
changes as described in section 3.1, with its usage, only affected connections would
be rerouted. For the most optimal implementation, big changes in sprotty and router
interface could be needed, so we solved this problem by saving of intermediate results in
the router itself.

Example application with sprotty-routing-libavoid, which was introduced in
section 4.3 on the same machine, on which benchmarks were performed, has ’good
enough’(moving of element with many edges causes no lags) performance with up to 60
nodes.

5.1.1 Library Size

emcc supports 3 levels of basic optimizations set with ’-O<num>’ flag and additional
optional optimizations set with other flags such as ’-flto’. The meaning and effects of all
of them are explained in emcc documentation [Conc].

We tested all 3 levels for libavoid-js, but only with levels 1 and 2 library worked as
expected, with level 3 there were stability issues.

Generated code consists of two files: .wasm(WebAssembly) and .js(JavaScript). Their
size with all 3 levels of optimizations was(all values are in KB):

26

5.1. Performance Benchmarks

Level JS JS(gzip) WASM WASM(gzip) Total Total(gzip)
debug(-g4) 381 49 3294 693 3675 742

0 228 24 928 240 1156 264
1 227 24 484 163 711 187
2 209 23 450 156 659 179
3 209 23 463 157 672 180

Results show that there is no noticeable difference in size between levels 1-3(less than
5% improvement), and only between levels 0 and 1 size was 30% decreased. We don’t
compare it with debug build because it is used only locally for debugging, and it is given
in the table only to show all possible variants.

So the current size of the production version of libavoid-js is 659 KB and com-
pressed(gzip) 179 KB.

5.1.2 Showcase

LibavoidRouter was integrated into bigER modeling tool [GB21]. The bigER tool
is developed as a language server, for implementation GLSP stack is used, and it is
distributed as Visual Studio Code extension [For22]. It used the default polyline router
from sprotty with some basic routing configuration. There were two problems related to
routing:

• default polyline router routes each edge independently and doesn’t take nodes and
other edges into account. It can lead to intersections. See 5.2 for example. To solve
this problem at least partially, manual editing of edges like adding checkpoints and
moving them, was available in bigER, but it required manual work of the user.
Routing of the same diagram by LibavoidRouter is shown on 5.3.

• Edges ends are fixed, and after moving a node in place of edge ends, there are
checkpoints which the user should move manually. See 5.4 for example. After
migration LibavoidRouter edge ends are moved together with the node, and
manual beatifying by a user is not needed anymore. A diagram after the same
move routed by LibavoidRouter is shown on 5.5.

Another improvement after migration to LibavoidRouter is that all edges are orthog-
onal. Earlier, the first part of the edge(line from a source point to the first corner) could
sometimes be polyline, not orthogonal. This problem is recognizable on 5.2: edge from
’include’ node to ’Course’. The new routing algorithm, practical benefits of its integration
and other improvements released in bigER with the router were also presented in the
article "The bigER Modeling Tool" by Philipp-Lorenz Glaser and co-authors [GHHB22].

27

5. Evaluation

Figure 5.2: Edge from ’Exam’ to ’Course’ is over ’University’

Figure 5.3: Diagram routed by LibavoidRouter

28

5.1. Performance Benchmarks

Figure 5.4: ’Course’ and ’Instructor’ nodes were moved

Figure 5.5: Diagram routed by LibavoidRouter

29

CHAPTER 6
Further work & Conclusions

In this work approach of creating WebAssembly bindings for the existing C++ code base
was validated and successfully applied on libavoid library from adaptagrams package.
libavoid-js library is production-ready, we showed a real-life usage example in 5, but also
further improvements are also possible:

6.1 Further work

• add missing functionality in WebAssembly port of libavoid.
The main part of libavoid functionality is included in libavoid-js, but there are two
more features not included in JavaScript port of libavoid, that can be useful for
some use cases: junctions and checkpoints.

• improve performance of libavoid-js by applying more compiler optimizations.
Note: we tried to apply more optimizations in emcc, but there were problems with
the stability of the result code. The reason is unknown yet.

• improve libavoid-js integration in sprotty.
As we explained in subsection 4.2.1 section 5.1, the router interface could be
improved by applying incremental changes to get better performance.

• create bindings for other libraries from adaptagrams package: libcola, libdialect,
libvspc, libtopology.
Libavoid was successfully ported to WebAssembly, so other libraries from adapta-
grams package can also be ported in the same way. It would allow getting more
advanced features in web stack and sprotty without big effort for implementation
from scratch.

31

6. Further work & Conclusions

6.2 Conclusion
The aim of this work was to validate the approach of porting C++ code to WebAssembly
for a library that provides routing functionality for interactive diagram editor. libavoid
library was successfully ported to WebAssembly using emscripten toolset, performance
of C++ and JavaScript/ WebAssembly versions were compared and then integrated into
sprotty framework as an optional router.

The resulting libavoid-js library has high enough performance for many use cases, except
very large diagrams. sprotty-libavoid-routing library has lower performance because of
the limited interface for router integration in sprotty and is usable only for small and
medium diagrams(up to 36 nodes in our example application). But it can be improved
by improving the router interface in sprotty, its discussion is going on.

Also, different levels of optimizations in emcc compiler were tested to get a minimal size
of libavoid-js library. The last version has a size 659 KB with optimization level 2 and
179 KB if compressed using gzip.

32

Bibliography

[BCOR15] Jean-Michel Bruel, Benoit Combemale, Ileana Ober, and Hélène Raynal.
Mde in practice for computational science. Procedia Computer Science,
51:660–669, 2015. International Conference On Computational Science,
ICCS 2015.

[BCPP20] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pieranto-
nio. Grand challenges in model-driven engineering: an analysis of the state
of the research. Software and Systems Modeling, 19(1):5–13, Jan 2020.

[BSEB] Myles Borins, Yulia Startsev, Daniel Ehrenberg, and Guy Bedford.
Tc39. https://tc39.es/proposal-top-level-await/. Accessed:
03 February 2023.

[Cona] Emscripten Contributors. Embind. https://emscripten.org/docs/
porting/connecting_cpp_and_javascript/embind.html. Ac-
cessed: 03 February 2023.

[Conb] Emscripten Contributors. Emscripten. https://emscripten.org/.
Accessed: 03 February 2023.

[Conc] Emscripten Contributors. Emscripten code optimization. https://
emscripten.org/docs/optimizing/Optimizing-Code.html. Ac-
cessed: 03 February 2023.

[Cond] Emscripten Contributors. Pointers, references and values
in webidl. https://emscripten.org/docs/porting/
connecting_cpp_and_javascript/WebIDL-Binder.html#
pointers-references-value-types-ref-and-value. Accessed:
03 February 2023.

[Ems] Emscripten. Emsdk. https://hub.docker.com/r/emscripten/
emsdk. Accessed: 03 February 2023.

[For22] Luca Forstner. Integrating glsp based tooling into visual studio code. 2022.

[Fou] LLVM Foundation. Llvm. https://llvm.org. Accessed: 03 Febru-
ary 2023.

33

https://tc39.es/proposal-top-level-await/
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html
https://emscripten.org/
https://emscripten.org/docs/optimizing/Optimizing-Code.html
https://emscripten.org/docs/optimizing/Optimizing-Code.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/WebIDL-Binder.html#pointers-references-value-types-ref-and-value
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/WebIDL-Binder.html#pointers-references-value-types-ref-and-value
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/WebIDL-Binder.html#pointers-references-value-types-ref-and-value
https://hub.docker.com/r/emscripten/emsdk
https://hub.docker.com/r/emscripten/emsdk
https://llvm.org

Bibliography

[GB21] Philipp-Lorenz Glaser and Dominik Bork. The bigER tool - hybrid textual
and graphical modeling of entity relationships in vs code. In 2021 IEEE 25th
International Enterprise Distributed Object Computing Workshop (EDOCW),
pages 337–340, 2021.

[GHHB22] Philipp-Lorenz Glaser, Georg Hammerschmied, Vladyslav Hnatiuk, and
Dominik Bork. The bigER modeling tool. 3211:1–4, 2022. ER Forum and
PhD Symposium 2022.

[Groa] Web Hypertext Application Technology Working Group. Webidl. https:
//www.w3.org/TR/WebIDL/. Accessed: 03 February 2023.

[Grob] Web Hypertext Application Technology Working Group. Webidl data
types. https://webidl.spec.whatwg.org/#idl-types. Accessed:
03 February 2023.

[Hnaa] Vladyslav Hnatiuk. Adaptagrams fork. https://github.com/Aksem/
adaptagrams. Accessed: 03 February 2023.

[Hnab] Vladyslav Hnatiuk. libavoid-js. https://github.com/Aksem/
libavoid-js. Accessed: 03 February 2023.

[Hnac] Vladyslav Hnatiuk. Shapeconnectionpin api issue. https://github.
com/Aksem/adaptagrams/issues/8. Accessed: 03 February 2023.

[Hna22a] Vladyslav Hnatiuk. sprotty-routing-libavoid-demo. https://aksem.
github.io/sprotty-routing-libavoid-demo/, 2022. Accessed:
03 February 2023.

[Hna22b] Vladyslav Hnatiuk. sprotty-routing-libavoid-demo source. https://
github.com/Aksem/sprotty-routing-libavoid-demo, 2022. Ac-
cessed: 03 February 2023.

[HRS+17] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing
the web up to speed with webassembly. SIGPLAN Not., 52(6):185–200, jun
2017.

[HtEA] Vladyslav Hnatiuk(fork) and the Emscripten Authors(original). Webidl emb-
dingen. https://gitlab.com/Aksem/webidl-embindgen. Accessed:
03 February 2023.

[KM14] M. Wybrow K. Marriott, P.J. Stuckey. Seeing around corners: Fast orthogo-
nal connector routing. In Proceedings of the 8th International Conference on
the Theory and Application of Diagrams(Diagrams 2014), page 31–37, 2014.

34

https://www.w3.org/TR/WebIDL/
https://www.w3.org/TR/WebIDL/
https://webidl.spec.whatwg.org/#idl-types
https://github.com/Aksem/adaptagrams
https://github.com/Aksem/adaptagrams
https://github.com/Aksem/libavoid-js
https://github.com/Aksem/libavoid-js
https://github.com/Aksem/adaptagrams/issues/8
https://github.com/Aksem/adaptagrams/issues/8
https://aksem.github.io/sprotty-routing-libavoid-demo/
https://aksem.github.io/sprotty-routing-libavoid-demo/
https://github.com/Aksem/sprotty-routing-libavoid-demo
https://github.com/Aksem/sprotty-routing-libavoid-demo
https://gitlab.com/Aksem/webidl-embindgen

Bibliography

[MW10] P.J. Stuckey M. Wybrow, K. Marriott. Orthogonal connector routing. In
Proceedings of 17th International Symposium on Graph Drawing (GD ’09),
page 219–231, 2010.

[REIWC18] Roberto Rodriguez-Echeverria, Javier Luis Cánovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. Towards a language server protocol infrastructure for
graphical modeling. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, pages
370–380, 2018.

[Ros] Andreas Rossberg. Esm integration proposal. https://github.com/
webassembly/esm-integration. Accessed: 03 February 2023.

[Wyb] M. Wybrow. Adaptagrams api documentation. https://www.
adaptagrams.org/documentation/annotated.html. Accessed:
03. February 2023.

35

https://github.com/webassembly/esm-integration
https://github.com/webassembly/esm-integration
https://www.adaptagrams.org/documentation/annotated.html
https://www.adaptagrams.org/documentation/annotated.html

	Abstract
	Contents
	Introduction
	C++ to WebAssembly compilation
	libavoid: Architecture and Usage
	Router
	Diagram elements(nodes)
	Element connections(edges)
	Usage Example

	Using libavoid-js in web projects
	Import and Usage
	Integration libavoid-js in sprotty
	Usage of LibavoidRouter

	Evaluation
	Performance Benchmarks

	Further work & Conclusions
	Further work
	Conclusion

	Bibliography

