
Multi-Notation Support for a
Hybrid VS Code Modeling Tool

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software- and Information Engineering

by

Georg Hammerschmied
Registration Number 01633663

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Assistance: BSc. Philipp-Lorenz Glaser

Vienna, 9th September, 2022
Georg Hammerschmied Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Georg Hammerschmied

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. September 2022
Georg Hammerschmied

iii

Kurzfassung

Die Datenmodellierung und damit der Prozess der Strukturierung von Daten ist eine
sehr wichtige Kernaufgabe der Wirtschaftsinformatik. Besonders das Entity-Relationship
(ER)-Modell erfreut sich großer Beliebtheit und wird häufig für die Konzeption von
Datenbankanwendungen verwendet. Aufgrund dieser Popularität sind viele Tools für die
ER Modellierung entstanden. Diese Tools sind jedoch oft proprietär, unflexibel oder auf
eine bestimmte Plattform beschränkt. In vielen Fällen bieten sie auch nur die Möglichkeit
für eine textuelle oder eine grafische Modellierung. Hybride Lösungen bilden hier eher die
Ausnahme. Aufgrund der aktuellen Entwicklung, dass Anwendungen auf Web-Plattformen
verlagert werden, sind einige neue vielversprechende Technologien wie das Language Server
Protocol (LSP) oder das Sprotty-Framework entstanden. Diese Technologien eignen sich
hervorragend, die Einschränkungen der aktuellen Modellierungswerkzeuge zu überwinden.
Die bigER-Erweiterung für Visual Studio Code baut auf diese Technologien auf und bietet
verschiedene Funktionen zur flexiblen Spezifikation und Visualisierung konzeptioneller ER-
Datenmodelle. Im Zuge dieser Arbeit wird ein Betrag zu der Release-Version von bigER
geleistet, indem mehrere populäre ER-Notationen in den hybride Editor integrieren
werden. Durch die Erweiterung der Grammatik auf der Serverseite und des grafischen
Editors des Clients sind User in der Lage ER-Diagramme für die Notationen Bachman,
Chen, Crow’s Foot, Min-Max und UML zu erstellen. Diese zusätzlichen Notationen
erweitern den Anwendungsbereich von bigER und es wird dadurch möglich eine größere
Anzahl von BenutzerInnen anzusprechen. Die Unterstürzung von mehreren Notationen
sollte bigER auch einen Vorteil gegenüber seinen direkten Konkurrenten aus dem Visual
Studio Ökosystem bieten, da diese lediglich die Crow’s Foot Notation unterstützen.

v

Abstract

Data modeling and therefore the process of structuring data is a very important core
task for business informatics. Especially the entity-relationship (ER) model became very
popular and is often used for the conceptual design of database applications. Because of
this popularity, many tools employ its concept. Nonetheless, current modeling tools are
often proprietary, inflexible, or restricted to a specific platform and in many cases limited
to textual or graphical modeling. Resulting of the recent trend that applications are
moving to web-platforms new promising technologies like the Language Server Protocol
(LSP) and the Sprotty framework have emerged which provide aid to overcome the
limitations of the current modeling tools. The bigER extension for Visual Studio Code
makes use of those technologies and offers various features for flexibly specifying and
visualizing conceptual ER data models. In this thesis, we contribute to the release
version of bigER by integrating multi-notation support of popular ER notations for
the hybrid modeling tool. By extending the textual language on the server side and the
graphical view on the client, user can create ER Diagrams for the notations Bachman,
Chen, Crow’s Foot, Min-Max and UML. Because of the increased field of application by
the multi-notation support a wider range of user can be addressed. The multi-notation
support should also bring bigER an advantage over its main competitors in the Visual
Studio Code ecosystem as they only rely on the Crow’s Foot notation.

vii

Contents

Kurzfassung v

Abstract vii

Contents ix

1 Introduction 1

2 Backgground 3
2.1 Data Modeling . 3
2.2 Entity-Relationship Modeling . 3
2.3 LSP . 8
2.4 Sprotty . 10
2.5 Xtext . 11
2.6 Visual Studio Code . 12

3 Multi-Notation Support for a Hybrid VS Code Modeling Tool 13
3.1 VS Code Extension . 13
3.2 Language Server . 15
3.3 Webview . 23

4 Showcase 27
4.1 Bachman . 27
4.2 Chen . 28
4.3 Crow’s Foot . 29
4.4 Min-Max . 30
4.5 UML . 31
4.6 Toolbar . 34

5 Discussion 35
5.1 Observations . 35
5.2 Comparison with competing modeling tools 36

6 Conclusion 39

ix

6.1 Summary . 39
6.2 Outlook . 39

List of Figures 41

List of Tables 43

Bibliography 45

CHAPTER 1
Introduction

Data modeling and therefore the process of structuring data is a very important core task
for business informatics. It creates a blueprint of the most valuable resources of a system
and represents the requirements of the data in a conceptual way [1]. Data modeling
also provides many advantages. Because of the increased transparency the maintenance
effort is reduced and the models support software developers with their work [1, 2]. The
entity-relationship model which is a popular high-level data model became the de-facto
standard for the conceptual design of database applications. This popularity leads to the
fact that many tools employ its concept. Nonetheless, current modeling tools are often
proprietary, inflexible, or restricted to a specific platform and in many cases limited to
textual or graphical modeling [3]. Additional to these shortcomings such tools often only
support one ER notation which leads to limitations that restrict them to certain use
cases.

Because of the recent trend that applications are moving to web-platforms new promising
technologies have emerged which provide aid to overcome the limitations of the cur-
rent modeling tools. One of these technologies is the Language Server Protocol (LSP)
which provides an important contribution to web modeling of textual languages. It
supports rich editing features like source code auto-completions or Go to Definition for
a programming language. A single implementation of a language server can be reused
in multiple Integrated Development Environments (IDE) and therefore the tools can
support languages with minimal effort [4]. The downside of the LSP is that it is restricted
to textual languages. By enhancing the LSP with the Sprotty framework textual and
graphical modeling can be combined to create a hybrid modeling tool.

This thesis focuses on extending the hybrid modeling tool bigER to support the popular
notations Bachman, Chen, Crow’s, Min-Max, and UML. These notations share an under-
lying commonality but differ in the possibilities to define constraints for relationships [1].
This extension involves the underlying grammar of the textual editor and the notation-

1

1. Introduction

specific rendering in the graphical editor. The multi-notation support increases the field
of application of bigER and therefore should attract a wider range of users.

2

CHAPTER 2
Backgground

In this chapter, we cover background information and foundational concepts which are
required for the implementation of multi-notation support for a hybrid modeling tool.

2.1 Data Modeling
The process of structuring data is called data modeling and it is a very important core
task for business informatics. This is because data from a viewed section of reality
has to be structured before it can be processed. The task of data modeling consists
of a detailed description of information objects and the relation between them and the
modeling process has to be very precise because it forms the basis of the later software
development [2].

Data models offer various advantages. They reduce the maintenance effort because of the
increased transparency of the program code and they support the software developer with
their work. The effort for the integration of a standard software solution into a existing
environment or to exchange data form an old system to a new one can also be reduced
significantly. Data models also result in a better communication for the requirements
analysis between software developer and coworkers of other departments with a different
knowledge background [2].

2.2 Entity-Relationship Modeling
The entity-relationship (ER) model is a popular high-level conceptual data model. This
model is often used for the conceptual design of database applications, and many tools
employ its concepts [5].

Peter Chen introduced the Entity-Relationship model [6] in 1976 and the core components
cover three fundamental elements [2].

3

2. Backgground

Entity - An entity represents aspects of the real world in an abstract way. It will be
identified by a name and it has certain attributes which describe the entity. An
example for an entity is a customer or an article of a store. In ER diagram entities
will be visualized as rectangles [2].

Relationship - Relationships describe the connection between entities. They are
referred to by a name and can include attributes similarly to entities. An example
of a relationship is a customer of a shop that buys multiple articles. In ER diagrams
they have a diamond shape and are connected to the entities via edges [2].

Attribute - Attributes are used to describe details of entities or relationships. They
can be used for example to describe the address of a customer or the price of an
article [2].

Another important aspect of ER modeling are key attributes. Key attributes are a
minimal set of attributes that are used to identify an entity. A key of only one value is
referred to as a simple key and otherwise when the key contains more than one value it
is called a composite key. Simple keys are easily created as consecutive numbering. An
example of a simple key is a customer number or article number [2].

The connection between entities can be simple but also quite complex. For example, a
customer can buy multiple articles in a shop but an article is most of the time bought
by just one customer. For this problem, a relationship additionally defines constraints
on the occurrences of participating entities. This connectivity is called cardinality and
the value for the cardinality depends on the chosen ER notation. Each notation offers
different options to define the occurrence of the entities. This is a very important aspect
of this thesis because cardinality is the main difference between the notations which have
to be expressed for the integration of different notations in a textual language. In the
following the differences between the notations Bachman, Chen, Crow’s Foot, Min-Max,
and UML on how to define the cardinality are described.

2.2.1 Bachman

The Bachman notation is used to model binary relationships. The relation is represented
as a line where both ends are connected to the involved entities. A filled-in circle at the
end of a relationship indicates that the relationship is mandatory for a pair of entities.
On the other hand, an open circle shows that an entity is optional. With the arrow, the
cardinality many can be expressed. The arrows in combination with the two kinds of
circles allows to define the cardinality one or many and zero or many [7].

Figure 2.1: Bachman optional entity

4

2.2. Entity-Relationship Modeling

Figure 2.2: Bachman mandatory entity

Figure 2.3: Bachman one or more

Figure 2.4: Bachman zero or more

2.2.2 Chen

Peter Chen introduced the Chen notation [6] in 1976 and it is one of the most popular
notations for ER models. When modeling after the Chen notation there exist three
fundamental types of relationships.

1:1 relationship The 1:1-relation describes the connection between entities that have a
definite allocation to each other. For example, a student can only have one student
ID and the other way around a student ID can only be assigned to one student [2].

Figure 2.5: Chen 1:1 relationship

1:N relationship The 1:N relationship describes the relation of one entity that is
connected with an arbitrary number of another entity. For example a student
studies only on one university but a university has many students [2].

Figure 2.6: Chen 1:N relationship

M:N relationship In an M:N relationship an arbitrary number of one entity is connected
with an arbitrary number of another entity. For example, a student can attend
multiple lectures, and lectures are typically attended by multiple students [2].

5

2. Backgground

Figure 2.7: Chen M:N relationship

2.2.3 Crow’s Foot

The Crow’s Foot Notation is used for binary relations and the cardinality is expressed by
four different types of edges. All of these edges are composed of three symbols. The circle
is used for the cardinality zero. One is visualized with a straight line and for arbitrary
many, the so-called crowfoot symbol is used [8]. These three symbols can be combined to
express constraints of the cardinality.

Two straight lines form the cardinality one and only one.

Figure 2.8: Crow’s Foot one and only one

With a straight line and a crowfoot, the cardinality one or more can be formed.

Figure 2.9: Crow’s Foot one or more

A circle and a crowfoot form the cardinality zero or more.

Figure 2.10: Crow’s Foot one or more

The cardinality zero or one is visualized by a straight line and a circle.

Figure 2.11: Crow’s Foot one or more

6

2.2. Entity-Relationship Modeling

2.2.4 Min-Max

The Min-Max notation is another way to define constraints on the relationship between
entities. It was introduced because with the Chen notation certain cardinality constraints
cannot be expressed. With the Min-Max notation it is possible to define a lower and
a upper bound for the cardinality. For every entity in a relationship a minimum and a
maximum value will be specified. The min and max values define how many entities of a
certain kind are at least and at most involved in a relationship [2].

There are two possibilities on how to express the upper bound for the Min-Max notation
which is shown in figure 2.12. The first way is to define a number as the upper bound
which has to be equal to or greater than the lower bound and the second method is to
use a ’*’-symbol which stands for arbitrary many.

Figure 2.12: Cardinality for Min-Max

2.2.5 UML

The Unified Modeling Language (UML) is a general-purpose modeling language and
it represents a collection of best engineering practices. It plays an important part in
developing object-orientated software and it offers two different views of a system model.
The static view uses objects, attributes, and relationships to visualize the structure of a
system. This view includes the class diagram. On the other hand, the dynamical view
focuses on the dynamic behavior of a system by showing collaborations between objects
and changes to their internal state. This view includes activity and sequence diagrams [9].
For this thesis only certain aspects of the class diagram and therefore the static view are
important. Those aspects consists of the cardinality, the role and the aggregation of an
object. UML offers different possibilities to define a connectivity constraint on how many
objects participate in an association.

1 - Exactly one entity

* - Zero or more entities

0..* - Zero or more entities

1..2 - At least one and at most two entities

The definition of a role for an entity is only used to clarify the nature of a relationship and
it is not necessarily required to define roles for entities. Another important aspect of UML
is the aggregation because it allows the creation of a part-whole relationship between
two entities. There are two kinds of aggregation. The weak or shared aggregation which

7

2. Backgground

is shown in figure 2.13 allows to model a relationship where one entity owns another
entity, but other entities can own that entity as well. The second kind is the composition
which is shown in figure 2.14 and it determines that one entity exclusively owns the other
entity [8].

Figure 2.13: UML aggregation

Figure 2.14: UML composition

2.3 LSP
Supporting rich editing features like source code auto-completions or Go to Definition for
a programming language in a developing editor traditionally implies a lot of work and
it is very time-consuming. This is because the work for adding such features has to be
repeated for each development tool, as each provides different Application Programming
Interfaces (API). A different approach is provided by the Language Server Protocol
(LSP) which allows creating a language server back end and therefore decoupling the
implementation of language-specific servers from language-agnostic clients. A single
implementation of a Language Server can be re-used in multiple IDEs, and therefore the
tools can support languages with minimal effort [4].

The LSP standardizes the messages exchanged between an IDE and a language server
to simplify these sorts of integrations and it provides a useful framework for exposing
language features to a variety of tools. Tools like Visual Studio communicate with the
server by using the language protocol over JSON-Remote Procedure Calls (RPC) which
are considered lightweight, stateless, and communicate at the level of document references
and document positions. Those types of data are neutral for programming languages
and apply to all of them. Not every server can support all features of the protocol and
therefore the client and the server both announce their supported feature set through
capabilities during commuication [4].

8

2.3. LSP

Figure 2.15: LSP communication during editing session [4]

For illustration, an example request- and response message for finding a definition are
shown in listing 2.1 and listing 2.2.

{
" j s o n r p c " : " 2 . 0 " ,
" id " : 1 ,
" method " : " textDocument / d e f i n i t i o n " ,
" params " : {

" textDocument " : {
" u r i " : " f i l e : /// p%3A/mseng/VSCode/ Playgrounds /cpp/ use . cpp "

} ,
" p o s i t i o n " : {

" l i n e " : 3 ,
" c h a r a c t e r " : 12

}
}

}

Listing 2.1: JSON-RPC example request [4]

{
" j s o n r p c " : " 2 . 0 " ,
" id " : " 1 " ,
" r e s u l t " : {

" u r i " : " f i l e : /// p%3A/mseng/VSCode/ Playgrounds /cpp/ provide . cpp " ,
" range " : {

" s t a r t " : {
" l i n e " : 0 ,
" c h a r a c t e r " : 4

} ,
" end " : {

" l i n e " : 0 ,
" c h a r a c t e r " : 11

}
}

}
}

Listing 2.2: JSON-RPC example response [4]

9

2. Backgground

One major drawback is that the LSP primarily targets textual languages and therefore
lacks in supporting prominent IDE features like graphical languages. This often leads to
a mixture of different protocols to create hybrid modeling tools for graphical and textual
languages. In this thesis, the Sprotty framework is used to extend the LSP to synchronize
the textual- and graphical model of the editor.

2.4 Sprotty
Sprotty is an open source web-based framework which allows adding modern diagrams to
web applications with little effort. Its architecture allows the distribution of the diagram
execution between a client and a server. Diagrams often only visualize a small part of a
big data set which means that the client only needs the required information to render
the diagram which matches the LSP. Sprotty provides a powerful Java library that was
designed to enhance language servers and therefore to take over the graphical part in
IDEs. It works particularly well in combination with language servers generated by the
Xtext framework [10].

The basis of an application created with Sprotty are two major components. The client
that interacts with the user holds the current diagram of the model and renders it.
By using Scalable Vector Graphics (SVG) the framework provides stable and scalable
rendering on a wide range of browsers. The optional server knows about the underlying
semantic model and how to map it to diagram elements. The client and the server
communicate with each other by using a JSON protocol. The client passes messages
to the server or processes them locally so Sprotty can also be used as a client-only app
without a backend [11]. The code of the client is written in Typescript to avoid problems
of cross-compilation. Both the server and the client are using dependency injection
(InversifyJS/Guice) which offers great flexibility for production-ready applications as
almost every aspect can be tweaked [10].

The Viewer, which is a main component of the architecture, uses the model to create a
virtual Document Object Model (DOM) and it also adds event listeners for actions. These
actions are used for operations on the graph model. The ActionDispatcher receives such
actions from the Viewer and converts them to commands which describe the behavior of
the operation by using the ActionHandler and sends them to the CommandStack. The
CommandStack then executes the actions [12].

Sprotty stores the diagram in a model called SModel and all elements in the model inherit
from SModelElement. Every SModelElement has an ID and a certain type to look up
its corresponding view. Inside the model, the elements are structured as a tree and the
root of the tree is always an instance of SModelRoot. The framework also provides a
library to convert the model into a graph with nodes and edges as it is a common case for
visualization but it is not mandatory. An SGraph consists of SNodes which are connected
with SEdges. SLabels are used to get some text into the diagram [12]. The SGraph
and its elements play an important role in later chapters for realizing the multi-notation
support.

10

2.5. Xtext

Figure 2.16 shows the architectural overview of Sprotty. The architecture where the key
feature is a unidirectional cyclic event flow is inspired by FLUX and other reactive web
frameworks [12].

Figure 2.16: Sprotty Architectural-Overview [12]

2.5 Xtext
Xtext is an open-source framework for implementing domain-specific languages (DSLs)
and it is part of the Eclipse-Modeling-Framework-Projects (EMF). It is easy to learn and
therefore lets you implement languages quickly [13]. This framework is important for
this thesis because of its integration with LSP and Sprotty. In the following, we focus
only on aspects of the Xtext framework which are relevant for later chapters.
The Xtext framework only needs a grammar specification to start a DSL implementation.
The grammar is similar to the Extended Backus–Naur Form (EBNF) but was enhanced
with additional features for type inheritance and information for attributes and references.
With the specified grammar file, the framework automatically generates a complete
language infrastructure, including the parser, code generator, or interpreter and other
components that can be customized through Dependency Injection (DI) [13].

For Xtext the grammar file plays an important role because it is a DSL designed to
describe textual languages and the grammar of Xtext itself is also implemented with
Xtext. The grammar file describes the syntax and how it is mapped to the semantic
model which equals an in-memory object graph. This is done on the fly by the Xtext
parser when it consumes the input file. Such object graphs are instances of EMF Ecore

11

2. Backgground

models. These models consist of an EPackage that contains EClasses, EDataTypes,
and EEnums, and these elements are used to describe the structure of the instantiated
objects [14].

2.6 Visual Studio Code
Visual Studio Code is a web-based, lightweight but powerful source code editor made
by Microsoft [15]. While the differences in tool choices depend on the type and role
of a developer Visual Studio Code is one of the most popular editors across the board.
In the Stack Overflow 2021 Developer Survey VS Code was ranked the most popular
developer environment tool [16]. The editor can be installed on every common operating
system like Windows, macOS, and Linux and its features include support for debugging,
syntax highlighting, code completion, code refactoring, and version control. It also offers
support for many different programming languages like Java, JavaScript, Go, Node.js,
Python, C++, C, Rust, and Fortran [15]. The editor is based on the Electron framework
which is used to develop Node.js web applications. One big benefit that VS Code offers
is that it can be extended with additional plugins that increase the abilities and language
support of the editor. The marketplace which is integrated into the user interface of the
application allows selecting a favored plugin from all kinds of different extensions. So
almost every part of the editor can be customized. This is possible through the Extension
API which is used to enhance the editor. Even many core features are built as extensions
and use the same API [17]. A language extension is the main aspect of this thesis and
because VS Code offers a great ecosystem to deploy a hybrid modeling tool later chapters
will explore how to extend a VS CODE extension.

12

CHAPTER 3
Multi-Notation Support for a

Hybrid VS Code Modeling Tool

This chapter deals with the research objective on how to extend the bigER modeling tool
which is based on LSP and Sprotty to support various ER notations. The modeling tool
for creating ER diagrams is implemented as a VS Code extension and offers a textual and
a graphical editor. The extension with a simple default ER notation will illustrate the
approach and will be extended throughout the chapter. Because the whole extension was
already built as a full-fledged hybrid modeling tool, this approach focuses on enabling
the multi-notation support on the language server and on the rendering of the web view
for the graphical editor.

First, we will look into the architectural overview of the VS Code extension followed
by the extension of the language server. For this we will enhance the grammar with
the characteristics of the notations Bachman, Chen, Crow’s Foot, Min-Max, and UML
and adapt the validation of the language model with additional constraints which are
not possible to express through the grammar. After the validator, the generator for
transforming the model to an SGraph will be extended and a NotationHandler will be
created as preparation to allow a notation change on the client side as well. When the
language server supports the five notations we will create an individual rendering for
every notation in the webview of the client. To be able to switch the notation in the
graphical editor as well we will add a drop-down to the toolbar of the webview and we
will create a custom action to propagate a notation change from the webview to the
language server.

3.1 VS Code Extension
Figure 3.1 shows the architecture overview of the VS Code extension for hybrid ER-
Diagramm modeling. The bigER modeling tool consists of three core components. The

13

3. Multi-Notation Support for a Hybrid VS Code Modeling Tool

language server was enhanced with Sprotty to extend the LSP with Sprotty actions, the
webview which renders the Sprotty diagrams of the graphical model, and the extension.
The extension handles the communication by receiving and sending extended Sprotty
LSP messages for textual- and graphical language features. The architecture is realized
as a client-server application where the extension and the webview belong to the client
side and the language server to the server side [18].

Figure 3.1: Architecture of the bigER modeling tool [18]

The language server provides language-specific functionality to the client and the textual
language was implemented with the Xtext language workbench that generates a whole
language infrastructure. To enable graphical modeling the language server was enhanced
with graphical language features through the Sprotty framework. A diagram generator
is required on the server side for Sprotty which converts the underlying textual model
to a graph-like model called SGraph. To allow custom actions for additional diagram
operations the communication with the client is realized in the Diagram Server that
extends the Language Aware Diagram Server implementation provided by Sprotty [18].

The webview which is part of the client is separated from the extension in a different npm
package and the extension makes use of the webview by loading a single JavaScript file

14

3.2. Language Server

which is bundled through webpack. The diagrams of the graphical model are rendered
in a webview panel inside VS Code which can display diverse web content within an
iframe HTML element. Through dependency injection in the Diagram DI Container, it is
possible to configure certain aspects of the diagram like custom actions or the elements
of the model and their corresponding view and CSS styles. The Sprotty Webview Starter
which is used to create the diagram with additional VS Code bindings also binds a toolbar
to the diagram to allow the execution of operations on the diagram [18].

The extension combines the webview with the language server and acts as a central
communication point. The language client which is part of the extension executes
available binary from the language server and handles the communication by receiving
and sending extended Sprotty LSP messages for textual- and graphical language features.
For every VS Code extension, the base consists of an Extension Manifest in a package.json
file which defines that the extension should be activated when a .erd file is opened. Upon
activation commands are registered, the language client will be started and the webview
will be initialized [18].

3.2 Language Server
To achieve multi-notation support inside the bigER extension, the first step is to adapt
the underlying grammar of the language server because the modeling tool uses its textual
representation as its main model and therefore the graphical representation always follows
the elements specified textually [3]. In the following the process of extending the textual
modeling language of the VS Code extension will be described and it will be shown how
to extend the Xtext grammar to support various notations.

3.2.1 Grammar

The goal is to extend the existing grammar of bigER which offers a basic default ER
notation with the popular notations Bachman, Chen, Crow’s Foot, Min-Max, and UML.
Therefore the grammar must support the characteristics of every notation. Extending an
existing language is always tricky because the extension should be minimal to keep the
resulting grammar as simple as possible but still sufficient enough to achieve the desired
expressiveness. In the following, we will extend the grammar file EntityRelationship.xtext
which is located in the language package of the project folder. Because the official Xtext
documentation already offers a great overview of the specific language used for Xtext
grammar 1 we assume the reader to be familiar with the basic concepts.

Listing 3.1 shows the grammar of bigER. The language offers different modeling features.
First, the name of the diagram has to be defined followed by the generateOption. The
generationOption allows determining if a Structured Query Language (SQL) Script should
be generated out of the underlying model of the language. The notationOption was
already implemented to select a favored notation but the only NotationOptionType

1https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.htm

15

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.htm

3. Multi-Notation Support for a Hybrid VS Code Modeling Tool

available is the default value. After these options, the language allows the creation of
entities and relationships. An entity has a name as ID and two optional parameters to
define if it is weak or if it extends another entity. It also provides an arbitrary number
of attributes. The relationship has similar values as the entity except for the difference
that it cannot extend other relationships and it contains up to three RelationEntities.
A RelationEntity contains the information about the involved entity followed by the
cardinality. For the cardinality, it is possible to choose from two offered values from the
CardinalityType or to define a custom string.

grammar org . b ig . erd . E n t i t y R e l a t i o n s h i p with org . e c l i p s e . xtext . common . Terminals

g e n e r a t e e n t i t y R e l a t i o n s h i p " http : / /www. big . org / erd / E n t i t y R e l a t i o n s h i p "

Model :
’ erdiagram ’ name=ID (’ { ’

(’ generate ’ ’= ’ generateOption=GenerateOption)?
(’ notat ion ’ ’= ’ notat ionOption=NotationOption)?

’ } ’) ?

// keep old g e n e r a t e opt ion u n t i l dependent code i s f i x e d
(g e n e r a t e S q l ?=’ generateSq l ’) ?

(e n t i t i e s+=Entity | r e l a t i o n s h i p s+=R e l a t i o n s h i p) ∗ ;

Entity :
(weak?=’weak ’) ? ’ e n t i t y ’ name=ID (’ extends ’ extends =[Entity]) ? (’ { ’

(a t t r i b u t e s += A t t r i b u t e)∗
’ } ’) ? ;

R e l a t i o n s h i p :
(weak?=’weak ’) ? ’ r e l a t i o n s h i p ’ name=ID (’ { ’

(f i r s t=R e l a t i o n E n t i t y ((’ − > ’ second=R e l a t i o n E n t i t y)
(’−>’ t h i r d=R e l a t i o n E n t i t y) ?) ?)
(a t t r i b u t e s += A t t r i b u t e)∗

’ } ’) ? ;

R e l a t i o n E n t i t y :
t a r g e t =[Entity] (’ [’

(c a r d i n a l i t y=Cardinal i tyType | c u s t o m M u l t i p l i c i t y=STRING)
’] ’) ? (p a r t i a l ?=’ p a r t i a l ’) ? ;

A t t r i b u t e :
name=ID (’ : ’ datatype=DataType)? (type=AttributeType) ? ;

DataType :
type=ID (’ (’ s i z e=INT ’) ’) ? ;

enum GenerateOption :
OFF=’ o f f ’ | SQL=’ sq l ’ ;

enum NotationOption :
DEFAULT=’ d e f a u l t ’ ;

enum AttributeType :
NONE = ’ none ’ | KEY = ’ key ’ | FOREIGN_KEY = ’ f o r e i g n −key ’ |
PARTIAL_KEY = ’ p a r t i a l −key ’ | OPTIONAL = ’ op t io na l ’ |
DERIVED = ’ der ived ’ | MULTIVALUED = ’ mult ivalued ’ ;

enum Cardinal i tyType :
ONE = ’1 ’ | MANY = ’N’ ;

Listing 3.1: Xtext Grammar of bigER

To allow different notations the first step is to define new enums for the notationOp-
tionType. This value can be entered after the notation keyword in the textual language

16

3.2. Language Server

and is important because it carries the information about the selected notation to the
language server and the webview of the client.

enum NotationType :
DEFAULT=’ d e f a u l t ’ | CHEN=’chen ’ | MINMAX=’minmax ’ | BACHMAN=’bachman ’ |
CROWSFOOT=’ crowsfoot ’ | UML=’uml ’ ;

Listing 3.2: NotationType

The greatest difference in the textual representation of the notations belongs to the
cardinality because every notation has certain options to define the multiplicities of a
relation. In the grammar, the RelationEntity already contains the information about
the cardinality but the CardinalityType only offers two values which is not enough
to express one of the desired notations. The string customMultiplicity can also not
be used to define the multiplicity because it has to match a certain pattern. For the
notations Chen, Crow’s Foot, and Bachman it is sufficient to add additional enums for the
CardinalityType to describe all possible multiplicities. Chen uses the enums ONE, MANY,
and MANY_CHEN to describe the cardinality of an entity. Bachman uses the enums
ONE, ZERO, ONE_OR_MORE, and ZERO_OR_MORE and Crow’s Foot requires the
enums ONE, ZERO_OR_MORE, ONE_OR_MORE, or ZERO_OR_ONE to express
all possible multiplicities. For the language of the textual editor, it is self-explanatory
that for every constant the respective values will be used.

In the grammar, there are no restrictions on which enums of the CardinalityType are
allowed for a certain notation. For this, a validator comes into play which we will explain
later. This validator ensures that every notation only uses the correct types.

enum Cardinal i tyType :
NONE = ’NONE’ | ONE = ’1 ’ | MANY = ’N’ | MANY_CHEN = ’M’ |
ZERO = ’0 ’ | ONE_OR_MORE = ’1+ ’ | ZERO_OR_MORE = ’0+ ’ | ZERO_OR_ONE = ’ ? ’ ;

Listing 3.3: CardinalityType

The cardinality of the notations Min-Max and UML cannot just be expressed through
a simple value represented by the CardinalityType and UML also allows additional
information about the type of aggregation and role of an entity. To be able to express
both notations inside a RelationEntity two additional terminals are required one for each
notation.

R e l a t i o n E n t i t y :
t a r g e t =[Entity] (’ [’

(c a r d i n a l i t y=Cardinal i tyType | c u s t o m M u l t i p l i c i t y=STRING |
minMax=MinMax | uml=Uml)

’] ’) ? (r o l e=STRING) ? ;

Listing 3.4: RelationEntity

The cardinality of the Min-Max notation consists of a nonoptional number to define
the lower bound followed by a comma. After the comma, there are two possibilities to

17

3. Multi-Notation Support for a Hybrid VS Code Modeling Tool

define the upper bound. Again, it is either possible to define a simple number or to use
the asterisk symbol to describe an arbitrary upper bound for the entity. When entering
the upper bound, it is required that it is as great or greater as the lower bound. This
requirement cannot be expressed through the grammar itself and therefore the validator
checks if this condition is not violated.

t e r m i n a l MinMax :
(’ 0 ’ . . ’ 9 ’) + ’ , ’ ((’ 0 ’ . . ’ 9 ’) + | ’ ∗ ’) ;

Listing 3.5: Min-Max terminal

The integration of the UML notation is the most complex one out of the five notations.
At first, it is possible to define the aggregation type of an entity as compositing or
aggregation. After the aggregation type, a required number must be entered to define the
lower bound of the cardinality. In contrast to the Min-Max notation, it is not necessarily
required in UML to define an upper bound but again there are two similar possibilities
to Min-Max to do so. After entering two periods either a number or the asterisk symbol
can be used as the upper bound. Additional validations of the model again check that
the upper bound is either as great or greater as the lower bound because such conditions
are impossible to define by the grammar itself. Besides these options, it is also possible
to only use the asterisk symbol to define that zero or more entities of a certain kind are
involved in the relationship.

t e r m i n a l Uml :
((’ comp ’) ? | (’ agg ’) ?) (((’ 0 ’ . . ’ 9 ’) + ((’ . . ’ (’ 0 ’ . . ’ 9 ’) +) ? | (’ . . ’ ’ ∗ ’) ?)) | ’ ∗ ’) ;

Listing 3.6: UML terminal

3.2.2 Validation

After the enhancement, the grammar can express the characteristics of five different
notations at once and so the expressiveness has to be restricted to match only the
selected notation. As already mentioned earlier, the grammar cannot express certain
conditions for example that one particular value is greater than another value. For this,
additional validations are required. The grammar of a language has an impact on what
is required for a document or semantic model to be valid. Xtext takes care of this and
offers automated and custom validation. The syntactical correctness of any textual input
is validated automatically by the parser but it is as well possible to specify additional
constraints specific to the model. For a custom validation, the Xtext language generator
provides two Java classes. The first one is a generated abstract class that extends the
AbstractDeclarativeValidator and it is used to register the EPackages for which this
validator introduces constraints. The second Java class is a generated subclass of the
abstract class and this class is the right place for additional validations [14]. In the case

18

3.2. Language Server

of bigER the abstract validator class is called AbstractEntityRelationshipValidator and
the subclass has the name EntityRelationshipValidator and is placed inside the source
folder of the language server.

For the notations Bachman, Chen, and Crow’s Foot the validation is quite simple because
these three notations only use the CardinalityType of the grammar to describe the
multiplicity. For those notations, the validator ensures that only values are used which
are suitable for the selected notation.

de f checkBachmanCardinality (R e l a t i o n E n t i t y r e l a t i o n E n t i t y , R e l a t i o n s h i p r e l a t i o n s h i p ,
EStructura lFeature f e a t u r e) {

i f (r e l a t i o n E n t i t y !== n u l l && (r e l a t i o n E n t i t y . c a r d i n a l i t y === n u l l | |
r e l a t i o n E n t i t y . c u s t o m M u l t i p l i c i t y !== n u l l | |
r e l a t i o n E n t i t y . minMax !== n u l l | | r e l a t i o n E n t i t y . uml !== n u l l | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .MANY | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .MANY_CHEN | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .ZERO_OR_ONE)) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [0] , [0 +] , [1] or [1 +] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

}
}

Listing 3.7: Bachman validation

de f checkChenCardinal i ty (R e l a t i o n E n t i t y r e l a t i o n E n t i t y , R e l a t i o n s h i p r e l a t i o n s h i p ,
EStructura lFeature f e a t u r e){

i f (r e l a t i o n E n t i t y !== n u l l && (r e l a t i o n E n t i t y . c a r d i n a l i t y === n u l l | |
r e l a t i o n E n t i t y . c u s t o m M u l t i p l i c i t y !== n u l l | |
r e l a t i o n E n t i t y . minMax !== n u l l | |
r e l a t i o n E n t i t y . uml !== n u l l | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .ZERO | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .ONE_OR_MORE | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .ZERO_OR_MORE | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .ZERO_OR_ONE)) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [1] , [N] or [M] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

}
}

Listing 3.8: Chen validation

de f checkCrowsFootCardinal ity (R e l a t i o n E n t i t y r e l a t i o n E n t i t y , R e l a t i o n s h i p r e l a t i o n s h i p ,
EStructura lFeature f e a t u r e){

i f (r e l a t i o n E n t i t y !== n u l l && (r e l a t i o n E n t i t y . c a r d i n a l i t y === n u l l | |
r e l a t i o n E n t i t y . c u s t o m M u l t i p l i c i t y !== n u l l | |
r e l a t i o n E n t i t y . minMax !== n u l l | |
r e l a t i o n E n t i t y . uml !== n u l l | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .MANY_CHEN | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .MANY | |
r e l a t i o n E n t i t y . c a r d i n a l i t y === Cardinal i tyType .ZERO)) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [1] , [0 +] , [1 +] or [?] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

}
}

Listing 3.9: Crow’s Foot validation

For the Min-Max notation, the validator first checks if the textual input uses the right
element in the grammar and not just a simple CardinalityType or a custom string for
example. If the input is valid the validation verifies that the entered upper bound is

19

3. Multi-Notation Support for a Hybrid VS Code Modeling Tool

as great or greater than the lower bound. This check is not required when the asterisk
symbol is used to define an arbitrary upper bound.

de f checkMinMaxCardinality (R e l a t i o n E n t i t y r e l a t i o n E n t i t y , R e l a t i o n s h i p r e l a t i o n s h i p ,
EStructura lFeature f e a t u r e) {

i f (r e l a t i o n E n t i t y === n u l l) {
r e t u r n

}
i f (r e l a t i o n E n t i t y . minMax === n u l l) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [min , max] or [min , ∗] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

} e l s e {
i f (r e l a t i o n E n t i t y . minMax . t o S t r i n g . c o n t a i n s (" , ")) {

i f (r e l a t i o n E n t i t y . minMax . t o S t r i n g . s p l i t (" , ") . l e n g t h == 2){
var f istNumber =
r e l a t i o n E n t i t y . minMax . t o S t r i n g . s p l i t (" , ") . get (0)
var secondNumber =
r e l a t i o n E n t i t y . minMax . t o S t r i n g . s p l i t (" , ") . get (1)

i f (f istNumber . matches ("\\ d+") &&
secondNumber . matches ("\\ d+") &&
I n t e g e r . p a r s e I n t (f istNumber) >
I n t e g e r . p a r s e I n t (secondNumber)) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [min , max]
min <= max ’ ’ ’ , r e l a t i o n s h i p , f e a t u r e)

}
} e l s e {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [min , max] or
[min , ∗] ’ ’ ’ , r e l a t i o n s h i p , f e a t u r e)

}
} e l s e {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [min , max] or [min , ∗] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

}
}

}

Listing 3.10: Min-Max validation

For UML, the same checks for the boundaries are made. The UML notation also offers
the opportunity to declare an entity of a relationship as composition or aggregation
and for this, the validator checks that only one entity of a relationship has the optional
information about the aggregation. For the RelationEntity of the grammar, it is also
possible to define a role independent of the selected notation. A role is only allowed for
UML and so the validator verifies that for every other notation no role is used. Whenever
an error within the textual input is discovered, the user gets informative feedback in
form of a usability message as they type.

20

3.2. Language Server

de f checkUmlCardinal ity (R e l a t i o n E n t i t y r e l a t i o n E n t i t y , R e l a t i o n s h i p r e l a t i o n s h i p ,
EStructura lFeature f e a t u r e) {

i f (r e l a t i o n E n t i t y === n u l l) {
r e t u r n

}
i f (r e l a t i o n E n t i t y . c u s t o m M u l t i p l i c i t y !== n u l l | |
r e l a t i o n E n t i t y . minMax !== n u l l | |
(r e l a t i o n E n t i t y . uml === n u l l && r e l a t i o n E n t i t y . c a r d i n a l i t y !==
Cardinal i tyType .ZERO && r e l a t i o n E n t i t y . c a r d i n a l i t y !==
Cardinal i tyType .ONE)) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [num] , [min . . max] or [min . . ∗] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

}
i f (r e l a t i o n E n t i t y . uml . c o n t a i n s (" . . ")) {

var c a r d i n a l i t y = r e l a t i o n E n t i t y . uml

// remove type (agg | comp)
i f (r e l a t i o n E n t i t y . uml . c o n t a i n s (" ")) {

c a r d i n a l i t y = r e l a t i o n E n t i t y . uml . s p l i t (" ") . get (1)
}
var numbers = c a r d i n a l i t y . s p l i t (" \ \ . \ \ . ")
i f (numbers . l e n g t h === 2) {

i f (numbers . get (0) . isEmpty | | numbers . get (1) . isEmpty) {
i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [num] , [min . . max] or
[min . . ∗] ’ ’ ’ , r e l a t i o n s h i p , f e a t u r e)

}
var n1 = numbers . get (0)
var n2 = numbers . get (1)
i f (n1 . matches ("\\ d+") && n2 . matches ("\\ d+") &&
I n t e g e r . p a r s e I n t (n1) > I n t e g e r . p a r s e I n t (n2)) {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [min . . max]
min <= max ’ ’ ’ , r e l a t i o n s h i p , f e a t u r e)

}
} e l s e {

i n f o (’ ’ ’ Wrong c a r d i n a l i t y . Usage : [num] , [min . . max] or [min . . ∗] ’ ’ ’ ,
r e l a t i o n s h i p , f e a t u r e)

}
}

}

Listing 3.11: Min-Max validation

3.2.3 Graph generation

When Xtext has parsed the textual input into an in-memory representation a generator
inside the language server transforms the EMF model of the modified document to
a Sprotty diagram model (SGraph) that describes the associated diagram. This is a
very important step because it provides the opportunity to have an impact on the
transformation. The bigER tool contains already the ERDiagramGenerator which
implements the IDiagramGenerator interface provided by Sprotty and this generator
adds entities and relationships to the graph.

For the webview of the client, additional values inside the SGraph are required to transport
the information about the selected notation from the language server to the webview.
For this, a new ERModel was introduced which extends the SGraph from the Sprotty
framework. The ERModel has an extra value for the notation but this value is only
used for the toolbar of the webview and so the extension of the SGraph is not enough
to enable a notation-specific rendering in the webview. On the client part of Sprotty,
every element in the graph will be rendered by a corresponding view. Such a view only
receives the specific element which has to be rendered. The only elements of the diagram

21

3. Multi-Notation Support for a Hybrid VS Code Modeling Tool

which will be visualized differently depending on the chosen notation are the SEdges.
The NotationEdge extends the SEdges and adds further information about the selected
notation, the cardinality of the relationship, or an optional role to the Edge. When
creating the NotationEdge in the Generator all these values will be set and therefore
enables the possibility to render every edge depending on the selected notation.

@Accessors
c l a s s ERModel extends SGraph {

S t r i n g name
S t r i n g generateType
S t r i n g n o t a t i o n

new () {
}
new ((ERModel)=>void i n i t i a l i z e r){

i n i t i a l i z e r . apply (t h i s)
}

} .

Listing 3.12: ERModel

@Accessors
c l a s s NotationEdge extends SEdge {

Boolean i s S o u r c e
S t r i n g n o t a t i o n
Boolean showRelat ionship
S t r i n g r e l a t i o n s h i p C a r d i n a l i t y
S t r i n g umlRole

new () {
}

new ((NotationEdge)=>void i n i t i a l i z e r) {
i n i t i a l i z e r . apply (t h i s)

}
}

Listing 3.13: NotationEdge

Not every notation requires to render nodes for relationships like Crow’s Foot. For those
cases, only one edge between two entities will be added to the graph instead of two. An
edge always carries the cardinality information for one entity involved in a relationship
and therefore it is problematic when only one edge is added to the graph. To overcome
this problem the cardinality information from two entities will be combined into one and
the webview will split these values again to render each end of the edge corresponding to
the given cardinality.

3.2.4 Notation Handler

The toolbar of the diagram view of bigER, which will be created for the webview in
the following part, should allow choosing the favored notation by a dropdown. For
this, a custom action has to be sent from the client to the language server. In Sprotty,
all kinds of actions are received in the ActionDispatcher and delegated to a respective

22

3.3. Webview

ActionHandler where they are converted to commands. Such commands are passed to
the CommandStack by the dispatcher to update the underlying model [12]. bigER uses
its textual representation as its main model and therefore the graphical representation
always follows the elements specified textually [3]. For customized actions, bigER uses
the ERDiagramServer which extends the LanguageAwareDiagramServer provided by
Sprotty Xtext. The ERDiagramServer determines which ActionHandler hast to be used
for a certain kind of action. Whenever the server receives a ChangeNotationAction, the
NotationHandler changes the value for the selected notation inside the textual language,
and therefore an SGraph with the new notation will be generated. This newly created
SGraph will be sent to the webview where the rendering changes depending on the chosen
notation.

3.3 Webview

After the enhancement of the language server, the SGraph contains additional information
by which the webview can render the edges of the graph in the diagram view differently
depending on the selected notation. This chapter describes the necessary extension in
the webview to enable the rendering of five different notations in the diagram view.

3.3.1 Custom View for Edges

Sprotty can be customized by using dependency injection and diagrams are implemented
by creating a DI container. With this container, it is possible to define the bindings to
services and the mapping of SModel elements to their corresponding view classes [19].

Before creating a custom view to render edges depending on the selected notation a
counterpart to the NotationEdge on the server side has to be implemented in the webview
as well to be able to receive the additional information inside the edges of the graph. In
the model.ts file of the webview package, the NotationEdge is defined as an export class
which offers the same values as the NotationEdge on the server side. After doing so it is
possible to create a custom view for the NotationEdge which handles the rendering. The
already mentioned DI container with the mapping of the elements to their corresponding
view is located in the di.config.ts file. Here it is required to add a further mapping of the
NotaitonEdge to the NotationEdgeView which will be created shortly.

In the bigER extension custom views were already created for entities and relationships
inside the views.tsx file. For the creation of the NotationEdgeView two methods are
required to be defined. The first one is the render method. This method is required to
make certain decisions about the elements involved in the rendering. The first check
determines if both ends of an edge need to be rendered. This is only the case for Crow’s
Foot and UML because for those two notations the entities in the diagram are directly
connected without a relationship node in between. Next, it has to be decided if the label
of an edge should be rendered. The label contains the name of the relationship specified
in the textual editor. This decision is required for the Bachman and Crow’s Foot notation

23

3. Multi-Notation Support for a Hybrid VS Code Modeling Tool

as they do not show the name of the relationship on the edge. For this, the rendering
of the child elements of the SEdge is left out. The only child of a SEdge in the bigER
extension is a SLabel which again has its own view. The second method required for the
NotationEdgeView is the renderEndOfEdge-method. As the name already suggests, this
method is used for the notation-specific rendering of the end of an edge which means for
example for Bachman, a circle will be rendered if the cardinality equals one in the textual
input. If both ends have to be rendered in a specific way the method has to be called
twice because it only deals with one end at a time. The notations Chen and Min-Max
are not covered in this method because they do not need an additional rendering of their
ends because a normal line for an edge with a cardinality labels is sufficient.

For the notations Bachman, Crow’s Foot and UML an SVG will be rendered on the end of
an edge. SVG views are suited very well for the rendering as they allow a high scalability
which is often one of the shortcomings of many other existing modeling tools [3]. Creating
those SVGs is tricky because to realise a certain design basic shapes like circles or lines
have to be combined to form the desired shape. The transformation is also very important
when creating an SVG for bigER because when an entity or a relationship is moved
around the SVGs on the edges have to move and rotate as well to always maintain the
same relative position. Listing 3.14 shows an example for the Crow’s Foot notation with
the cardianlity ONE_OR_MORE to demonstrate the content of an SVG.

<svg>
<l i n e x1={point . x + 24} y1={point . y + 11} x2={point . x + 24} y2={point . y − 11}

transform ={‘ r o t a t e (${ t h i s . ang le (point , next)} ${ point . x} ${ point . y}) ‘}/ >
<l i n e x1={point . x + 17} y1={point . y} x2={point . x} y2={point . y + 11}

transform ={‘ r o t a t e (${ t h i s . ang le (point , next)} ${ point . x} ${ point . y}) ‘}/ >
<l i n e x1={point . x + 17} y1={point . y} x2={point . x} y2={point . y − 11}

transform ={‘ r o t a t e (${ t h i s . ang le (point , next)} ${ point . x} ${ point . y}) ‘}/ >
</svg>

Listing 3.14: Min-Max terminal

3.3.2 Toolbar

bigER is a hybrid modeling tool which means it is either possible to change the underlying
model through the textual editor or the graphical editor. Changing the favored notation
is currently only possible by defining the notation in the textual language. To be able
to change the notation in the graphical view as well a drop-down in the toolbar will
be integrated. In the extension, the webview starter already binds a toolbar to execute
actions on the diagram. Whenever an action is sent or received from the extension the
diagram server which acts as a model source is responsible for handling those actions.

In bigER custom actions were already created for example to add entities via the
diagram view and those actions are defined in the actions.ts file in the package of the
webview. On the server side, the NotationHandler was already created which receives
ChangeNotationActions. The ChangeNotationAction has to be added on the client side
in the actions.ts file as well. It contains only a notation value to transport the information
about the selected notation from the client to the server.

24

3.3. Webview

export i n t e r f a c e ChangeNotationAction {
kind : t y p e o f ChangeNotationAction .KIND
n o t a t i o n : s t r i n g

}

Listing 3.15: ChangeNotationAction

The integration of the drop-down for the notations is a good opportunity to change the
appearance so that it better blends in into VS Code. With the Webview UI Toolkit2

for VS Code, extensions can easily be created that appear like the editor itself. The
toolkit provides HTML-elements like for example a vscode-button that already offers
the design of VS Code. The toolkit also offers the right element for a drop-down. Via
vscode-dropdown, the drop-down can be created and via vscode-option a selectable
element can be defined within the drop-down. An EventHandler listens to a change
event of the drop-down. When changing the notation the handler extracts the value
for the notation out of the DOM and passes the value to the ActionDispatcher as a
ChangeNotationAction. This action will be sent through the extension to the language
server where the NotationHandler changes the notation value in the textual language
with the values provided through the ChangeNotationAction.

2https://github.com/microsoft/vscode-webview-ui-toolkit

25

https://github.com/microsoft/vscode-webview-ui-toolkit

CHAPTER 4
Showcase

After the implementation of various ER notations in the previous chapter the bigER
modeling tool offers the opportunity to create ER diagrams for Bachman, Chen, Crow’s
Foot, Min-Max, and UML. In this chapter, the result of the integration of the multi-
notation support will be shown.

4.1 Bachman

The ER concept for the Bachman notation is shown in table 4.1. Four options are
available to define the cardinality. After the name of the entity either 0 for zero, 0+ for
zero or more, 1 for one, and 1+ for one or more follows.

Table 4.1: Bachman Syntax

ER Concept Bachman
A[0] zero
A[0+] zero or more
A[1] one
A[1+] one or more

If the user has selected the Bachman notation and enters a valid input that lies within
the grammar of the textual language but does not match the notation a usability message
will be created from the validator. The usability message informs the user about the
available options for the Bachman notation.

27

4. Showcase

Figure 4.1: Bachman usability message

The rendering in the diagram view is different for every cardinality option. Figure 4.2
shows the cardinalities zero for E1 and zero or more for E2 and figure 4.3 shows one for
E1 and one or more for E2.

Figure 4.2: Bachman zero and zero or more

Figure 4.3: Bachman one and one or more

4.2 Chen
Table 4.2 shows how to define the cardinality for the Chen notation and there are
three options available to choose from. After entering the name of the notation the
CardinaltyType 1 for one and N or M for many follows.

Table 4.2: Chen Syntax

ER Concept Chen
A[1] one
A[M] many
A[N] many

For an input that lies within the grammar but does not match the Chen notation, a
usability message with the available cardinality options will be created.

Figure 4.4: Chen usability message

28

4.3. Crow’s Foot

The rendering in the diagram view is quite simple because no additional rendering for the
end of the edges is needed. It is sufficient to only show the cardinality label on the edges.

Figure 4.5: Chen cardinality

4.3 Crow’s Foot

The Crow’s Foot notation offers four options to define the cardinality which are shown in
table 4.3. After the name of the entity, the multiplicity can either be defined as 1 for
one, 0+ for zero or more, 1+ for one or more, and ? for one or zero.

Table 4.3: Crow’s Foot Syntax

ER Concept Crow’s Foot
A[1] one
A[1+] one or more
A[0+] zero or more
A[?] zero or one

Whenever the user inputs something that lies within the grammar but does not match
the Crow’s Foot notation a usability message with the available cardinality options will
be created.

Figure 4.6: Crow’s Foot usability message

Every of the four cardinality options offers a different rendering of the edges and in
contrast to other notations a relationship node will not be shown. Figure 4.7 shows the
cardinalities one for E1 and one or more for E2 and figure 4.8 shows zero or more for E1
and one or zero for E2.

Figure 4.7: Crow’s Foot one and one or more

29

4. Showcase

Figure 4.8: Crow’s Foot zero or one and zero or more

4.4 Min-Max

For the Min-Max notation it is possible to define a lower and an upper bound for the
cardinality. The min and the max values are separated by a comma and both values are
restricted in a way that the max value has to be equal to or greater than the min value.
Table 4.4 shows the concrete syntax of the Min-Max cardinality.

Table 4.4: Min-Max Syntax

ER Concept Min-Max
A[min,max] min <= max
A[min,*] * for arbitrary upper bound

Two different usability messages inform the user about an incorrect input. Whenever the
user inputs something that lies within the grammar but does not match the Min-Max
notation a usability message informs the user about the available options. The second
usability message will be displayed when the user has chosen a lower bound which is
greater than the upper bound.

Figure 4.9: Min-Max wrong input usability message

Figure 4.10: Min-Max boundaries usability message

As for Chen the rendering of the Min-Max notation is quite simple. Only the cardinality
enclosed in brackets will be rendered on the edges.

30

4.5. UML

Figure 4.11: Min-Max cardinality

4.5 UML

UML is the most complex notation supported by the bigER extension. As shown in
table 4.5 the cardinality can either be defined with a simple number or a asterisk symbol
but it is also possible to define a lower and an upper bound just like for MIN-MAX.
The only difference between MIN-MAX and UML is the double period between the two
boundaries instead of a comma. Despite the cardinality, the user is also able to define an
entity as aggregation with the keyword agg or as composition with the keyword comp. In
UML it is also possible to enter a role for an entity which is done with a string in single
quotes after the information about the cardinality.

Table 4.5: UML Syntax

ER Concept Min-Max
A[num] arbitrary number
A[*] zero or more
A[min..max] min <= max
A[min..*] * for arbitrary upper bound
A[agg min..max] agg for aggregation
A[comp min..max] comp for composition
A[min..max]’Role’ Definition of a role

In UML three different usability messages inform the user about invalid input. Figure
4.12 shows the message when a wrong cardinality is entered which is not allowed in UML.
A message like on figure 4.13 will be displayed when the lower bound is bigger than the
upper bound and figure 4.14 shows a usability message that will be created when for
more than one entity a aggregation information was entered.

Figure 4.12: UML wrong input usability message

31

4. Showcase

Figure 4.13: UML boundaries usability message

Figure 4.14: UML multiple aggregation usability message

In the bigER extension only for the UML notation, it is allowed to define a role so for
very other supported notation an error message will be displayed when a role is entered.

Figure 4.15: Role not allowed usability message

For a relationship with two entities involved the rendering for the UML notation consists
mostly of rendered labels. The role will be displayed underneath the cardinality and the
name of the relationship will be shown on the edge. Additionally, when an aggregation
information is entered a diamond-shaped end of an edge will be rendered.

Figure 4.16: UML cardinality

Figure 4.17: UML aggregation

32

4.5. UML

Figure 4.18: UML composition

For ternary relationships there will be a relation node displayed and the label on the
edges with the name of the relation will not be shown.

Figure 4.19: UML ternary relationship

33

4. Showcase

4.6 Toolbar
The toolbar of the graphical editor was redesigned to blend in more into the appearance
of VS Code and to give an alternative to the textual editor to switch between notation
styles. The notation can be switched by a context menu which appears when the mouse
cursor hovers over the selected notation.

Figure 4.20: bigER toolbar Figure 4.21: bigER toolbar notations

To increase the usability and to help the user to understand which cardinality op-
tions are available for a selected notation it is possible to hover over the help button
which will show a separate panel with a usage information. Figure 4.22 shows as an
example the usage information for the Bachman notation.

Figure 4.22: bigER toolbar notations

34

CHAPTER 5
Discussion

In this chapter, observations during the development phase of this thesis will be discussed
and afterwards the bigER tool will be compared with its main competitors.

5.1 Observations
LSP, Sprotty, and Xtext provided a great infrastructure for the integration of the multi-
notation support for the textual and the graphical editor as well but on the client side,
there are still view shortcomings in the rendering of the edges for the UML notation.
For UML additional labels for the cardinality and an optional role will be rendered.
These labels have a fixed position relative to the relation edge which can lead to view
problems. One problem is that it is hard to determine the position of the cardinality
label independent of the user input for the multiplicity. A very large number can lead to
an overlapping of elements in the diagram which is shown in figure 5.1. The positioning
is especially hard for the entities rendered on the right end of an edge. The same problem
with the positioning consists for the UML role. It is hard to find an algorithm for the
calculation of the positioning that creates a satisfying solution for short and long inputs
simultaneously.

Figure 5.1: UML overlapping labels

Another issue with overlapping elements can happen when the label for the name of a
relationship or the cardinality is rendered overlapping with the edges in the graph which

35

5. Discussion

can be seen in figure 5.2. The user can manually solve the problem of the overlapping by
moving the entities but this is not a sufficient solution.

Figure 5.2: Issue with overlapping elements

The last problem in the diagram view which was found during the development is that
the rendering of the edges seems to work only in a certain area of the diagram view. In
figure 5.3 the entity E1 was dragged to the left side of the diagram view until the circle
on the end of the edge started to disappear. It is not clear which component involved in
the rendering causes this problem. It appears this phenomenon is in relation to the size
of the initially rendered diagram. Only when the user tries to move the elements further
apart as the initial rendering this problem occurs.

Figure 5.3: Restricted area for rendering

5.2 Comparison with competing modeling tools
Because of the popularity of entity-relationship modeling a wide variety of tools exists.
In context of VS Code two relevant extensions beside bigER are available named ERD
Editor and ERD Preview. ERD Editor focuses only an a graphical editor and the
supported ER notation is Crow’s Foot. ERD Preview is like bigER a hybrid modeling
tool with a textual and a graphical editor and it also only uses the Crow’s Foot notation.
This makes bigER the only hybrid modeling tool available in the VS Code ecosystem
that provides different ER notation including the Crow’s Foot notation. bigER has
currently the fewest downloads with approximately 800 and ERD Editor the most with
almost 40000 downloads. In comparison, bigER offers a better feature set and great
usability. Until now it is not officialy released but once this is done, we can be confident
that the number of downloads will increase significantly.

The first major release of bigER will be introduced to the ER community in the course of
the ER2022 the 41st International Conference on Conceptual Modeling. The introduction

36

5.2. Comparison with competing modeling tools

paper will provide an overview of the centerpieces of the bigER modeling tool and the
first two major extensions. These two extensions include the multi-notation support
realized in this thesis and an improved edge routing through the libavoid library. bigER
is the first freely available hybrid modeling tool for VS Code and therefore we believe
that it provides a great benefit to the ER community [20].

37

CHAPTER 6
Conclusion

6.1 Summary
Summing up, in the background of this thesis we analyzed the importance of entity-
relationship modeling and the differences between various popular ER notations as
they can express different relationship constraints. Furthermore, we investigated the
technologies LSP, Sprotty, and Xtext which allow the creation of a hybrid modeling
tool with textual and graphical editors for modern lightweight IDEs like VS Code. We
discovered that a Sprotty enhanced language server is very well suited to support multiple
notations within one grammar. The Xtext framework offers a validator that can be
used to restrict the expressiveness of a grammar that supports various notations to only
match one selected notation. We also found out that the elements SGraph and SEdge
from the backend side of Sportty can be extended with additional values to transport
the information about the chosen notation, cardinality, role, and aggregation from the
server to language-agnostic clients. On the client side, Sprotty uses views for every
element in the semantic model and this created the opportunity for the implementation
of customized rendering of notation-specific edges in the graphical view.

6.2 Outlook
With the completion of the implementation of the multi-notation support, we contributed
to the release version of bigER. However, the work for further releases are already in
development. For example bigER offers the feature for SQL Code generation for its
default basic notation but for the newly integrated notations this feature is not supported
yet. The work to support the SQL generations for the new notations is part of a recently
started bachelor thesis and the functionality will be integrated into bigER in a future
release.

39

List of Figures

2.1 Bachman optional entity . 4
2.2 Bachman mandatory entity . 5
2.3 Bachman one or more . 5
2.4 Bachman zero or more . 5
2.5 Chen 1:1 relationship . 5
2.6 Chen 1:N relationship . 5
2.7 Chen M:N relationship . 6
2.8 Crow’s Foot one and only one . 6
2.9 Crow’s Foot one or more . 6
2.10 Crow’s Foot one or more . 6
2.11 Crow’s Foot one or more . 6
2.12 Cardinality for Min-Max . 7
2.13 UML aggregation . 8
2.14 UML composition . 8
2.15 LSP communication during editing session [4] 9
2.16 Sprotty Architectural-Overview [12] . 11

3.1 Architecture of the bigER modeling tool [18] 14

4.1 Bachman usability message . 28
4.2 Bachman zero and zero or more . 28
4.3 Bachman one and one or more . 28
4.4 Chen usability message . 28
4.5 Chen cardinality . 29
4.6 Crow’s Foot usability message . 29
4.7 Crow’s Foot one and one or more . 29
4.8 Crow’s Foot zero or one and zero or more 30
4.9 Min-Max wrong input usability message 30
4.10 Min-Max boundaries usability message . 30
4.11 Min-Max cardinality . 31
4.12 UML wrong input usability message . 31
4.13 UML boundaries usability message . 32
4.14 UML multiple aggregation usability message 32
4.15 Role not allowed usability message . 32

41

4.16 UML cardinality . 32
4.17 UML aggregation . 32
4.18 UML composition . 33
4.19 UML ternary relationship . 33
4.20 bigER toolbar . 34
4.21 bigER toolbar notations . 34
4.22 bigER toolbar notations . 34

5.1 UML overlapping labels . 35
5.2 Issue with overlapping elements . 36
5.3 Restricted area for rendering . 36

42

List of Tables

4.1 Bachman Syntax . 27
4.2 Chen Syntax . 28
4.3 Crow’s Foot Syntax . 29
4.4 Min-Max Syntax . 30
4.5 UML Syntax . 31

43

Bibliography

[1] Alexander P. Pons, Peter Polak, and Joel Stutz. Evaluating the teaching effectiveness
of various data modeling notations. The Journal of Computer Information Systems,
page 78, 2005/2006.

[2] Andreas Gadatsch. Datenmodelierung für Einsteiger. Springer Verlag, 2017.

[3] P.-L. Glaser and D. Bork. The biger tool - hybrid textual and graphical modeling of
entity relationships in vs code. in: 25th International Enterprise Distributed Object
Computing Workshop, EDOC Workshop 2021, page 337–340, 2021.

[4] Language server protocol. https://docs.microsoft.com/en-us/
visualstudio/extensibility/language-server-protocol?view=
vs-2022. accessed: 2022-08-19.

[5] Ramez Elmasri and Shamkant B. Navathe. FUNDAMENTALS OF Database Systems.
ADDISON WESLEY PUB CO INC, 2015.

[6] P. P.-S. Chen. The entity-relationship model-toward a unified view of data. ACM
Trans. Database Syst., 1:9–36, 1976.

[7] Il-Yeol Song, Mary Evans, and E.K. Park. A comparative analysis of entity-
relationship diagrams. Journal of Computer and Software Engineering, 3:427–459,
1995.

[8] Robert J. Muller. Database design for smarties. Morgan Kaufmann, 1999.

[9] John Holt. Uml For Systems Engineering: Watching the Wheels (Computing and
Networks). Institution of Engineering and Technology, 2005.

[10] Jan Köhnlein. Eclipse sprotty - diagrams in the web. https://www.eclipse.
org/community/eclipse_newsletter/2018/october/sprotty.php. ac-
cessed: 2022-08-21.

[11] Jan Köhnlein. Sprotty – a web-based diagramming framework. https://www.
typefox.io/blog/sprotty-a-web-based-diagramming-framework,
2017. accessed: 2022-08-19.

45

https://docs.microsoft.com/en-us/visualstudio/extensibility/language-server-protocol?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/extensibility/language-server-protocol?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/extensibility/language-server-protocol?view=vs-2022
https://www.eclipse.org/community/eclipse_newsletter/2018/october/sprotty.php
https://www.eclipse.org/community/eclipse_newsletter/2018/october/sprotty.php
https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework
https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework

[12] Jan Köhnlein. Architectural overview. https://github.com/eclipse/
sprotty/wiki/Architectural-Overviewk, 2019. accessed: 2022-08-21.

[13] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing, 2013.

[14] Xtext documentation. https://www.eclipse.org/Xtext/documentation/
303_runtime_concepts.html#validation. accessed: 2022-06-07.

[15] Visual studio code getting started. https://code.visualstudio.com/docs.
accessed: 2022-08-19.

[16] Stack overflow developer survey results. https://insights.stackoverflow.
com/survey/2019. accessed: 2022-08-19.

[17] Visual studio code extension api. https://code.visualstudio.com/api.
accessed: 2022-08-19.

[18] P.-L. Glaser. Developing sprotty-based modeling tools for vs code. https:
//model-engineering.info/publications/theses/thesis-glaser.
pdf, 2022.

[19] Jan Köhnlein. Dependency injection. https://github.com/eclipse/
sprotty/wiki/Dependency-Injection, 2019. accessed: 2022-08-21.

[20] P.-L. Glaser, G. Hammerschmied, V. Hnatiuk, and D. Bork. The biger modeling
tool. 41st International Conference on Conceptual Modeling (ER 2022), page in
press, 2022.

46

https://github.com/eclipse/sprotty/wiki/Architectural-Overviewk
https://github.com/eclipse/sprotty/wiki/Architectural-Overviewk
https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#validation
https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#validation
https://code.visualstudio.com/docs
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://code.visualstudio.com/api
https://model-engineering.info/publications/theses/thesis-glaser.pdf
https://model-engineering.info/publications/theses/thesis-glaser.pdf
https://model-engineering.info/publications/theses/thesis-glaser.pdf
https://github.com/eclipse/sprotty/wiki/Dependency-Injection
https://github.com/eclipse/sprotty/wiki/Dependency-Injection

	Kurzfassung
	Abstract
	Contents
	Introduction
	Backgground
	Data Modeling
	Entity-Relationship Modeling
	LSP
	Sprotty
	Xtext
	Visual Studio Code

	Multi-Notation Support for a Hybrid VS Code Modeling Tool
	VS Code Extension
	Language Server
	Webview

	Showcase
	Bachman
	Chen
	Crow's Foot
	Min-Max
	UML
	Toolbar

	Discussion
	Observations
	Comparison with competing modeling tools

	Conclusion
	Summary
	Outlook

	List of Figures
	List of Tables
	Bibliography

