
Cloud Foundry Config File
Generation Using JetBrains MPS

and DSLs

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Alexander Grieshofer
Registration Number 01625732

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof. Dr. Dominik Bork
Assistance: Gabriel Morais, MSc

Vienna, 23rd October, 2023
Alexander Grieshofer Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Grieshofer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Oktober 2023
Alexander Grieshofer

iii

Abstract

In the realm of cloud application deployment in the context of DevOps, a significant
challenge emerges concerning the effective configuration of microservices. This challenge
appears from the necessity for multiple components, such as deployment manifests and
continuous deployment pipelines, along with tool-specific configuration files, leading to
complexity and an elevated risk of errors.

The Configuration File Generation (ConF Gen) language for Cloud Foundry deployments
offers an innovative solution to the complicated world of system configuration. In a
landscape where system setups grow increasingly complex, this domain-specific language
(DSL) provides an efficient alternative to manual configuration processes.

The DSL uses a single model, the SystemModel, to generate various outputs, making
configuration quicker and more reliable. Consequently, JetBrains MPS’s capabilities in
handling diverse outputs with minimal user input will be explored.

A solution designed to enhance the configuration of Cloud Foundry deployments will be
introduced, including its strengths, limitations regarding MPS and other challenges that
unveiled during the research process.

v

Contents

Abstract v

Contents vii

1 Introduction 1

2 Background 3
2.1 Cloud Foundry . 3
2.2 DSL Workbenches . 3

3 Related work 5

4 Research Design 7
4.1 Problem Identification and Motivation 7
4.2 Defining Objectives of a Solution . 8
4.3 Design and Development . 9
4.4 Demonstration . 10
4.5 Evaluation . 11
4.6 Communication . 12

5 The ConF Gen DSL 13
5.1 General use . 13
5.2 The SystemModel . 15
5.3 Usage & Operation of the DSL . 20

6 Discussion & Limitations 37

7 Conclusion 39

Listings 41

Bibliography 43

vii

CHAPTER 1
Introduction

This work uses Model-Driven Software Engineering (MDSE) in order to address the
complexity of cloud software systems. MDSE relies on models which guide the develop-
ment process by bridging the gap between the core implementation and the high-level
representation of software artifacts [BCW17]. Domain-specific languages (DSLs), as an
essential component of the MDSE framework, are tailored to address a certain domain or
context to simplify the descriptive task of people for that domain. These DSLs operate
with a more abstract model with the objective of generating source code in order to
create a working application. Notably, the scope of code generation is not restricted to
programming languages. It facilitates the transformation of diverse models into various
of software artifacts such as test cases, documentation, or in the context of this study,
configuration files.
"Model-driven Software Engineering in Practice" by Brambilla et al. [BCW17] stands
as an inspiring work in the field of software engineering. This comprehensive book
provides invaluable insights and guidance on the practical application of model-driven
software engineering principles. By offering a deep understanding of MDSE’s key concepts,
methodologies, and real-world applications, this book has played a pivotal role in shaping
the landscape of modern software development practices, illustrating the impact of MDSE
in improving the efficiency and quality of software development processes.
In the context of cloud applications, the challenges that emerge when deploying a
microservice in a DevOps environment were considered. To properly configure a mi-
croservice, typically a deployment manifest, which the cloud platform uses at runtime,
and a continuous deployment pipeline, a fundamental component for DevOps practices,
are required. Furthermore, the complexity of this setup may involve the automatic
generation of additional configuration files tailored to different tools and platforms. For
instance, when deploying a microservice, a domain-specific language can streamline this
process. It can automatically generate configuration files for the deployment manifest
and continuous deployment pipeline, ensuring that they adhere to best practices and

1

1. Introduction

platform requirements. Moreover, it can create additional configuration files needed to
comply with specific platform management tools. This level of automation not only
simplifies configuration but also greatly reduces the risk of errors.

To address these challenges, the approach selected involved the development of a domain-
specific language designed for generating configuration files tailored to Cloud Foundry1

deployments. The Configuration File Generation (ConF Gen) language aims to make
Cloud Foundry deployments easier by utilizing a single model, called the SystemModel,
where everything begins to unfold. It’s a central file from which various outputs or
generation targets originate, ensuring consistency across multiple outputs. By using the
language and its integrated generation targets (Manifest, Pipeline-CD, and Moneysaver),
users don’t have to spend time manually creating configuration files for each part of their
system. Instead, they can utilize the SystemModel and its core concepts – Application,
System, and Service – making the setup process quicker and simpler.

While JetBrains MPS2 is capable of building DSLs, the capabilities of handling different
outputs based on a singular model still had to be explored. The objective was to achieve
this functionality while concurrently minimizing the user’s input effort.

Adhering to the Design Science Research cycle [Wie14], this work aims to deliver a
valuable DSL solution that enhances the generation of Cloud Foundry configuration files,
thereby enhancing the efficiency of cloud application deployments. In the evaluation
phase of this research cycle, a comparison was conducted between the user-provided files
and the DSL-generated outputs to ensure accuracy. Additionally, an experienced system
architect evaluated the DSL and its real-world performance.

In this work, a solution designed to enhance the configuration of Cloud Foundry deploy-
ments will be introduced. This solution showcases its strengths while unveiling limitations
regarding MPS and other challenges that appeared during the research process. Subse-
quent chapters will provide an explanation of how and why this solution works, showing
how it makes system configuration more straightforward, faster, and less prone to errors.

1https://www.cloudfoundry.org
2https://www.jetbrains.com/mps/

2

https://www.cloudfoundry.org
https://www.jetbrains.com/mps/

CHAPTER 2
Background

This section provides the background needed understand this work. Cloud Foundry and
domain-specific languages (DSLs) workbenches will be described, including and overview
of JetBrains MPS, a projectional editor.

2.1 Cloud Foundry

"Cloud Foundry is a platform for running applications, tasks, and services. Its purpose is
to change the way applications, tasks, and services are deployed and run by significantly
reducing the develop-to-deployment cycle time. As a cloud-native platform, Cloud
Foundry directly uses cloud-based infrastructure so that applications running on the
platform can be infrastructure unaware. Cloud Foundry provides a contract between
itself and your cloud-native apps to run them predictably and reliably, even in the face
of unreliable infrastructure." [Win17, p. 1]

Cloud Foundry supports the full application development lifecycle [Hat], allowing devel-
opers to build, deploy, and run containerized applications. It employs a container-based
architecture, enabling the execution and management of applications in various pro-
gramming languages across different cloud service providers, both public and private.
This multi-cloud environment enables seamless workload migration without altering the
application code.

2.2 DSL Workbenches

Domain-specific languages (DSLs) are specialized languages crafted to describe specific
aspects of software systems, such as algorithms, configuration specifications, or domain-
specific processes [BCCP21]. Supporters of DSLs argue that using a combination of
single-purpose DSLs can bring numerous benefits, including increased abstraction levels,

3

2. Background

reduced code errors, decreased technology lock-in, and improved communication between
developers and non-technical stakeholders.

DSL workbenches, such as JetBrains MPS and Xtext1 are tools for developing domain-
specific languages. As discussed in [Bet13], key difference between them is the projectional
editing versus the textual editing. MPS uses projectional editing, where developers
manipulate the Abstract Syntax Tree (AST) directly. This approach does not rely on
parsing text, which allows for highly customized notations and language structures. It
can be more powerful but may have a steeper learning curve and might feel unfamiliar
to novice users. The textual editing of Xtext is common to developers who are used
to working with code as text. Developers create DSLs by specifying grammars in a
text-based format, and Xtext generates code based on these grammars.

2.2.1 Jetbrains MPS

Domain-specific languages have gained prominence in software development due to their
ability to enhance productivity and reduce errors by providing specialized notations
tailored to specific problem domains [BCCP21]. JetBrains Meta-Programming Sys-
tem (MPS) is an open-source language workbench designed to facilitate the creation,
management, and tooling of DSLs [BCCP21].

JetBrains MPS is a language workbench with an emphasis on DSLs, developed by
JetBrains since the early 2000s. The acronym "MPS" stands for Meta-Programming
System, highlighting its core mission of enabling meta-programming [BCCP21], which
involves the creation of languages and comprehensive tooling for programming. Meta-
programming stands for the manipulation or transformation of languages [She01].

As presented in [BCCP21], MPS revolutionizes code editing by employing a projectional
editor, a concept originating from the 1970s and mainly adopted by non-mainstream
programming tools. This method allows direct manipulation of the in-memory code
representation, in contrast to traditional character-based typing. This method is similar
to editing math formulas in text processors. MPS aims to make projectional editing more
widely applicable by introducing node transformations. When a user presses a key, it
triggers an event within the Abstract Syntax Tree (AST) wherever the cursor is currently
located, rather than inserting a character into a text document. Registered listeners on
the relevant AST node respond to this event by transforming the AST to represent the
character, enhancing the user-experience.

1https://projects.eclipse.org/projects/modeling.tmf.xtext

4

https://projects.eclipse.org/projects/modeling.tmf.xtext

CHAPTER 3
Related work

The project in [Joh22] aligns with this work regarding the approach of using model-
driven development in order to automate and abstract complex configuration tasks. To
deploy software as microservices, it advocates the use of containers, particularly within a
container cluster like Kubernetes. However, it acknowledges the fundamental challenge:
the complexity and repetitiveness of writing Kubernetes deployment files. In response to
this challenge, the research project explores the potential of model-driven development to
simplify the creation of Kubernetes deployment files with the core objective of designing
and implementing a domain-specific language.

Both projects, this work and the related research project [Joh22], use model-driven
development to enhance automation and abstraction. However, the specific target
domains differ, with the related research tackling Kubernetes deployment complexities
for microservices versus this approach of streamlining Cloud Foundry configuration. Both
methods try evolving through the landscape of software configuration in the digital age
by leveraging innovative approaches to address modern challenges.

The research of Morais et al. [MA20][MBA21] recognized the changing landscape of
architectural styles, with a specific focus on the emerging Microservices Architecture
(MSA) continuously replacing monolithic systems. As MSA gains popularity, there is a
growing need to promptly discover its fundamental principles and commonly accepted
patterns and anti-patterns to practitioners. The driving force behind this effort is to
provide a human and machine-readable representation of MSA’s core concepts including
relationships among them.

To meet this challenge, they have employed an ontology-based approach to refine the
representation of MSA concepts and principles, ultimately creating OMSAC (Ontology
of Microservices Architecture Concepts) [MA20]. The primary objective of OMSAC
is to facilitate the development of support tools aimed at enhancing the exploration,
understanding, and utilization of Microservices Architecture. As such, the scope of this

5

3. Related work

ontology is tailored to capture and represent the concepts and principles relevant to
MSA.

Their research aligns with this study in the realm of knowledge representation, offering
various perspectives on microservices within a more abstract framework. However, a
notable distinction is that this work focuses on runtime configuration and abstracting
diverse cooperating microservices into a higher-level language.

Previous research has also delved into related domains like the development of a domain-
specific language for diverse mobile target platforms. These research approaches in
[SŢCS13] and [Man11] share a common objective with this work: primarily, the reduction
of development time and complexity, elevating the level of abstraction and enhancing
efficiency.

The approach outlined in [SŢCS13] employs model-driven development to amplify the
level of abstraction within the mobile application development process, thereby achieving
platform independence. Utilizing this model, code generators are employed to construct
platform-specific, native applications for all targeted platforms. This form of DSL
enhances productivity and platform independence while limiting a complex and powerful
configuration compared to platform-specific programming languages. Within this context,
this work of Steiner et al. employs the Xtext workbench to design a DSL that remarkably
reduces source code, up to 86 percent, particularly for simple applications.

A notable distinction between this work and the aforementioned research lies in the
emphasis on generating deployment configuration files for the deployment of applications
on Cloud Foundry.

6

CHAPTER 4
Research Design

This work employs the Design Science (DS) method [Wie14] as its research framework,
following a structured research cycle to develop a domain-specific language for generating
configuration files tailored for Cloud Foundry deployments. This DS research cycle is
composed of the following incremental and iterative steps:

1. Problem Identification and Motivation: Defining the problem to solve

2. Defining Objectives of a Solution: Shaping the ideal artifact

3. Design and Development: Crafting the DSL artifact

4. Demonstration: Practical application of the artifact

5. Evaluation: Assessing effectiveness and efficiency

6. Communication: Sharing the artifact

By adhering to this structured Design Science Research cycle, this work aims to contribute
a valuable DSL solution to enhance Cloud Foundry configuration file generation, ultimately
advancing the efficiency and reliability of cloud application deployments.

4.1 Problem Identification and Motivation
Users may possess a clear understanding of the desired output, yet they may lack
proficiency in domain-specific languages and JetBrains MPS techniques required for
efficient creation. Consequently, there is an opportunity to enhance the efficiency and
user-friendliness of the output generation process by bridging the gap between user
expertise and the generation of abstract DSLs using JetBrains MPS. This opportunity

7

4. Research Design

emerged from a deep engagement with a highly experienced system architect with over 20
years of expertise in crafting cloud manifests and deployment and management pipelines
for various systems based on microservices.

This architect manually creates configurations for a cloud platform, utilizing Tamzu as
the cloud provider and Concourse as the tool for pipeline orchestration. Currently, this
process is labor-intensive and involves distributing critical information across multiple
configuration files. The motivation is to streamline and automate this task, with a
primary goal of combining all the essential data into a single document. By doing so, the
architect not only anticipates an increase in efficiency but also recognizes the advantages
of centralizing vital information for better system management.

However, the architect has raised a concern regarding the portability of the technical
stack, which is in a continuous evolving state. Therefore, the solution needs to rely on a
standard and multi-platform approach to ensure that it can seamlessly adapt to evolving
technologies and platforms.

The architect has provided examples of the configuration files he routinely constructs.
These exemplars serve as a fundamental reference for the development of abstract DSLs
within the JetBrains MPS framework, thus contributing to the evolution of an adaptable,
and user-friendly solution that aligns with the constantly evolving technical landscape.

Therefore, the research question to be addressed is as follows:

How can templates be used in JetBrains MPS to generate outputs and abstract
DSLs?

In this context, templates refer to suitable outputs or the term "generation-targets",
which will be introduced in Section 4.3.

4.2 Defining Objectives of a Solution

From the problem identification, as discussed in the previous step, I have carefully
considered the capabilities and limitations of JetBrains MPS resulting from the insights
of sources such as [Voe], [VKS+19], [Fowa], and [Fowb]. Notably, the installation of
MPS comes bundled with numerous samples, in order to get further inspiration for best
practices. In addition, I have fortified my understanding through personal exploration of
JetBrains MPS, particularly focusing on projectional editing. Furthermore, an essential
aspect of this objective-setting process was the engagement in discussions with the client
to validate the resulting objectives.

The objectives that the developed DSL should meet are as follows:

• Centralization of Information: It should enable the association of vital infor-
mation from multiple configuration files into a single document, streamlining the
management and deployment processes.

8

4.3. Design and Development

• Efficiency Enhancement: The DSL should significantly improve the efficiency of
creating configuration files.

• User-Friendliness: The DSL should be user-friendly, ensuring that individuals
with varying levels of expertise can effectively utilize it to generate configurations.

• Future-Proofing: The DSL must be designed with flexibility in mind, allowing it
to be adaptable to potential changes in the technical stack or platform.

4.3 Design and Development
The development of the domain-specific language unfolded through a series of iterative
phases. Initially, the goal was to construct the language as closely as possible to the
Cloud Foundry manifest1, with a strong focus on ensuring user-friendliness. To achieve
this objective, both the Cloud Foundry Manifest metamodel2, illustrated in Figure 5.1,
and the example files provided by the system architect were leveraged. This initial phase
was accomplished by a continuous exchange of insights and experiences with other MPS
users, complemented by a process of trial and error, which collectively contributed to the
creation of the first version of the artifact. During this phase the following components
of the language were built:

• Structure: Defines the building blocks and relationships of the language.

• Editor: Controls the visual and interactive representation.

• Intentions: Offers quick-fixes and code modification suggestions.

• Typesystem: Enforces type rules for language constructs.

• Constraints: Define additional rules and conditions on language elements.

• Behaviour: Provide common operation on nodes.

In the subsequent phase, an extension designed to facilitate the generation of actual files
for the manifest was introduced. A dedicated generator language was added to streamline
the generation of output files for the manifest, ensuring that the system stays adaptable
to future changes.

With a focus on the objectives of centralizing information and enhancing efficiency, the
language was further enhanced to accommodate additional configurations, specifically
the domains "Pipeline-CD" and "Moneysaver". Consequently, the concept of "generation-
targets", as illustrated in Figure 4.1, was introduced to address a limitation imposed
by MPS, wherein only one generator could be active at a given time. It’s important to

1https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html
2The metamodel was made available through the contribution of Gabriel Morais.

9

https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

4. Research Design

emphasize that each generation target requires a distinct language extension built upon
the foundational ConF Gen base language. These extension languages exclusively contain
the generator logic, while the structural aspects mentioned earlier are implemented
within the core language. With this iteration of the development cycle the language was
able to efficiently construct different outputs files based on a single model, called the
SystemModel, where every configuration aspect was stored.

However, due to the aforementioned limitation concerning the active status of a single
generator, a mechanism to enable the selection of a specific generation target through the
utilization of the intentions menu or within the tools-tab was needed. This was a limiting
factor by MPS but consequently lead to improvements regarding the user-friendliness
aspect by providing clarity in the user’s selection of output.

Furthermore, it is essential to note another technical limitation: due to existing bugs in
the YAML plugin3, all generators currently produce XML files instead of the intended
YAML format. External tools and converters can be used to transform the XML output
to the desired YAML output.

To generate files aligned with the selected target, users need to execute the "Preview
Generated Text" action while the active generator is in use. For each specific generation
target, it’s crucial to provide all the required values as defined by the DSL. This ensures
that the resulting XML file is valid, as omitting values may lead to incomplete XML
tags. Despite the system’s general attempt to minimize erroneous or empty fields, there
remains the possibility of such occurrences. In the event that users identify mistakes,
incorrect values, or missing information, they have the flexibility to amend missing values
and repeat the regeneration process as many times as necessary to correct any issues.
This iterative approach empowers users to fine-tune and perfect their output according
to their requirements.

To view, test, and make practical use of the generated files, it’s essential to use a XML
to YAML converter. This tool effectively converts valid XML files into YAML format,
which is compatible with Cloud Foundry deployment requirements.

For an in-depth exploration of the DSL, including its usage and operational principles,
please refer to Section 5.2.

4.4 Demonstration

In this step, the practical application of the DSL will be presented:

1. Defining a model: The process begins with the user defining a SystemModel
within the ConF Gen language. In this model, various configurations, settings, and
information are stored, which correspond to the desired cloud infrastructure or

3https://plugins.jetbrains.com/plugin/16835-dataformats

10

4.5. Evaluation

Figure 4.1: Generation-Targets

deployment setup. This model acts as a structured representation of the user’s
specifications.

2. Changing the target generator: Within the DSL, users can select a specific
"generation target". This selection corresponds to the type of output they wish
to create. For example, if they want to generate a manifest output, they would
employ the intention mechanism “Switch Generation Target to XML-Manifest”.

3. Generating: Once the model is defined, and the target generator is chosen, the
user initiates the generation process within the DSL. The DSL’s generator language
then takes the model and uses its configuration rules to create the output in
XML format. This XML output contains all the relevant configuration from the
SystemModel for the specific generation target.

4. Transforming the output XML into YAML: Given that the DSL only generates
output in XML, users can employ external tools and converters to transform the
generated XML into YAML.

5. Using the files in the Cloud Foundry platform: Finally, the generated YAML
files, which now contains the configuration information in a format suitable for the
Cloud Foundry platform, can be used.

For a detailed walk-through on to how use and operate the DSL, please refer to Section
5.1 and 5.3. Furthermore, there are examples showcasing various configurations and the
according output files of the DSL.

4.5 Evaluation
The evaluation was conducted as follows:

• Comparative analysis with user-provided files: One essential aspect of
evaluating the effectiveness of the DSL is to compare the output files generated by
the DSL with the files provided by the system architect. This comparison helps
ensure that the DSL accurately captures the user’s requirements and successfully
translates them into functional output files.

11

4. Research Design

• User-driven IDE exploration: To measure the user-friendliness of the DSL,
the user-expert is provided with access to the IDE equipped with the DSL. This
hands-on approach allows the user to explore the DSL’s features, experiment with
different configurations, and assess the ease with which they can interact with the
DSL to define models and select generation targets.

• User-expert feedback on interface usability and file generation: Feedback
from the user-expert is a critical component of the evaluation process. The user-
expert’s insights and observations on the simplicity of using the DSL interface and
the process of generating various files are invaluable. The feedback provides real-
world insights into the user-friendliness and practicality of the DSL. Additionally,
it helps identify any areas for improvement or refinement in the DSL’s design and
functionality. It’s worth noting that there is no formal written evaluation process
in place. Instead, this feedback was gathered during weekly meetings with the
user-expert, where insights and experiences were exchanged to guarantee that all
requirements were met. These regular interactions allowed for a dynamic and
ongoing assessment of the DSL’s performance and usability. This collaborative
approach ensures that any issues or areas for enhancement could be addressed
promptly, making the DSL a more effective and user-friendly tool for its intended
purposes.

4.6 Communication
The DSL is comprehensively documented, ensuring that users have access to clear and
informative resources for both understanding the language and effectively employing
it. This documentation encompasses written materials, live demos and trainings, and
practical demonstrations to support users with the DSL.

Detailed written documentation was created that covers every aspect of the DSL, from
its core concepts to advanced functionalities. This written documentation serves as a
comprehensive reference, guiding users through the DSL’s features, best practices, and
use cases. To enhance the learning experience, live demonstrations of the DSL in action
were prepared. These live demos provide users with the opportunity to witness how the
DSL is employed, facilitating a deeper understanding of its capabilities. For hands-on
learning, live training sessions were conducted, allowing users to interact with the DSL.
In addition to live demos and training, recorded demonstrations were provided. The
DSL repository is accessible at the following web address: https://github.com/UQAR-
TUW/alex_mps_yml_templating

12

https://github.com/UQAR-TUW/alex_mps_yml_templating
https://github.com/UQAR-TUW/alex_mps_yml_templating

CHAPTER 5
The ConF Gen DSL

With the aim of streamlining Cloud Foundry deployments, the Configuration File Genera-
tion (ConF Gen) DSL is introduced. Tailored specifically for Cloud Foundry deployments,
it revolves around the SystemModel, a central model responsible for generating diverse
outputs. Through the utilization of ConF Gen’s integrated generation targets, including
“Manifest”, “Pipeline-CD”, and “Moneysaver”, the efficiency of creating Cloud Foundry
configurations will be enhanced and vital information of diverse configuration files will
be centralized. The following sections provide a detailed explanation of the usage and
the operational principles.

5.1 General use
The user can input the required configuration values. The intention dropdown menu helps
in specifying attributes or keys effectively. By using the keyboard shortcut (Mac: "Option
+ Return", Windows/Linux: "Alt + Return"), a menu displaying current interactions
is revealed. Most of the intentions are context-specific, meaning they relate to the
current concept in the SystemModel or its underlying concepts. Certain intentions are
consistently displayed regardless of context.

Another feature is the suggestions menu. By pressing "Control + Space" on Mac or
"Ctrl + Space" on Windows or Linux, a list of potential values is presented. This feature
is particularly beneficial for enumerations or references where pre-existing values are
available.

The tool tab in the IDE toolbar allows the user to modify the SystemModel’s generation
targets: Manifest, Pipeline-CD and Moneysaver. Additionally, this can be accomplished
at any point using the intentions menu, as these intentions are always accessible.

13

5.
T

he
C

onF
G

en
D

SL

Figure 5.1: Metamodel Cloud Foundry Manifest

14

5.2. The SystemModel

5.2 The SystemModel

At its core, the SystemModel unifies system requirements. It allows users to describe
individual applications or systems, defining various attributes and configurations. This
comprehensive view is valuable when orchestrating complex systems where multiple
applications interact, offering a global and comprehensive perspective on the system
without the need to explore individual manifests. This capability simplifies the system
architecture, making it more accessible and manageable.

Moreover, the real value of the SystemModel becomes evident when it comes to manifest
generation. It can automatically generate individual manifests for each application. This
automation significantly reduces the manual, time-consuming tasks, saving users time
and effort while ensuring a more streamlined and error-free deployment process. The
SystemModel is at the core of simplifying complex system management and making it
more efficient.

During the initial developmental phase, I leveraged both the Cloud Foundry Manifest
metamodel, as illustrated in Figure 5.1, and the example files provided by the system
architect. The Cloud Foundry Manifest metamodel describes the structure and rela-
tionships of elements within a Cloud Foundry manifest, which is used to define the
configuration of applications and services to be deployed on the Cloud Foundry platform.
Here is a breakdown of the elements in this metamodel:

• Manifest (root element): It specifies the overall manifest, and it can have one
or more applications associated with it.

• Application: Each application is characterized by a name, stack, including whether
it has a no_route property. An application can have zero or more buildpacks,
processes, routes, and environments (env) associated with it.

• Buildpack: Describes the buildpack used for the application, identified by a value.

• Process: Represents the processes associated with an application. It defines
properties such as instance, command, timeout, type and the enumeration memory.

• Route: Describes the routing information for the application, including the route
itself and the protocol as an enumeration.

• Service: Represents the services that the application relies on, with properties like
name, bindingName, plan, update, type, and other service-related details like label,
annotation, parameters, and env.

• Enumerations: This section specifies two enumerations: memoryUnit and proto-
cols.

15

5. The ConF Gen DSL

• Compositions: These associations define how the elements in the manifest are
related. For instance, a manifest can have multiple applications, and each applica-
tion can have multiple buildpacks, processes, routes, and environment variables.
Similarly, a manifest can be associated with metadata, and services can have
parameters, annotations, and labels.

• Direct Associations: This section specifies a direct association between applica-
tions and services, indicating that applications can be associated with zero or more
services.

A SystemModel encompasses multiple child elements, each possessing its own set of
attributes and potentially containing additional nested child elements. Among these
elements, the three primary core concepts that form the backbone of the SystemModel
are:

• Application

• System

• Service

Upon the creation of a new SystemModel root node, the user is prompted to input values
for the attributes and populate the child elements with their respective configurations.
This process enables the customization and specification of the SystemModel according
to the user’s requirements and desired system behavior.

In the subsequent chapters, a detailed explanation will be provided on how to effectively
utilize and harness the power of these three core concepts within the SystemModel. This
comprehensive understanding will empower users to accurately describe their system,
configure its components, and generate the corresponding configuration files necessary
for the successful deployment and operation of their system.

5.2.1 Modelling the System Concept

The SystemModel contains the system concept, which represents overall information.
The attributes organization, team, and contact need to be specified by the user as string
values. The element components (referred to as the referencedApplications concept) is
a list of applications referenced within the SystemModel. It cannot be set without its
corresponding counterpart and should be created or removed using the intentions menu.

The RunningRules, defined under the system concept, apply globally to every application
defined in the SystemModel, without considering application-specific RunningRules. The
start and stop entries for a trigger should not be interpreted as typical start-stop or
from-until values. They are entirely independent and incorporate a 30-minute timeframe
during the generation step. For the user, a general guideline is to define a time in the

16

5.2. The SystemModel

format "HH:MM AM/PM" for each entry and consider the trigger’s end time to be 30
minutes after the defined value. For additional details regarding the timeframe, please
refer to the Section 5.3.2.

Moreover, the RunningRules can include day restrictions that limit the applicability
of rules to specific days. These restrictions can only be set using the intentions menu
to prevent user interference. If all days are selected, the entry will be removed as this
configuration would be redundant.

In the context of the global RunningRules concept, there is an additional feature that
allows the definition of spaces where the rules will be applied. Example spaces which are
commonly found in a system setup can include values such as development, staging, and
production. Each space can have its own set of day restrictions and start-stop values,
providing a higher level of configuration flexibility.

By specifying day restrictions for a particular space, the RunningRules will only be
applicable on the specified days within that space. This allows for fine-grained control
over when the rules should be enforced, allowing for specific requirements or workflows
associated with each space.

Similarly, start-stop values can be assigned to spaces, enabling the definition of time
intervals during which the RunningRules should be active. These timeframes should be
viewed as intervals for the activation or deactivation of triggers, during which the triggers
can be either initiated or terminated. This feature allows for greater customization by
specifying different time periods for each space.

However, it’s crucial to remember that application-specific RunningRules always take
precedence over the globally defined ones. This means that if a specific application has
its own RunningRules configured, those rules will replace the global rules. The same
principle applies to spaces as well. If a particular application within a specific space has
its own set of rules defined, those rules will be prioritized over the global RunningRules
for that specific application and space combination.

This hierarchical prioritization ensures that the system remains flexible and adaptable,
allowing for the customization of RunningRules at both the global and application-specific
levels, as well as within different spaces.

5.2.2 Modelling the Service Concept

The fundamental idea of the root concept service possesses the capability to function
either independently as an individual node or as an integral part of a SystemModel. This
means that a service can function as a standalone one or can be bound to an application.
Similar to the application to component binding in the system concept, a new service
binding should be added using the intentions menu. This ensures automatic linking or
removal of the binding.

The attributes assigned to a service include the type, name, command, plan, and an
update_service boolean. Additionally, by utilizing the intentions menu, users can define

17

5. The ConF Gen DSL

a configuration for the service using a key-value list, allowing for customization and
fine-tuning of its settings. Furthermore, it is possible to include additional tags that
provide supplementary information related to the service.

By leveraging these attributes and options through the intentions menu, users can
effectively configure and manage services within the SystemModel.

5.2.3 Modelling the Application Concept

An application resides within a SystemModel and serves as a mandatory concept with a
cardinality ranging from 1 to n. The name attribute of the application must be defined
as a string and is automatically linked as a reference to the components list within the
system concept. The user is required to provide a valid repository URL as a string,
beginning with either "http://" or "https://", along with a stack string and a no_route
boolean. The intention functionality enables the user to set several child concepts specific
to the application, including:

• Annotation

• Buildpack

• Environment

• Label

• Process

• Route

• RunningRules

To ensure seamless integration and removal of new applications with the components list
within the system concept, it is crucial for users to leverage the intentions menu. This
menu serves as a hub for creating and removing applications, offering a range of options
for accurately linking and unlinking them with the system’s components. Furthermore,
the intentions associated with applications provide users with a versatile toolkit to add
metadata, including annotations, labels, and other configurations, thereby enhancing the
overall functionality and customization of the applications.

Within an application, a dedicated list exists for buildpacks, allowing users to add specific
buildpacks tailored to their requirements. Additionally, a key-value list is available to
manage environment entries. It is important to note that this list primarily defines the
global environment and does not directly encompass environment variables.

By explicitly specifying the desired route and protocol, users can define multiple routes
for their applications. The protocol options, namely "http1", "http2", and "tcp", can be
selected from a predefined enumeration. It is worth mentioning that the management of

18

5.2. The SystemModel

route configurations, including their addition or removal, is exclusively facilitated through
the intentions menu, ensuring a structured and controlled process.

Metadata, a crucial aspect of application configuration, is divided into two distinct
fields: Annotations and Labels. Both fields enable users to define key-value entries that
accommodate user-specific configurations. Furthermore, a Process is defined by its Type,
Command, Instances, and Memory. The memory allocation for a process is specified
in units such as "B", "KB", "MB", "GB", or "TB". In order to improve readability and
minimize unit errors, the intentions menu offers a quickfix-feature that automatically
converts values to higher units if applied by the user. This not only eliminates the need
for large numbers but also enhances the overall usability of the application configuration
process.

Additionally, each application possesses RunningRules that are unique to that particular
application. While these rules are based on the principles of globally defined RunningRules,
they carry higher priority and are exclusively applicable to the specific application to
which they are assigned. Similarly to global RunningRules, it is important to note
that the start and stop entries associated with a trigger should not be misconstrued as
conventional start-stop or from-until values. Instead, they operate as independent entries,
incorporating a 30-minute timeframe during the generation step. To ensure consistent
and accurate configuration, users are obliged to define time entries in the format of
"HH:MM AM/PM" for each entry. Errors are identified for values that do not adhere to
the specified format, using a regular expression for verification. Moreover, it is crucial to
consider that the trigger’s end time is set 30 minutes after the explicitly defined value,
ensuring a standardized timeframe for effective trigger management. An example can be
found in the generation-target Section 5.3.2.

In the manner of globally defined RunningRules, an additional feature allows users to
define spaces where these rules will be applied. In cases where a globally defined space
exists, the application-specific RunningRules can override the default configurations,
enabling fine-grained customization and control. This overwrite functionality extends to
the start/stop entries and day restrictions, providing users with the flexibility to tailor
the RunningRules to the unique requirements of each application. By specifying day
restrictions within a particular space, users can limit the applicability of RunningRules
to specific days within that space, ensuring a more nuanced and granular approach to
the management of RunningRules.

Similarly, start-stop values can be assigned to spaces, empowering users to define distinct
time intervals during which the RunningRules should be active. This advanced feature
facilitates comprehensive customization by allowing different time periods to be specified
for each space and application. These timeframes should be viewed as intervals for the
activation or deactivation of triggers, during which the triggers can be either initiated or
terminated.

Furthermore, it is possible to establish a connection between an application and a new or
pre-existing service by designating the service as a reference. This process mirrors the

19

5. The ConF Gen DSL

practice of binding an application to the components list within the system, except in
this case, a list containing references to services is utilized. It is important to note that
the configuration of these services cannot be altered within this context, as their settings
and specifications are encapsulated within the service concept itself. Bear in mind that
service can live inside a SystemModel or separate as standalone root elements.

5.3 Usage & Operation of the DSL

The ConF Gen language1 offers three generation targets: Manifest, Pipeline-CD, and
Moneysaver. These targets can be created based on the user-provided information.
However, due to existing bugs in the YAML plugin, all generators currently produce
XML files instead of YAML files. Nevertheless, it is feasible to implement a solution
where the generator can directly generate YAML files, if desired.

In this solution, only one generator can be active at a time. Therefore, the user needs to
select the desired generator either through the intentions-menu or in the tools-tab. To
generate the files according to the selected target, the "Preview Generated Text" action
must be triggered while the active generator is in use.

For each specific generation target, it is important to provide all the required values. This
ensures that the resulting XML file is valid, as missing values may result in incomplete
XML tags. Despite the generator’s general attempt to minimize incorrect or empty
fields, it is still possible for them to occur. If any mistakes, incorrect values, or missing
information are identified by the user, missing values can be added and the regeneration
process can be repeated as many times as necessary to correct them.

5.3.1 Generation Target: Manifest

Manifests are crucial when deploying applications on platforms like Cloud Foundry (CF).
They specify how each application should work, including the resources and settings it
needs, ensuring an enhanced deployment process. When you use the "Manifest" generation
target in the DSL, it automatically creates manifest files, making the deployment process
easier.

As indicated in Figure 5.2 the fundamental concept known as SystemModel serves as
the root node in the generation tree, encompassing all other concepts. Most of the
crucial information used throughout the system originates from the Application concept.
However, there is one specific piece of data from the System concept that comes into play:
the organization name. This organization name is utilized to assign a name, in the form
of a prefix, to the output file. In order to initiate the generation process in Jetbrains
MPS, a root node and a "root_mapping_rule", is required. This root_mapping_rule
serves as the starting point for generating the desired output. It is the anchor from which
the entire generation process begins to unfold.

1https://github.com/UQAR-TUW/alex_mps_yml_templating

20

https://github.com/UQAR-TUW/alex_mps_yml_templating

5.3. Usage & Operation of the DSL

Figure 5.2: Concepts of the generation target: manifest

Another key concept in the generation of manifests, alongside the SystemModel, is the
Application. It incorporates various other concepts that define additional configurations for
each specified application. From a generation perspective, each application is encapsulated
within an application XML tag nested inside the top-level applications XML tag. Since
the solution allows for multiple applications to be defined and configured, it is logical
to establish a parent tag and iterate over each application element with its respective
configuration values. To maintain a clean and concise SystemModel mapping file while
handling application-specific generation, a "Copy_SRC_LIST_MACRO" is employed,
separating the application-specific generation into its own reduce file.

The reduce file, in conjunction with reduction rules and a designated concept, plays a
crucial role in generating the desired output language or code. It serves as a dedicated
space where the content of a concept can be processed and transformed.

Within an Application XML tag, attributes such as name, stack, and no_route are
defined. For attributes that can have multiple values, an additional loop is implemented
to iterate over each value. Once again, the "Copy_SRC_LIST_MACRO" is utilized to
achieve this behavior.

Essentially, every remaining concept (Buildpack, Environment, Metadata, Process, Service)
within the application reduce file follows this processing approach. The list macro iterates
through the entries and generates the corresponding output for each entry encountered.

To address specific requirements, such as handling empty values and preventing the
appearance of empty parent XML tags, a template macro called "IF" is employed. This

21

5. The ConF Gen DSL

macro serves as a conditional mechanism, allowing the generator to check for empty
values within certain concepts, namely environment, metadata, process, and service. In
cases where these concepts contain multiple entries, they are wrapped within a parent
XML tag to facilitate proper organization and containment. Consequently, if there are
no entries within these concepts, the parent wrapper is not displayed, thereby preventing
the creation of empty parent XML tags. The "IF" macro plays a vital role in ensuring
consistency and optimal structure within the generated output.

However, it is worth noting that there exists one inconsistency: Specifically, the metadata
parent XML tag is displayed if any of its child elements, namely Annotations or Labels,
are not empty.

At a deeper level of iteration, we explore into the value level XML tags for concepts such
as Environment, Annotation, and Label. These concepts follow a key-value pair structure,
and therefore share a single reduce file named KeyValue. This reduce file generates XML
layouts in the format <key> value </key> with the corresponding values as specific to
each concept, considering Environment, Annotation, and Label.

On the other hand, the Buildpack and Tag concepts have their own dedicated reduction
files. They both utilize the same XML tags for their values, namely <buildpacks> [value]
</buildpacks> and <tags> [value] </tags>, but with distinct specified values. Notably,
these concepts do not require a wrapping XML tag, as all entries are specified with the
buildpacks or tags key and their respective values. This design choice is made possible due
to the XML-to-YAML parser grouping buildpacks within an application or tags within a
service configuration. In contrast, other concepts cannot employ this approach as they
either have predefined keys or consist of multiple entries that oblige a wrapping XML
tag.

Moving forward, the route concept employs a <route> wrapping tag to group together
the entries for name and protocol. Given the desired output format, it is necessary to
utilize a wrapping XML tag in this case. Routes should be generated as individual route
entries with their respective values. The protocol tag is only displayed if it is specified.
Similar to earlier cases, the node macro "IF" is utilized to control the visibility of the
protocol tag.

Next, we encounter the Process concept, which includes essential attributes such as type,
command, instance, and memory. Again, due to the specific output format requirements,
the only viable solution is to employ a wrapping XML tag. A distinction lies in the memory
attribute, which combines an integer "Amount" with the "MemoryUnit" enumeration.
While it combines two values, it does not differ after generation in terms of the final
output from other values.

Lastly, the Service concept adheres to the same structure and techniques as before.
It employs a wrapping XML tag with fixed keys and user-specified generated values.
Additionally, it incorporates the node macro "IF" to determine whether a wrapping XML
tag <parameters> should be displayed, based on whether the service is configured or

22

5.3. Usage & Operation of the DSL

not. Tags are displayed using the "Copy_SRC_LIST_MACRO" method, without the
need for a wrapping tag as mentioned earlier.

The illustrated example in Listings 5.1 and 5.2 provides an illustration of a generation
process involving two applications and one service. In this scenario, one of the applications,
referred to as app1, is fully customized with all possible configurations, while the other
application, app2, only has the required attributes of repository, stack, and no_route
defined. Additionally, the service is fully configured and bound to app1.

The generator generates a parent XML tag, <applications>, within which the two
applications and their corresponding configuration values are generated. In this case,
there are two <application> XML tags representing the two apps. Starting with app1,
all attributes are defined within their respective XML tags and grouped accordingly.
Following this, a <services> XML tag is introduced, where the bound services are
positioned. Here, the single bound service with all its configurations can be found within
app2. Lastly, app2 is presented with only the minimum required attributes.

1 system:
2 organization: manifest_example
3 team: team
4 contact: example@domain.at
5
6 applications:
7 - name: app1
8 repository: https://github.com/repository
9 stack: stack

10 no_route: false
11 buildpacks:
12 - buildpack
13 environment:
14 key1: val1
15 routes:
16 - route: route1
17 protocol: http1
18 metadata:
19 annotations:
20 anno1: val1
21 labels:
22 label1: val1
23 processes:
24 - type: process
25 command: command
26 instances: 1
27 memory: 128MB
28 services:
29 - service1
30 - name: app2
31 repository: https://github.com/repository
32 stack: stack
33 no_route: false
34
35 services:

23

5. The ConF Gen DSL

36 - type: type
37 name: service1
38 command: command
39 plan: plan
40 update_service: false
41 configuration:
42 key: val
43 tags:
44 tag1

Listing 5.1: A SystemModel as input for the generation of Manifest configuration files

1 <?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>
2 <applications>
3 <application>
4 <name>app1</name>
5 <stack>stack</stack>
6 <no_route>false</no_route>
7 <buildpacks>buildpack</buildpacks>
8 <environment>
9 <key1>val1</key1>

10 </environment>
11 <routes>
12 <route>
13 <name>route1</name>
14 <protocol>http1</protocol>
15 </route>
16 </routes>
17 <metadata>
18 <annotations>
19 <anno1>val1</anno1>
20 </annotations>
21 <labels>
22 <label1>val1</label1>
23 </labels>
24 </metadata>
25 <processes>
26 <process>
27 <type>process</type>
28 <command>command</command>
29 <instances>1</instances>
30 <memory>128MB</memory>
31 </process>
32 </processes>
33 <services>
34 <service>
35 <type>type</type>
36 <name>service1</name>
37 <plan>plan</plan>
38 <parameters>
39 <key>val</key>
40 </parameters>
41 <tags>tag1</tags>
42 </service>

24

5.3. Usage & Operation of the DSL

43 </services>
44 </application>
45 <application>
46 <name>app2</name>
47 <stack>stack</stack>
48 <no_route>false</no_route>
49 </application>
50 </applications>

Listing 5.2: Manifest Generation: Output

5.3.2 Generation Target: Moneysaver

The "Moneysaver" generation target is another integral element of the DSL. It generates
an additional output based on the SystemModel when the "Moneysaver" generation is
activated. The term "Moneysaver" is used as a descriptive name for the generation target
to emphasize its primary function, which is to optimize resource allocation and utilization
within a Cloud Foundry environment.

According to Figure 5.3, the primary concept called SystemModel serves as the founda-
tional node in the generation tree, encompassing all other concepts. Vital information
is derived from the Application and System concepts. Generation is occasionally per-
formed using both concepts simultaneously, as attributes such as RunningRules and
GlobalRunningRules define the output, with the application-specific RunningRules taking
precedence. A comprehensive explanation will be provided.

The name of the organization is used to assign a prefix to the output file. To initiate
the generation process, a root node and a "root_mapping_rule" are necessary. The
root_mapping_rule acts as the starting point for generating the desired output. It serves
as the anchor from which the entire generation process unfolds.

Starting with the fundamental concept System, the attribute organization is utilized to
designate the output file’s name as a prefix. Additionally, the key focus of this section is
the generation of RunningRules, specifically GlobalRunningRules. These RunningRules
generate resources that globally define triggers for every application. They can be more
specific if a Space with additional (Global-)RunningRules is defined. Multiple spaces
can be defined. Each RunningRule contains a start and stop value, along with a day
restriction.

On the other hand, application-specific RunningRules are defined within the Application
concept. The configurations of these RunningRules are identical to the aforementioned
GlobalRunningRules but at the application level. They hold higher priority since the
application does not rely on the triggers defined globally; instead, it utilizes its own
defined rules. During the generation step, the generator compares and checks both
concepts for rules and utilizes them accordingly.

At the outset of the generated file, fixed values for attributes such as name, type, and
source are provided within an <resource_types> XML tag. Subsequently, a section

25

5. The ConF Gen DSL

Figure 5.3: Concepts of the generation target: Moneysaver

is generated for triggers. Each trigger is defined within a <resources> XML tag and
contains two <resource> XML tags, one for the start trigger and the other for the stop
trigger. The <source> tag includes predetermined values for <interval> and <location>.
The remaining entries, namely <start>, <stop>, and <days>, are mapped using the
values specified within the currently iterated space. Both triggers are essentially identical
except for the name and the values of start/stop/days. The name within the <name> tag
is generated as follows: "trigger-[space]-start" for the start trigger or "trigger-[space]-stop"
for the stop trigger. At this stage, the start-stop values can be considered as typical
start-stop values since they are now divided into their specific triggers, each containing
a 30-minute time slot for triggering the start or stop actions. To establish a 30-minute
execution window, a function takes the start time in the format "HH:MM AM/PM" and
adds 30 minutes to calculate the stop time. Thus, this function is called twice for each
trigger: firstly, to compute the stop time for the start trigger, and secondly, to calculate
the stop time for the stop trigger. This generation process is achieved by combining an
"IF" and a "COPY_SRCL" node macro that iterates over application-specific and globally
defined spaces. Consequently, every space defined in the SystemModel is generated
into a trigger containing the specified values. For the sake of readability, the mapping
exists in a separate reduce file called "reduce_Space". To examine and iterate over each
space defined in the SystemModel, it employs a combination of an "IF" statement and a
"COPY_SRCL" node macro.

Following the trigger generation, a brief generated section maps the System concepts
into a <resources> XML tag. It shares the same attributes as the previously mentioned

26

5.3. Usage & Operation of the DSL

triggers, except with different fixed values for name, type, and source. Notably, the
<source> tag includes the attributes api, organization, and skip_cert_check, where
only the organization is mapped to its corresponding value as stated within the system
concept. A “COPY_SRC” node macro is used to generate this section.

As mentioned earlier keep in mind that during the generation process, both the system and
application concepts are utilized to determine the output. It checks whether the application
has its own RunningRules defined, and if not, the globally defined GlobalRunningRules
take precedence.

The subsequent section is responsible for generating <jobs> XML tags. Once again, a
combination of node macros is utilized, particularly an "IF" statement and two "LOOP"
node macros. Firstly, it checks for the existence of the RunningRules using the IF
macro, and then it iterates over each application and subsequently over each space within
that application. For every space defined in either the application-specific RunningRules
or the GlobalRunningRules, two job tags are generated: one for the start trigger and
another for the stop trigger. Each job tag includes attributes such as <name>, <public>,
<serial>, and <plan>. The name within the <name> tag is generated as follows:
"start-apps-[space]-time" for the start job or "stop-apps-[space]-time" for the stop job.

To ensure proper grouping when converting from XML to YAML, two <plan> XML
tags are used. The first plan tag contains a <get> tag with the value "trigger-start"
or "trigger-stop". The second plan tag includes additional attributes with fixed values
based on the trigger type. It consists of a <put> tag with a fixed value and a <params>
tag containing attributes such as <commands>, <space>, and <app_name>. The
command tag holds either the value "start" or "stop" depending on the trigger. The space
tag contains the space name, while the app_name is a list of apps associated with that
space.

Regarding GlobalRunningRules, the app_name list is generated using a combination of
"LOOP" and "IF" node macros. These macros iterate over each application and check for
the presence of application-specific RunningRules. If they are not defined, the globally
defined rules take precedence, and the application is added to the app-list for that space.
In the case of an application with RunningRules defined, the app-list for that space will
contain only one entry, making it unnecessary to implement the node macros.

The illustration presented in Listing 5.3 and 5.4 demonstrates the generation process
involving three applications and three spaces. In this scenario, there are two spaces
defined globally, along with an application-specific space within app1. As a result, a total
of six triggers (three start triggers and three stop triggers) will be generated. Following
the trigger section, there is a brief segment responsible for generating the paas-resource,
which primarily consists of fixed values except for the organizational name. Subsequently,
there are six <jobs> tags structured as described earlier. Among these jobs, two of them
correspond to app-specific start and stop actions, containing tags with values associated
with the application-specific RunningRules. The app-list in these jobs consists of a single
entry: app1.

27

5. The ConF Gen DSL

On the other hand, the remaining four jobs relate to globally defined GlobalRunningRules,
with each job representing a combination of start and stop triggers. These jobs include
tags with values aligned with the globally defined GlobalRunningRules and their respective
spaces. In this case, the app-list comprises two entries: app2 and app3.

1 system:
2 organization: moneysaver_example
3 team: team1
4 contact: example@domain.at
5 global_running_rules:
6 triggers:
7 start: 08:00 AM
8 stop: 08:30 PM
9 days: Monday

10 space:
11 - name: globalspace1
12 - name: globalspace2
13 start: 09:00 AM
14 stop: 09:30 PM
15 days: Monday Tuesday Wednesday
16
17 applications:
18 - name: app1
19 repository: https://github.com/repository
20 stack: stack
21 no_route: false
22 running_rules:
23 triggers:
24 start: 10:00 AM
25 stop: 10:30 PM
26 space:
27 - name: appspace1
28 - name: app2
29 repository: https://github.com/repository
30 stack: stack
31 no_route: false
32 - name: app3
33 repository: https://github.com/repository
34 stack: stack
35 no_route: false

Listing 5.3: A SystemModel as input for the generation of Moneysaver configuration files

1 <?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>
2 <moneysaver>
3 <resource_types>
4 <name>cf-cli-resource</name>
5 <type>registry-image</type>
6 <source>
7 <repository>nulldriver/cf-cli-resource</repository>
8 <tag>latest</tag>
9 </source>

10 </resource_types>

28

5.3. Usage & Operation of the DSL

11 <resources>
12 <resource>
13 <name>trigger-globalspace1-start</name>
14 <type>time</type>
15 <source>
16 <interval>5m</interval>
17 <start>09:00 AM</start>
18 <stop>09:30 AM</stop>
19 <days>
20 <day>Monday</day>
21 <day>Tuesday</day>
22 <day>Wednesday</day>
23 </days>
24 <location>America/Montreal</location>
25 </source>
26 </resource>
27 <resource>
28 <name>trigger-globalspace1-stop</name>
29 <type>time</type>
30 <source>
31 <interval>5m</interval>
32 <start>09:30 PM</start>
33 <stop>10:00 PM</stop>
34 <days>
35 <day>Monday</day>
36 <day>Tuesday</day>
37 <day>Wednesday</day>
38 </days>
39 <location>America/Montreal</location>
40 </source>
41 </resource>
42 </resources>
43 <resources>
44 <resource>
45 <name>trigger-globalspace2-start</name>
46 <type>time</type>
47 <source>
48 <interval>5m</interval>
49 <start>08:00 AM</start>
50 <stop>08:30 AM</stop>
51 <days>
52 <day>Monday</day>
53 </days>
54 <location>America/Montreal</location>
55 </source>
56 </resource>
57 <resource>
58 <name>trigger-globalspace2-stop</name>
59 <type>time</type>
60 <source>
61 <interval>5m</interval>
62 <start>08:30 PM</start>
63 <stop>09:00 PM</stop>

29

5. The ConF Gen DSL

64 <days>
65 <day>Monday</day>
66 </days>
67 <location>America/Montreal</location>
68 </source>
69 </resource>
70 </resources>
71 <resources>
72 <resource>
73 <name>trigger-appspace1-start</name>
74 <type>time</type>
75 <source>
76 <interval>5m</interval>
77 <start>10:00 AM</start>
78 <stop>10:30 AM</stop>
79 <location>America/Montreal</location>
80 </source>
81 </resource>
82 <resource>
83 <name>trigger-appspace1-stop</name>
84 <type>time</type>
85 <source>
86 <interval>5m</interval>
87 <start>10:30 PM</start>
88 <stop>11:00 PM</stop>
89 <location>America/Montreal</location>
90 </source>
91 </resource>
92 </resources>
93 <resources>
94 <resource>
95 <name>paas-resource</name>
96 <type>cf</type>
97 <source>
98 <api>https://api.run.pivotal.io</api>
99 <organization>org1</organization>

100 <skip_cert_check>false</skip_cert_check>
101 </source>
102 </resource>
103 </resources>
104 <jobs>
105 <name>start-apps-appspace1-time</name>
106 <public>true</public>
107 <serial>true</serial>
108 <plan>
109 <get>trigger-start</get>
110 </plan>
111 <plan>
112 <put>paas-resource</put>
113 <params>
114 <commands>
115 <command>start</command>
116 </commands>

30

5.3. Usage & Operation of the DSL

117 <space>appspace1</space>
118 <app_name>
119 <app>app1</app>
120 </app_name>
121 </params>
122 </plan>
123 </jobs>
124 <jobs>
125 <name>stop-apps-appspace1-time</name>
126 <public>true</public>
127 <serial>true</serial>
128 <plan>
129 <get>trigger-stop</get>
130 </plan>
131 <plan>
132 <put>paas-resource</put>
133 <params>
134 <commands>
135 <command>start</command>
136 </commands>
137 <space>appspace1</space>
138 <app_name>
139 <app>app1</app>
140 </app_name>
141 </params>
142 </plan>
143 </jobs>
144 <jobs>
145 <name>start-apps-globalspace1-time</name>
146 <public>true</public>
147 <serial>true</serial>
148 <plan>
149 <get>trigger-start</get>
150 </plan>
151 <plan>
152 <put>paas-resource</put>
153 <params>
154 <commands>
155 <command>start</command>
156 </commands>
157 <space>globalspace1</space>
158 <app_name>
159 <app>app2</app>
160 <app>app3</app>
161 </app_name>
162 </params>
163 </plan>
164 </jobs>
165 <jobs>
166 <name>start-apps-globalspace2-time</name>
167 <public>true</public>
168 <serial>true</serial>
169 <plan>

31

5. The ConF Gen DSL

170 <get>trigger-start</get>
171 </plan>
172 <plan>
173 <put>paas-resource</put>
174 <params>
175 <commands>
176 <command>start</command>
177 </commands>
178 <space>globalspace2</space>
179 <app_name>
180 <app>app2</app>
181 <app>app3</app>
182 </app_name>
183 </params>
184 </plan>
185 </jobs>
186 <jobs>
187 <name>stop-apps-globalspace1-time</name>
188 <public>true</public>
189 <serial>true</serial>
190 <plan>
191 <get>trigger-stop</get>
192 </plan>
193 <plan>
194 <put>paas-resource</put>
195 <params>
196 <commands>
197 <command>stop</command>
198 </commands>
199 <space>globalspace1</space>
200 <app_name>
201 <app>app2</app>
202 <app>app3</app>
203 </app_name>
204 </params>
205 </plan>
206 </jobs>
207 <jobs>
208 <name>stop-apps-globalspace2-time</name>
209 <public>true</public>
210 <serial>true</serial>
211 <plan>
212 <get>trigger-stop</get>
213 </plan>
214 <plan>
215 <put>paas-resource</put>
216 <params>
217 <commands>
218 <command>stop</command>
219 </commands>
220 <space>globalspace2</space>
221 <app_name>
222 <app>app2</app>

32

5.3. Usage & Operation of the DSL

223 <app>app3</app>
224 </app_name>
225 </params>
226 </plan>
227 </jobs>
228 </moneysaver>

Listing 5.4: Moneysaver Generation: Output

5.3.3 Generation Target: Pipeline-CD

Configuration files for continuous deployment pipelines, which serve as a fundamental
component in DevOps practices, are generated through the use of the "Pipeline-CD"
generation target.

The distinctive feature of the "Pipeline-CD" generation target’s generator sets it apart
from other generators. This particular generator has the capability of producing two
output files. The first file is a parameter file that contains attributes related to the
System and Application concept. Specifically, it includes the attributes organization and
contact from the system concept, as well as the attributes name and repository from the
application concept as illustrated in Figure 5.4. These attributes are enclosed within a
<parameters> XML tag to adhere to the XML format.

On the other hand, the second file generated by this generator is a "service-creation"
file, which is structured with an <jobs> XML tag as the primary wrapping tag. Inside

Figure 5.4: Concepts of the generation target:Pipeline-CD

33

5. The ConF Gen DSL

this tag, there is a <name> tag with a fixed value, and a <plan> tag for the main
output. Each service is produced within a <try> XML tag. This method of generation,
previously used and adopted here, proves suitable for the required functionality. A parser
that converts XML to YAML would combine multiple <try> tags together, as desired.

The following section is created utilizing the service concept. A <try> tag consists
of a <put> XML tag with a fixed value, and a <params> XML tag that contains
attributes relating to the currently iterated service. These attributes include <com-
mand>, <service>, <plan>, <service_instance>, <configuration>, <tags>, <wait>,
and <update_service>. While mainly the associated value is used for the output, the
command-tag differs in terms of a prefix: A “create-“ prefix is added to the given value.
The <configuration> tag further contains key-value pairs in the format <key> [value]
</key>, while the <tags> tag contains tags in the format <tag> [tag-value] </tag>. It
is important to note that both the <configuration> and <tags> XML tags are generated
only if they have defined values; otherwise, they will not be included in the output. This
condition is achieved using an "IF" node-macro. Furthermore, the output of these tags is
processed by a separate "reduce_file" and iterated through a "COPY_SRCL" node-macro.
Another node-macro, known as the "LOOP" macro, is used to iterate through the defined
services, each iteration producing a <try> tag.

The provided listings, specifically 5.5, 5.6, and 5.7, demonstrate an illustrative example
of a generation process involving two services. These services are referred to as "service1"
and "service2." In this context, "service2" is fully customized with configurations and tags,
whereas "service1" contains only the required attributes, namely type, name, command,
plan, and update_services. Both services are associated with an application.

The generation process results in the creation of two distinct files: a parameter file and a
service-creation file. During the current stage of development, the parameter file always
utilizes the values from the first application. Other values relate to the specific service
and system concept.

The second file, the service-creation file, is generated based on the services bound to
the application. In this particular scenario, the service-creation file includes a wrapping
plan-tag that contains two try-tags. Each try-tag corresponds to either "service1" or
"service2" and encapsulates their respective values in the previously described format.

1 system:
2 organization: pipeline_example
3 team: team1
4 contact: example@domain.at
5
6 applications:
7 - name: app1
8 repository: https://github.com/repository
9 stack: stack

10 no_route: false
11 services:
12 - service1
13 - service2

34

5.3. Usage & Operation of the DSL

14
15 services:
16 - type: type1
17 name: service1
18 command: command1
19 plan: plan1
20 update_service: false
21 - type: type2
22 name: service2
23 command: command2
24 plan: plan2
25 update_service: false
26 configuration:
27 key: val
28 tags:
29 tag1

Listing 5.5: A SystemModel as input for the generation of Pipeline-CD configuration files

1 <?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>
2 <parameters>
3 <org>pipeline_example</org>
4 <app_name>app1</app_name>
5 <git-url>https://github.com/repository</git-url>
6 <contact-mail>example@domain.at</contact-mail>
7 </parameters>

Listing 5.6: Pipeline-CD Generation Output: Parameter file

1 <?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>
2 <jobs>
3 <name>create-services</name>
4 <plan>
5 <try>
6 <put>cf-cli</put>
7 <params>
8 <command>create-service1</command>
9 <service>type1</service>

10 <plan>plan1</plan>
11 <service_instance>service1</service_instance>
12 <wait>true</wait>
13 <update_service>true</update_service>
14 </params>
15 </try>
16 <try>
17 <put>cf-cli</put>
18 <params>
19 <command>create-service2</command>
20 <service>type2</service>
21 <plan>plan2</plan>
22 <service_instance>service2</service_instance>
23 <configuration>
24 <key>val</key>
25 </configuration>

35

5. The ConF Gen DSL

26 <tags>
27 <tag>tag1</tag>
28 </tags>
29 <wait>true</wait>
30 <update_service>true</update_service>
31 </params>
32 </try>
33 </plan>
34 </jobs>

Listing 5.7: Pipeline-CD Generation Output: Service-Creation file

5.3.4 Standalone IDE

Jetbrains MPS possesses the capability to construct language plugins for MPS itself,
create language plugins for IntelliJ, or even develop a Standalone Integrated Development
Environment (IDE) tailored for specific languages [mpsa]. In consideration of the
demonstration objectives, I have chosen the Standalone IDE option due to its streamlined
focus. Standalone IDEs offer an efficient means of publishing domain-specific languages to
end users, enabling them to utilize these languages within an IDE environment enriched
with comprehensive support, including refactorings and code analysis, thoughtfully crafted
by language designers [mpsb]. This dedicated IDE ensures the removal of unnecessary
language-design-related functionalities and irrelevant languages, thus optimizing the user
experience.

The project includes a standalone solution that can generate snapshots for Windows,
MacOS, and Linux. To build the IDE, users only need to adjust the base directory
path and the MPS path specified within the CloudFoundryDistribution file under “base
directory” and "Macros – Folder – mps_home". To initiate the build process, users can
run the "CloudFoundry" and "CloudFoundryDistribution" solutions. As a result, MPS
will create a folder structure in the directory: build/artifacts/CloudFoundryDistribution,
where you can find the compiled IDEs.

36

CHAPTER 6
Discussion & Limitations

In this section, an exposition of the solution will be provided, including its limitations,
encompassing the shortcomings, challenges, and other issues that emerged throughout
the research process.

The presence of existing bugs within the YAML plugin1, which leads to the unintended
generation of XML files rather than the desired YAML format, presents a technical
challenge. A YAML format is the prefered choice due to its human-readability, clear
structural representation, as its adoption in Cloud Foundry deployments. A potential
workaround, which has been employed for cross-verification of generated output, involves
using a converter2 to transform XML into YAML. This limitation can be addressed
by investing effort into resolving the bugs within the YAML plugin and enhancing the
generators to support the updated version of the plugin. Despite this limitation, it
demonstrates the adaptability of the solution to accommodate future improvements to
existing constraints. For more detailed information on this issue, please refer to the
"YAML-Generator" branch in the GitHub repository3.

The requirement of having only one active generator at any given time is an unwanted
design choice. While it ensures clarity in the user’s selection of output, MPS restricts
concurrent activation of multiple generators. To address this, the intentions menu and
the tools tab have been introduced as mechanisms to switch the generation target.

Although the generators validate whether users have provided all required values, there
remain potential scenarios where invalid output may occur. This limitation is a conse-
quence of having a complex generator with numerous MPS macros, particularly nested
loops due to structure concepts enclosed into each other. It also raises questions about
potential enhancements to the generator’s robustness and error-handling capabilities.

1https://plugins.jetbrains.com/plugin/16835-dataformats
2https://jsonformatter.org/xml-to-yaml
3https://github.com/UQAR-TUW/alex_mps_yml_templating/tree/YAML-Generator

37

https://plugins.jetbrains.com/plugin/16835-dataformats
https://jsonformatter.org/xml-to-yaml
https://github.com/UQAR-TUW/alex_mps_yml_templating/tree/YAML-Generator

6. Discussion & Limitations

JetBrains MPS can be effectively utilized to generate outputs and abstract DSLs. The
ConF Gen DSL, as demonstrated, underscores the viability of this approach. Templates
offer a structured and user-friendly means to specify desired output formats, while DSLs
provide a higher-level abstraction for defining requirements. The system’s ability to
produce tailored outputs for various targets (Manifest, Pipeline-CD, and Moneysaver)
highlights its capacity to abstract DSL concepts and generate outputs in a user-centric
manner.

Although JetBrains MPS excels in constructing DSLs, the goal delved into the potential
of handling various outputs derived from a single model. The aim was to achieve this
functionality while streamlining the user’s input effort. Exploring the capabilities of
JetBrains MPS in handling different outputs with minimal effort is an essential aspect of
this research. It is crucial to understand that there exists a high level of complexity, which
prevent non MPS experts from adapting and customizing these outputs. To illustrate
this, a scenario where a shift to a different cloud platform or a change of tools is required,
can be considered. This change in context underscores the clear need for an expert to
investigate the adaptation and extension aspects.

In the course of this research, I have developed a domain-specific language tailored for
generating configuration files specific to Cloud Foundry deployments. As detailed in
earlier chapters, the ConF Gen DSL encompasses a complex structure that enables the
generation of multiple outputs from a single SystemModel. However, an obvious limitation
appears in the context of adapting these outputs to various other cloud platforms, such
as AWS or Google Cloud, when using JetBrains MPS. This limitation underscores the
critical role of an MPS expert in customizing and expanding the outputs. This extends
beyond the present generation targets (Manifest, Pipeline-CD, and Moneysaver), which
are specifically designed for Cloud Foundry and tools such as the cloud provider Tamzu
and the Concourse orchestration tool.

Despite the current limitation of generating XML files due to issues with the YAML
plugin, the possibility of extensions suggests that it can be adapted to support direct
YAML file generation, thus strengthening its versatility. While challenges and limitations
exist, including the need for users to provide all required values and the constraint
of a single active generator, the overall findings support the affirmative answer to the
research question. The solution’s iterative refinement and user empowerment underscore
its potential to enhance output generation and DSL abstraction within the JetBrains
MPS environment.

38

CHAPTER 7
Conclusion

A solution for enhancing cloud foundry deployment configuration was presented, demon-
strating its strengths, and unveiling its limitations, and challenges that emerged through-
out the research process.

The DSL was developed with a clearly defined set of user objectives. It successfully
achieves the centralization of information by consolidating data from various configu-
ration files into a single SystemModel, enhances efficiency through the generation of
multiple outputs, ensures user-friendliness through a continuous exchange of insights and
experiences, and provides future-proofing by remaining adaptable to potential changes.

At its core, the SystemModel unifies system requirements. It allows users to describe
individual applications or systems, defining various attributes and configurations. This
comprehensive view is valuable when orchestrating complex systems where multiple
applications interact, offering comprehensive perspective on the system without the need
to explore individual manifests. This capability simplifies the system architecture, making
it more accessible and manageable. JetBrains MPS can be used to to generate outputs
and abstract DSLs. The ConF Gen DSL serves as a verification to the feasibility of this
approach.

The solution was manually tested and evaluated using the integrated Run-Processes of
MPS. To expand its utility and assess its effectiveness, integrating this solution with
continuous integration pipelines of popular cloud platforms like AWS or Google Cloud
is a viable opportunity for future work. Templates and DSLs tailored for specific cloud
providers could facilitate seamless configuration and deployment.

The system’s potential for supporting direct YAML file generation is a promising area
for future research. Although it currently generates XML files due to issues with the
YAML plugin, the extensibility of the system implies the feasibility of adapting it to
facilitate direct YAML file generation. This prospect opens the door to addressing current
limitations and enhancing the overall functionality of the system.

39

7. Conclusion

In conclusion, this work represents a significant progress toward simplifying output
generation and DSL abstraction using templates in JetBrains MPS, with a demonstrated
capacity to address constraints and adapt to future improvements in the field.

40

Listings

5.1 A SystemModel as input for the generation of Manifest configuration files 23
5.2 Manifest Generation: Output . 24
5.3 A SystemModel as input for the generation of Moneysaver configuration

files . 28
5.4 Moneysaver Generation: Output . 28
5.5 A SystemModel as input for the generation of Pipeline-CD configuration

files . 34
5.6 Pipeline-CD Generation Output: Parameter file 35
5.7 Pipeline-CD Generation Output: Service-Creation file 35

List of Figures

4.1 Generation-Targets . 11

5.1 Metamodel Cloud Foundry Manifest . 14
5.2 Concepts of the generation target: manifest 21
5.3 Concepts of the generation target: Moneysaver 26
5.4 Concepts of the generation target:Pipeline-CD 33

41

Bibliography

[BCCP21] Antonio Bucchiarone, Antonio Cicchetti, Federico Ciccozzi, and Alfonso
Pierantonio. Domain-Specific Languages in Practice. Springer International
Publishing, 2021.

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven Software
Engineering in Practice, Second Edition. Springer International Publishing
AG, 2nd edition, 2017.

[Bet13] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt, 2013.

[Fowa] Martin Fowler. A language workbench in action - mps.
https://martinfowler.com/articles/mpsAgree.html. [Accessed: 30-09-2023].

[Fowb] Martin Fowler. Language workbenches: The killer-app for domain specific
languages? https://martinfowler.com/articles/languageWorkbench.html. [Ac-
cessed: 30-09-2023].

[Hat] Red Hat. What is cloud foundry? https://www.redhat.com/en/topics/application-
modernization/what-is-cloud-foundry? [Accessed: 27-09-2023].

[Joh22] Daniel Johansson. Model-driven development for microservices: A domain-
specific modeling language for kubernetes, 2022.

[MA20] Gabriel Morais and Mehdi Adda. Omsac-ontology of microservices architecture
concepts. In 2020 11th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), pages 0293–0301. IEEE,
2020.

[Man11] Ashwin Kumar Manjunatha. A domain specific language based approach for
developing complex cloud computing applications, 2011.

[MBA21] Gabriel Morais, Dominik Bork, and Mehdi Adda. Towards an ontology-driven
approach to model and analyze microservices architectures. In Proceedings
of the 13th International Conference on Management of Digital EcoSystems,
MEDES ’21, page 79–86, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

43

[mpsa] Jetbrains MPS - Build Language. Available at
https://www.jetbrains.com/help/mps/build-language.html [Accessed:
30-09-2023].

[mpsb] Jetbrains MPS - Building Standalone IDEs for your language. Available
at https://www.jetbrains.com/help/mps/building-standalone-ides-for-your-
languages.html [Accessed: 30-09-2023].

[She01] Tim Sheard. Accomplishments and research challenges in meta-programming.
In Walid Taha, editor, Semantics, Applications, and Implementation of Pro-
gram Generation, pages 2–44, Berlin, Heidelberg, 2001. Springer Berlin Hei-
delberg.

[SŢCS13] Dustin Steiner, Cătălina Ţurlea, Cristian Culea, and Stephan Selinger. Model-
driven development of cloud-connected mobile applications using dsls with
xtext. In Roberto Moreno-Díaz, Franz Pichler, and Alexis Quesada-Arencibia,
editors, Computer Aided Systems Theory - EUROCAST 2013, pages 409–416,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[VKS+19] Markus Völter, Bernd Kolb, Tamas Szabo, Daniel Ratiu, and Arie Deursen.
Lessons learned from developing mbeddr: a case study in language engineering
with mps. Software & Systems Modeling, 18, 02 2019.

[Voe] Markus Voelter. Dsl best practices. https://www.voelter.de/data/pub/DSLBestPractices-
2011Update.pdf. [Accessed: 30-09-2023].

[Wie14] Roel J. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Springer Berlin, Heidelberg, 2014.

[Win17] Duncan C. E. Winn. Cloud Foundry: The Definitive Guide. O’Reilly Media,
2017.

44

	Abstract
	Contents
	Introduction
	Background
	Cloud Foundry
	DSL Workbenches

	Related work
	Research Design
	Problem Identification and Motivation
	Defining Objectives of a Solution
	Design and Development
	Demonstration
	Evaluation
	Communication

	The ConF Gen DSL
	General use
	The SystemModel
	Usage & Operation of the DSL

	Discussion & Limitations
	Conclusion
	Listings
	Bibliography

