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Kurzfassung

Modellierungstools spielen im Bereich des Model-driven Engineering (MDE) eine entschei-
dende Rolle bei der Erstellung von Abstraktionen eines Systems durch die Verwendung
von Modellierungssprachen, die die Spezifikation von Modellen und deren Transformation
ermöglichen. Angemessene Toolunterstützung für die Modellierung reduziert nachweislich
die Komplexität, verbessert die Verständlichkeit und erhöht die Produktivität der Ent-
wickler. Das Fehlen ausreichender Toolunterstützung wird jedoch oft als ein Hauptproblem
für den Erfolg der Einführung von MDE und für die Durchführbarkeit der Modellierung in
der Praxis angesehen. Aus diesem Grund und wegen der sich ständig ändernden modernen
Anforderungen benötigen Modellierungtools effektive Ansätze für ihre Entwicklung. Mit
dem neuesten Trend, Anwendungen auf Web- und Cloud-Plattformen zu verlagern, sind
vielversprechende neue Technologien entstanden und verfügbar geworden, die diesen
Prozess unterstützen können.

Ein bemerkenswerter Beitrag im Gebiet der Webmodellierung ist die Einführung des
Language Server Protocol (LSP) für textuelle Sprachen. Durch die Standardisierung
gängiger Sprachfunktionen mit LSP (z.B. Code Completion oder Refactoring) kann eine
einzige Implementierung eines sprachspezifischen Servers verwendet werden, um mehreren
sprachunabhängigen Clients (d.h. Editoren oder IDEs) Sprachunterstützung hinzuzufügen.
Dies reduziert die Komplexität erheblich, aber da LSP in erster Linie auf textuelle
Sprachen abzielt, bleibt die Frage offen, ob das Protokoll auch ausreicht, um grafische
Sprachen zu unterstützen und ob beiden Arten von Sprachen für heterogene Darstellungen
und simultane Bearbeitung kombiniert werden können. In diesem Zusammenhang hat sich
das Framework Sprotty bemüht, grafische Modellierung auf Web-Plattformen verfügbar
zu machen und bietet eine Erweiterung des LSP für die Erstellung von hybriden Modell-
Editoren, die synchronisiertes Editieren zwischen textuellen und grafischen Editoren
ermöglichen. In Anbetracht der umfangreichen Funktionalität, der Anpassbarkeit und der
verfügbaren Integration mit anderen Technologien (z.B. VS Code oder EMF) ist Sprotty
ein interessantes Framework für die weitere Forschung und dient als Grundlage für diese
Bachelorarbeit.

In dieser Arbeit stellen wir (i) einen generischen Ansatz für die Entwicklung von Sprotty-
basierten Modellierungtools für VS Code und (ii) das bigER Tool für die Modellierung
von Entity-Relationships (ER) vor, das auf unseren Entwicklungsansatz basiert und
gängige Modellierungsfunktionen wie z.B. hybride Modellierung, Rich-Text-Editing oder
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(SQL) Code Generierung beinhaltet. Sowohl der Ansatz als auch bigER integrieren
Sprotty Diagramme mit VS Code und einer Xtext-basierten textuellen Sprache, wobei
diese durch die webbasierte Architektur des LSP dennoch plattformunabhängig und leicht
erweiterbar bleiben.



Abstract

Modeling tools play a critical role in the field of Model-driven Engineering (MDE) to create
abstractions of systems through the use of modeling languages which allow specifying
models and their transformation. Adequate tool support for modeling has proven
to reduce complexity, improve comprehensibility, and increase developer productivity,
however, lack of sufficient tooling is often regarded as a key concern in the success of
adopting MDE and in making modeling feasible in practice. For this reason, together
with continuously changing modern-day requirements, modeling tools require effective
approaches for their development and with the recent trend of applications moving to
web- and cloud platforms, promising new technologies have emerged and became available
that can aid in this process.

A remarkable contribution in the area of web modeling has been the introduction of
the Language Server Protocol (LSP) for textual languages. By standardizing common
language features through the LSP (e.g., code completion or refactoring), a single
implementation of a language-specific server can be used to add language support to
multiple language-agnostic clients (i.e., editors or IDEs). This greatly reduces the
complexity, but since the LSP primarily targets textual languages, the question remains
whether the protocol is also sufficient to support graphical languages, and whether the
two can be combined for heterogeneous representations and simultaneous editing. In this
context, the diagramming framework Sprotty has made an effort in bringing graphical
modeling to web platforms and offers extension of the LSP for the creation of hybrid
model editors that enable synchronized editing between textual- and graphical editors.
Given the extensive functionality, customizability and available integration with other
technologies (e.g., VS Code or EMF), Sprotty becomes an interesting framework to
conduct further research on and serves as the foundation for this thesis.

In this work, we contribute (i) a generic approach for the development of Sprotty-based
modeling tools for the VS Code IDE, and (ii) the bigER tool for Entity-Relationship (ER)
modeling which is based on the development approach and includes common modeling
features such as, e.g., hybrid modeling, rich-text editing, or (SQL) code generation. Both,
the approach and bigER, integrate Sprotty diagrams with VS Code and an Xtext-based
textual language, while still remaining platform-independent and easily extensible, due
to its web-based nature and architecture of the LSP.
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CHAPTER 1
Introduction

Model-Driven Engineering (MDE) makes use of models as a fundamental concept through-
out the whole software engineering life-cycle with the aim of reducing complexity and
improving comprehensibility of complex systems [1, 2]. MDE has shown to bring various
benefits when being adopted to development processes, in particular, it can decrease the
overall effort in costs and time by increasing development productivity, e.g., through
code generation or domain-specific modeling languages [3, 4]. Even though integrating
model-based approaches appears to be beneficial, especially for large projects, adoption
of MDE in practice has been less prominent and slower than initially expected [5, 6, 7].
A common reason for low adoption is the lack of expertise, as for making MDE feasible it
is required to hire domain experts or ensure sufficient training. In practice, this requires
a high initial effort and could potentially introduce new risks that do not outweigh the
advantages of MDE adoption.
A frequently mentioned drawback of modeling often includes lack of proper tool support
[6, 8], with user experience being a substantial factor in making MDE attractive and
feasible to users [9]. Modeling tools are generally available in an Integrated Development
Environment (IDE) and feature capabilities beyond basic drawing functionality, such
as integration, management, and transformation of models [2]. It is often required to
support multiple heterogeneous representations of a model with synchronized changes.
Usability gains even more importance when introducing non-developers to modeling
processes and for improving cross-communication between actors with different levels of
expertise [10]. Other relevant factors concerning the quality of modeling tools include,
e.g., scalability, performance, interoperability or dealing with the representation of large
models [6, 7, 11].
It is self-evident that modeling tools are an integral part of MDE that ask for sound
approaches in their development process. Research on the effective development of
modeling tools serves as the foundation for this thesis, and in this context we want to
further restrict the goal of our work. For this, we first look into key motivational aspects
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1. Introduction

before we define the problem statement and research objectives. We further discuss the
chosen approach together with our contributions, and conclude the introduction with a
description of the thesis structure.

1.1 Motivation

Depending on the complexity, there are different risks involved in the development
process, arising the question on how to effectively develop modeling tools that fulfill
modern-day requirements and help in increasing the adoption of MDE in practice. Recent
development has shown trends in IDEs moving away from traditional heavy-weight
desktop applications and heading towards more lightweight web-based platforms. Moving
modeling to the web offers the potential to address major concerns and drawbacks in
traditional modeling tools and close the gap of low MDE adoption [12, 13]. However,
traditional tools are relatively feature-rich, requiring efficient approaches to reuse existing
modeling functionality in web-based platforms. Alternatively, existing implementations
have to be abandoned and re-implemented from scratch.

A remarkable contribution to the area of web modeling has been the Language Server
Protocol (LSP)1 and its adoption for textual modeling languages [14, 15]. Initially
introduced by Microsoft, the protocol deals with the O(n × m) complexity of adding new
language support to IDEs by standardizing common language features, such as auto-
complete, refactoring, or diagnostics [16]. In theory, significant improvements regarding
tool portability can be achieved, since a single implementation of a language-specific
server can be reused for delivering language features to multiple language-agnostic clients
(i.e., editors). Nowadays, the LSP is supported by many popular IDE platforms and a
growing number of tools are implementing language servers using the protocol2. However,
a major drawback of using the LSP for the development of modeling tools lies in the fact
that the protocol primarily targets textual languages, leading to the additional question
on how to introduce support for graphical languages. Previous work has proven the
potential of adapting the LSP for graphical modeling, including decoupled solutions
[17, 18] and the creation of hybrid model editors for textual- and graphical editing [19].
Hybrid or blended modeling allows interactions and modifications within editors to be
synchronized between multiple representations of a model, and can greatly improve
usability [20] in respect to different quality attributes, namely:

Understandability — Multiple abstraction layers and representations allow models to
be more comprehensive across different levels of expertise between tool users.

Learnability — Domain experts can better explain complex models with the help of
different graphical representations, simplifying the learning process of modeling.

1Official Language Server Protocol Page
2List of Tools implementing the Language Server Protocol
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1.2. Problem Statement

Changeability — Model modification can be performed in different views, allowing
certain operations to be performed more intuitively, e.g., graphically dragging edges
to nodes to create connections between elements, contrary to less intuitive textual
changes.

Despite various tools available that offer hybrid modeling approaches, the field is still an
active area of research with remaining challenges and opportunities [21]. The diagramming
framework Sprotty3 has made great contribution to the effort of bringing graphical
modeling to web-based editors and has proven to aid in the development of hybrid model
editors, e.g., for state machines4, or leveraged in enabling collaborative modeling, e.g.,
for the Textual Goal-oriented Requirement Language (TGRL) [22]. Sprotty becomes
even more interesting as a modeling framework since it offers integration with state-of-
the-art IDE platforms, such as VS Code or the Cloud IDE Theia. Furthermore, the
framework has the ability to extend the LSP with graphical operations by mapping them
to corresponding LSP messages that perform changes on an underlying textual model.
Such extension can be implemented for Xtext-based language servers to render diagrams
of language artifacts and enabling support for hybrid modeling. All packages of Sprotty
are open-source available and actively maintained with various other modeling frameworks
built on top of Sprotty, e.g., the Graphical Language Server Platform (GLSP)5 or Sirius
Web6.

1.2 Problem Statement
Summarizing the motivational aspects of this thesis, LSP has proven efficient reuse of
a single language-specific server, delivering its language features to multiple language-
agnostic clients. Sprotty as a diagram framework offers approaches in extending the
LSP for graphical modeling, thus, opening the potential for the development of hybrid
model editors. Matching the move towards web modeling and aiming to contribute to
the adoption of MDE in practice, this thesis explores the diagramming capabilities of
Sprotty, when used as a framework in the development of modeling tools.

VS Code is a currently popular, web-based IDE and extensions to the platform can make
use of its highly extensible API. Furthermore, it fully incorporates the LSP into the
platform to create custom textual editors and allows extensions to create web views,
which can be used to display arbitrary web-based content, e.g., for rendering Sprotty
diagrams. Given the advantages, VS Code appears to be a solid candidate for the
deployment of Sprotty-based modeling tools, thus, we further refine the problem of the
thesis to explore this exact scenario of deploying hybrid model editors as extensions to
the VS Code ecosystem.

3Sprotty Project Page
4Sprotty Statemachine Example
5GLSP Project Page
6Sirius Web Project Page
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1. Introduction

1.3 Research Objectives
Based on the above-mentioned motivational aspects and problem statement, we aim on
responding to the following research objectives in the course of this thesis:

RO1 Exploration of the capabilities provided by Sprotty when leveraging the framework
for the development of modeling tools for VS Code.

RO2 Contribution of a generic approach for implementing Sprotty-based modeling tools
for VS Code, including integration of an Xtext language and enabling hybrid model
editing.

RO3 Contribution and evaluation of a Sprotty-based modeling tool for VS Code featuring
hybrid textual- and graphical ER modeling and code generation of a relational
database schema.

1.4 Approach and Contributions
In this work, we approach the first two established research objectives (RO1, RO2)
by contributing a generic approach for developing Sprotty-based modeling tools with
integration of VS Code and Xtext. In the contributed approach, we discuss architectural
design considerations and provide guidelines for the implementation process in the form
of a running example that showcases incremental extensions of a basic modeling tool.
The example includes a Sprotty-enhanced language server that integrates Sprotty with
a Xtext-based language, together with an extension for deployment to the VS Code
ecosystem. As a final step, our contributed approach fully utilizes Sprotty and enables
hybrid modeling for selected modeling features.

Besides the approach, we further contribute the bigER modeling tool, used for ER
modeling and available as an extension for VS Code. The tool deals with the last
research objective (RO3) and fully utilizes Sprotty based on our contributed development
approach. Modeling capabilities include hybrid, textual- and graphical model editors to
support cross-communication between stakeholders, as well as SQL code generation to
integrate with conceptual database design processes. Various other considerations have
been established throughout the development process, aiming in fulfilling modern-day
requirements to modeling tools such as, e.g., usability, scalability, and portability. An
overview of bigER is given in [23] which emerged in the course of this work, our focus
in this thesis is on providing an update of the development progress with an initial
evaluation, based on concrete modeling cases.

4



1.5. Thesis Structure

1.5 Thesis Structure
This section concludes the introduction of this work and provides a guideline for the
structure of the remaining chapters. In short, we cover the relevant background in
Chapter 2, present a generic approach of developing Sprotty-based modeling tools for VS
Code in Chapter 3, discuss the bigER Modeling Tool in Chapter 4 and conclude with a
summary and outlook in Chapter 5. In the following, we describe each of the chapters in
more detail.

As an entry point for dealing with the problem and research objectives of this thesis, we
recapitulate on relevant background information in Chapter 2. The chapter introduces
foundational concepts of Model-Driven Engineering and discusses Web Modeling with
EMF, including relevant technologies used throughout this work. Since the bigER
modeling tool is a key contribution of this work, we additionally examine principal ER
Modeling concepts and concluded the background with a comparison of Related ER
Modeling Tools.

With the relevant background information established, we proceed with Chapter 3 and
our contribution of a generic development approach for Sprotty-based modeling tools.
Initially, we discuss the architecture with a focus on the Client-side Sprotty Diagrams
of the framework and implement a basic diagram for our running example. Then we
look into the Xtext language workbench and how to add language support in VS Code.
For our running example, we create a Xtext Language Server and a VS Code Language
Extension that communicate with each other through the LSP. The created language
server and extension also serve as the basis for our development approach, which we
apply as a next step to the example and show the Integration of Sprotty with Xtext and
VS Code. As a final step, we build on the approach and enable Hybrid Modeling with
Sprotty to synchronize graphical editing with textual changes.

Our other contribution, the bigER modeling tool, is presented in Chapter 4. We
first discuss the Architecture of the tool, which is realized based on our development
approach, and then we follow with a Feature Showcase of the implemented functionality.
In the chapter, we also provide an initial Evaluation of the tool by recreating and
discussing concrete modeling cases. We finish the evaluation of the tool with an overview
of supported ER modeling concepts.

At last, in Chapter 5 we conclude the thesis with a Summary and Outlook of our
work. The summary includes a recap of our contributions and how they deal with the
established research objectives, while the outlook reveals current ongoing work and future
directions of the bigER modeling tool.
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CHAPTER 2
Background

In this chapter, we cover background information and foundational concepts before
we proceed to the contributions of this thesis. First, we introduce MDE (Section 2.1)
and give an overview of relevant model-based approaches that are used throughout this
work. Next, follows a discussion of web modeling with EMF (Section 2.2), including
motivational aspects and underlying technologies of our development approach, namely
the LSP, Xtext, Sprotty and VS Code. The last sections become relevant for the bigER
Modeling Tool, where we discuss different ER modeling concepts (Section 2.3), as well as
related ER modeling tools (Section 2.4).

2.1 Model-driven Engineering

The discipline of Model-Driven Engineering (MDE), integrates models as a central concept
into the software development life-cycle, allowing to focus directly on a concrete problem
domain, rather than dealing with underlying, specific technologies. The primary goal of
MDE is to reduce complexity and increase comprehensibility of a system by providing
additional layers of abstraction and representing software artifacts through the core
concepts of Models and Transformations [1]. In a classical sense, programs can be seen
as a combination of algorithms and data structures, leading to the eminent equation
of Algorithms + Data Structures = Programs [24]. In the context of MDE, this is
converted to the equation of Models + Transformations = Software, meaning that a
combination of models with transformations leads to the result of software [2]. However,
the equation alone, does not suffice in describing MDE as a whole. Certain notations,
commonly referred to as Modeling Languages, are required to represent different concepts.
In addition, processes and rules with a certain level of tool support, realized in Modeling
Tools, are required for sufficient specification of models and transformations. A well
acknowledged language in the modeling domain is, e.g., the Unified Modeling Language
(UML) [25, 26] with a wide variety of available modeling tools [27].
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2. Background

Apart from MDE, there exist various other terms that use the Model-driven prefix (MD)
and might lead to confusion. In general, MDE goes beyond pure development with sound
engineering approaches and is a superset of Model-driven Development (MDD). Contrary,
Model-based Engineering (MBE) processes are only based on models, as opposed to being
used for driving the processes, thus, MBE is a superset of MDE. Another often mentioned
term is Model-driven Architecture (MDA), a concrete standard of MDD approaches,
managed by the Object Management Group (OMG) [28]. When MDE is applied to
software, we particularly speak of Model-driven Software Engineering (MDSE), however,
in this thesis we use the two terms interchangeably.

In the following, we look into the basic architecture of MDE and provide a high-level
overview of its components. Next we describe modeling languages and metamodeling
more specifically, including DSLs, GPLs, the anatomy of languages, and definition of a
concrete syntax.

2.1.1 Basic Architecture

The basic architecture of MDE can be seen in Figure 2.1 as taken from [2] with different
layers in a vertical- and horizontal space. The vertical aspects correspond to the mapping
of models to software artifacts from the modeling- to the realization layer, with the
mapping realized through model transformations and code generation in the automation
layer. In contrast, the horizontal space deals with the corresponding conceptualization in
different abstraction layers. Application-specific models (application layer) are defined
using modeling languages that target the specific problem domain (application domain
layer). Modeling languages in turn are defined using meta-modeling languages (meta-
level). Similarly, model transformations and code generation is defined by transformations,
which are further defined using a transformation language. The resulting artifacts, e.g.,
generated code, can be used in specific platforms, however, often the goal is to create
platform-independent artifacts.

2.1.2 Modeling Languages

In the field of software engineering, programming languages encapsulate complex struc-
tures and behaviours into specific language concepts that serve the goal of providing
abstraction. In the context of MDE, we use the term modeling languages instead, to
specify problems as abstract representations in the form of models. Abstraction through
models can bring various benefits, e.g., different representation levels can improve cross-
communication between stakeholders of different expertise, or the specification of model
transformations can enable code generation and automate parts of the development
process.

DSL vs. GPL

For the classification of languages, we differentiate between the terms General Purpose
Language (GPL) and Domain-specific Language (DSL). In a modeling context, we refer to

8



2.1. Model-driven Engineering

Figure 2.1: High-level Architecture of Model-driven Engineering [2]

languages as General Purpose Modeling Language (GPML) or Domain-specific Modeling
Language (DSML). GPLs are designed to solve problems across a majority of domains
more generally, and are applicable in a variety of different settings and environments.
A well known example for a GPL is the Java language and for a GPML we already
mentioned UML, they both can be used for dealing with a wide range of problems. In
contrast, DSLs are more specialized and meant to be used for specific problems, with
no intended use outside the problem domain. Examples for DSLs include the markup
language HTML or the relational database language SQL. Similarly, DSMLs are designed
for creating models of a specific domain, and are common practice for modeling, e.g., in
the automotive- or aerospace industry. DSLs and DSMLs can greatly reduce complexity
and are often convertible to other languages, but, while they can be beneficial when
successfully employed into the software engineering process, it should also be stated that
they can create new risks when used in the wrong context [29]. The cost of learning a new
language can greatly outweigh the limited application uses it has, making it practically
useless. In addition, an enormous effort can be spent on the design and implementation
of a DSL, such that possible gains of actually using the language do not sufficiently make
up the invested development effort.

Anatomy of Languages

It becomes self-evident that modeling languages can be internally complex, and a clear
definition of allowed concepts is required to adequately use the language in the specification
and validation of models. Even though languages are present in varying nature and
are applied in different fields, they still share a certain set of common characteristics.
Modeling languages specifications are a composition of syntax focusing on the notation of

9



2. Background

the language, semantics to describe the meaning of language constructs, and pragmatics
for the purpose of models [30, 31]. When formalizing a language and ensuring that it is
well-defined, we differentiate between the following components [32]:

Abstract Syntax — The Abstract Syntax (AS) corresponds to the internal represen-
tation of a modeling language. It formally describes language concepts and their
structure, i.e., how language elements can be combined, independent of any con-
crete form of representation. The AS can be specified using different specification
techniques, and they can be represented in different forms, e.g., UML class diagrams
or EBNF [33]

Concrete Syntax — The Concrete Syntax (CS) defines concrete representations (no-
tations) for a modeling language and its concepts. It is usually used directly by the
modeler and is commonly present textually, graphically or tabular. There can be
also be multiple CS representations for a single AS definition, e.g., in a combination
of textual and graphical notations [34].

Semantics — Semantics describe the meaning of a language and ensure consistent
meaning of the language elements, including their combinations.

Modeling languages commonly also include a Serialization Syntax, e.g., in XML format,
for persistent storage of models and to support model exchange between tools. Other
important aspects to consider are extension of languages or mapping (transformation) to
other languages and domains.

There exist numerous principles and dimensions for the classification of DSL’s. Such
dimensions include focus, style, notation, internality and execution, as mentioned in [2],
additional principles are described in [35]. Guidelines for the design of DSL’s can be
found in [36]. We now look into basic concepts relevant for the development of modeling
tools, with a focus on metamodeling and grammars.

2.1.3 Metamodeling

We defined the AS in a modeling language as a formal description of the language
concepts and their structure. There are several ways to define an AS, and in the context
of MDE this is commonly achieved through metamodeling. Models in a language are
considered valid if they conform to the AS of the language, defined in a metamodel, i.e.,
each model element is an instance of a metamodel element. Metamodeling languages,
also referred to as meta languages, are used to define a metamodel, and are commonly
based on object-oriented approaches, e.g., UML derivatives with additional refinement in
Object Constraint Language (OCL).

A metamodel can be seen as a model itself and can be defined in even higher level of
abstraction, called a meta-metamodel. The recursion of metamodel definitions could go
on indefinitely, however, it can be escaped, e.g., by using a meta-circular metamodeling
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2.1. Model-driven Engineering

language such as the Meta Object Facility (MOF). Meta-circularity allows defining
language concepts by using the language itself in this process [31]. A commonly used
implementation of MOF is present in the Eclipse Modeling Framework (EMF) with the
metamodeling language Ecore. We discuss EMF and Ecore in more detail in the next
section (see Section 2.2).

Concrete Syntax Definition

In general, the AS is not really intended to be used by humans, as it can include numerous
nested references and quickly lead to a cluttered view. As mentioned, the CS deals
with the notation of a language and can be used to improve the readability of a model.
In addition, it is also possible to define multiple, different CS representations that all
conform to a single AS definition, allowing for multi-view [37] and hybrid (or blended) [20]
modeling approaches. Representations for the definition of a CS are mostly in the form of
a Textual Concrete Syntax (TCS) for textual languages or a Graphical Concrete Syntax
(GCS) for graphical languages [38, 31, 2]. Figure 2.2 displays how text and diagram
visualize a model and how they both correspond to a respective CS that symbolizes the
metamodel, corresponding to the AS.

Metamodel 
(Abstract Syntax)

«conformsTo»

Model
visualizes

«conformsTo»

Diagram
visualizes

«conformsTo»

Text

symbolizes Textual Concrete
Syntax

symbolizesGraphical Concrete
Syntax

Figure 2.2: Textual- and Graphical Concrete Syntax Definition of Metamodels, adapted
from [2]

Textual modeling languages are often defined through a grammar that combines a
metamodel with a corresponding TCS. The grammar of a language defines all valid
sentences, in contrast to metamodels, which define all valid models. Commonly, the
grammar is in Extended Backus Naur Form (EBNF), which allows the specification
of context-free grammars through production rules, with a sequence of terminal and
non-terminal symbols. When using textual languages, models are defined in simple text
files that can lead to higher productivity when making use of features such as, e.g.,
copy-and-paste, formatting, and version control. A feature-based classification schema of
textual syntax mapping approaches can be found in [39].

On the contrary, graphical modeling languages require the specification of a GCS,
consisting of graphical symbols, e.g., circles, rectangles or other shapes, compositional
rules, e.g., how elements can be nested within each other, with a mapping between the
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graphical symbols and the language concepts defined in the AS. For creating graphical
model editors, graphical languages additionally specify editing behavior, e.g., creation
of elements in a tool palette or handling connections between nodes by dragging edges.
Definition of the GCS is commonly based on approaches that include mappings (e.g.,
Sirius, GMF), annotations (e.g., Eugenia) or APIs (e.g., Graphiti). For more details and
an analysis of graphical modeling language notations, we refer to [34].

2.2 Web Modeling with EMF

There are various challenges in MDE that have to be addressed to increase its adoption
and feasibility in practice. In regard to tool support, current challenges include modeling
of different heterogeneous views, expressing requirements in a human-readable form and
scalability in large modeling projects [7]. It is also important to consider the aspect that
modeling tools are often integrated into IDEs to blend into the software development
process. However, the target platforms are traditionally based on specific technologies
that require vendors to implement platform-specific solutions when providing additional
tool support in an IDE. This vendor-lock leads to the problem of low portability in a
majority of modeling tools, since an enormous effort is required to re-implement existing
solutions for different platforms. The mentioned challenges together with modern-day
requirements continue to increase the gap for low MDE adoption and the need for high
usability, scalability, portability and various other quality attributes in modeling tools.

In recent years, there has been an increased effort in bringing modeling to web- and cloud-
based environments such that modeling tools can keep up with modern requirements and
in hope of dealing with the drawbacks that lead to low MDE adoption. Also contributing
to this effort are IDEs that are following the trend of moving to web platforms and
making their API available for extension. Developing extensions to an IDE in a web-based
environment opens up a whole new range of technologies that can be leveraged, such
as the LSP for textual languages [18] or Scalable Vector Graphics (SVG) for stable
rendering of graphical models. Web-based modeling tools have further shown to feature
collaboration, high scalability and seamless integration with other tools [13]. While there
has been various success in web-based modeling, the challenge of adopting the EMF to
web technologies remains an active area of research [18, 40, 41]. Due to tight integration
with Eclipse, developing and maintaining EMF-based tools that are deploy-able to web
platforms quickly becomes a complex task, with new risks involved throughout the process.
Over the years, EMF has seen wide-spread use within the modeling community with
various tools relying on it and while alternatives exist, abandonment of EMF means a
great amount of modeling functionality is lost and has to be reproduced in a web context.
Thus, we consider integration of EMF in web-based solutions substantial for the future
success of modeling tools.

The mentioned aspects serve as the underlying motivation for this thesis and lead to the
objective of contributing an approach for effectively developing web-based modeling tools
that integrate EMF-based languages and fulfill modern requirements. Our contributed
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approach leverages the graphical framework Sprotty to enable synchronized modeling
of textual- and graphical model representations. Xtext serves as a language workbench
in the development process of a modeling language and its TCS. Xtext automatically
generates a corresponding language server for the language to allow seamless integration
with IDEs and platforms that support the LSP. In our approach, we add language support
in VS Code by creating a language extension. Sprotty is used to derive the GCS by
integrating with the textual language and generating a corresponding diagram. Sprotty is
also used for developing a VS Code extension that ties all the components together, and
synchronizes the graphical representation with language artifacts from the textual editor.
As a last refinement, we fully utilize Sprotty to enable hybrid modeling approaches, which
is achieved through extension of the LSP. In this section, we introduce the most significant
technologies in our contributed approach to serve as a foundation for development. First
we discuss underlying modeling aspects of EMF, before we proceed with a high-level
description of the LSP, Xtext, Sprotty and VS Code. Since the technologies are used
throughout the this work, later chapters provide a more detailed description of them (see
Chapter 3 and 4).

2.2.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a mature modeling framework and code
generation facility that is heavily used in the Eclipse platform. EMF provides a standard
for model-based development approaches as part of the Eclipse Modeling Project1. Despite
a wide area of application, our primary focus in the remainder of this section is on using
EMF for the metamodeling process and the design of modeling languages. For a more
comprehensive and practical overview, we refer to the book by Steinberg et al. [42], as
well as the EMF Programmer’s Guide2.

The OMG defined the MOF as a standard for MDE, in particular, it provides a four-layer
modeling architecture with MOF used at the top-layer as a meta-metamodeling language
to create metamodels. The created metamodels can then be used for modeling activities
and to represent real-world objects. The meta-metamodel of EMF is Ecore, a Java-based
implementation that aligns with eMOF. The modeling elements of Ecore are based on
the concepts of object-orientation, an overview of concepts and their structure is is shown
in Figure 2.3.

EMF supports the import of existing models to Ecore, e.g., from UML, XML or annotated
Java, together with generation of a Java infrastructure with an API and editors for the
language in the metamodel. Persistence can be enabled through serialization in the
XML Metadata Interchange (XMI) format, which is also defined by the OMG. Notable
components built-on top of the EMF ecosystem include: servers and storage through
model repositories (e.g., EMFStore), graphical- and textual modeling frameworks (e.g.,
Xtext, Sirius, GMF), model transformation languages (e.g., ATL, Henshin, Xtend) and

1Eclipse Modeling Project
2EMF Programmer’s Guide
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Figure 2.3: Overview of the Ecore Meta-metamodeling Language

UI development tools (e.g., EMF Forms). EMF integrates well with the Eclipse Platform
through its OSGi plugin-architecture, however, our target is deployment of tools outside
Eclipse. Specifically, we later use Xtext, Sprotty and LSP to integrate EMF-based
modeling languages with VS Code and technically any web-based platform supporting
the LSP.

2.2.2 LSP

The task of adding language support to different IDEs traditionally involves an enormous
implementation and maintenance effort, which can lead to inconsistencies between different
integrations and generally is more prone to errors. The effort required in implementing
and maintaining n languages for m different editors is in the complexity class of O(n×m).
With IDEs moving to web platforms, Microsoft introduced the Language Server Protocol
(LSP) to reduce the effort in supporting different programming languages within VS
Code. The protocol allows to decouple the implementation of language-specific servers
from language-agnostic clients, i.e., the IDE or editor, thus, reducing the complexity to
O(n + m).

The LSP standardizes common language features such as auto-complete, finding references,
documentation or hover information and enables inter-process communication through
messages between a server and client. Messages are defined in the JSON-RPC3 format,
thus, they can be considered lightweight and stateless. The specification of the protocol
is described in [43] and currently features version 3.17.x. The core protocol consists
of request-, response- and notification messages, together with utility interfaces and

3JSON-RPC Website
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-functions, e.g., for specifying a range and position in a text document. An example of
request- and response messages for finding a definition is shown in Listing 2.1 and Listing
2.2, respectively. It can be seen that elements in a document are referenced through an
Uniform Resource Identifier (URI) with text positions. To know which language features
can be communicated between a language server and a client, they both announce their
supported capabilities during communication.

{
" j sonr pc " : " 2 . 0 " ,
" id " : 1 ,
" method " : " textDocument/ d e f i n i t i o n " ,
" params " : {

" textDocument " : {
" u r i " : " f i l e : /// Example . java "

} ,
" p o s i t i o n " : {

" l i n e " : 5 ,
" c h a r a c t e r " : 14

}
}

}

Listing 2.1: Go To Definition - Request

{
" j sonr pc " : " 2 . 0 " ,
" id " : 1 ,
" r e s u l t " : {

" u r i " : " f i l e : /// D e f i n i t i o n . java " ,
" range " : {

" s t a r t " : {
" l i n e " : 3 ,
" c h a r a c t e r " : 7

} ,
" end " : {

" l i n e " : 3 ,
" c h a r a c t e r " : 15

}
}

}
}

Listing 2.2: Go To Definition - Response

Besides VS Code, the LSP is supported in countless other popular IDEs such as Eclipse,
Theia or Atom, and it is implemented in numerous language servers4. While the LSP
has been successful in supporting textual languages [14, 15], it does not address other
prominent IDE features such as graphical languages, testing, or debugging, often leading
to a mixture of different protocols in a language [44, 45]. Relevant to the context of this
work is the question of how the LSP can be reused, to combine textual and graphical
languages [17, 19]. Concerns for this approach include differences regarding representation
(characters vs shapes), processing (top-down vs graph traversal) and serialization (raw
text vs specific formats). In this thesis, we contribute to this area of research by leveraging
Sprotty for extending the LSP and to synchronize textual- and graphical model editors.

2.2.3 Xtext

Xtext is a language workbench for developing textual modeling languages and becomes
relevant for this thesis due to its integration with EMF, LSP, and Sprotty. Strengths of
the framework lie in it being mature and easy to learn, as well as the developed languages
offering high quality, optimized performance and support on multiple platforms. In the
following, we introduce the key aspects of Xtext, whereas we put the framework into
practice in later chapters of the thesis. For more information on Xtext, we refer to the
official documentation [46] or the recommended book [47].

4LSP Implementors
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In Xtext, a language can be simply defined by providing a grammar specification
that corresponds to the TCS. The grammar is based on the Extended Backus Naur
Form (EBNF) with extensions for type inheritance, type information, containment, and
cross-references [48]. From the specified grammar file, the underlying Xtext generator
automatically creates a complete infrastructure with components commonly expected
to be present in a language. This includes an ANTLR parser5, a lexer, a derived Ecore
model and other components that can be customized through Dependency Injection (DI).
Xtext also generates stubs to override the defaults of API methods such as validation
of custom constraints, scoping to restrict referable elements in cross-references, value
conversion, formatting and numerous more.

Model transformation in the form of Model-to-text (M2T) [49] is supported by implement-
ing a code generator which can further utilize Xtend for readable string concatenation
through template expressions. Xtend6 is a dialect that fully compiles to Java and which
claims to be more concise, readable and expressive. Besides template expressions, se-
lected features include, e.g., type inference, lambda expressions or extension methods. In
this work we heavily make use of Xtend with most of the language server components
implemented with it.

EMF is deeply integrated into the Xtext framework as it is being used to store the
Abstract Syntax Tree (AST). The AST is used for various other processing steps, such
as validation or code- and diagram generation. In EMF the AST is represented through
EObjects that map the textual model to an Ecore model. Xtext also generates Java
interfaces and implementations for the elements of the language through EMF. Besides a
fully-fledged Eclipse editor featuring, e.g., an outline view, syntax highlighting or code
completion, Xtext can also generate a generic editor with a language server that supports
the LSP. Thus, EMF-based languages implemented in Xtext can be reused to add support
in various other editors by communicating with the language server.

2.2.4 Sprotty

Sprotty is a web-based, open-source diagramming framework7 offering an extensible
architecture and a variety of customizable modeling features. Diagrams are embedded
in the DOM of a browser, and they provide stable, scalable views of models that are
rendered as SVG, styleable with CSS, and can be also be animated. Sprotty offers the
choice between two architectural design decisions, a client-only approach with a local
model source entirely implemented on the client, or a client-server approach, featuring a
remote backend that is responsible for holding a model and delivering representations
to the client. The client-side is based on a reactive uni-directional flux architecture for
resolving flaws of the traditionally used Model View Controller (MVC) pattern [50, 51].
Sprotty internally defines a JSON protocol for communication between client and server to

5ANTLR Website
6Xtend Documentation
7Sprotty on GitHub
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balance the workload of operations by either passing messages to the server or processing
them locally.

The client-side of Sprotty is implemented in TypeScript, while the server-side offers
a Java and Node.js-based architecture. Configuration of Sprotty, both on the client-
and server-side, is done through DI with InversifyJS and Google Guice as a framework
respectively. DI allows adding own model elements, figures, behavior, and adapting default
implementations. Through the underlying technologies, interoperability of Sprotty is
greatly increased, and the framework offers pre-existing integrations with various platforms
and tools. An overview of the currently available Sprotty packages and sub-packages is
given in Table 2.1. We note that the overview only includes the relevant packages in the
context of this thesis and there are additional integrations available that are not listed in
the table, e.g., with Theia, Langium, and Eclipse RCP applications. We discuss Sprotty
in more detail in later parts of this work (see Chapter 3).

Name Package Sub-package Description

Client sprotty
Client-side code for diagrams

protocol Code for Node.js-based servers
elk Client-side layout with ELK

Server sprotty-server

Java bindings for the Sprotty API
layout Server-side layout with ELK
server Base library for servers
xtext Integration with Xtext-based language servers

VS Code sprotty-vscode

Integration with VS Code
extension Library to create Sprotty VS Code extensions
protocol Code for communication between extension and webview
webview Library for implementing webviews with a diagram

Table 2.1: Overview of relevant Sprotty Packages

2.2.5 VS Code

VS Code is currently the most popular IDE in the context of web development according
to a recent survey8 and is mostly open-source, with high extensibility and customizability.
Due to it being web-based and lightweight, VS Code can be run on all major hardware
and platforms. The cross-platform desktop app can be installed on macOS, Linux,
and Windows. Recently, VS Code also became available in the web browser9, however,
with certain limitations compared to the desktop app, e.g., limited file access in certain
browsers. Internally, VS Code is based on the application framework Electron and written
in TypeScript. Electron is built on top of Chromium and the Node.js runtime, bringing
the benefit of standard web APIs to VS Code.

High extensibility is enabled through its extension API10, allowing extensions to interact
8StackOverflow Developer Survey 2019
9vscode.dev

10VS Code Extension API
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import ∗ as vscode from ' vscode ' ;

export function a c t i v a t e ( context : vscode . ExtensionContext ) {

this . context . s u b s c r i p t i o n s . push (
vscode . commands . registerCommand ( ' example . h e l l o ' , ( ) => {

vscode . window . showInformationMessage ( ' Hel lo ! ' ) ;
} ) ) ;

this . context . s u b s c r i p t i o n s . push (
vscode . commands . registerCommand ( ' example . newFile ' , async ( ) => {

const newDocument = await workspace . openTextDocument ({
content : ' \n\n\n\ nHel lo ' ,
language : ' txt ' ,

} ) ;
await window . showTextDocument ( newDocument )

} ) ) ;
}

Listing 2.3: Source Code for a VS Code Extension with Command Registration

with VS Code and customize UI components, editors, and themes. An abundance of
extensions are freely available in the marketplace11 and developing extensions is relatively
uncomplicated with the thoroughly documented API. VS Code offers common extension
capabilities (e.g., commands, configurations, keybindings, storage), theming (e.g., UI
colors, editor, file icons), and language extensions (declarative and programmatic language
features).

Language extensions are a key aspect in this thesis, and further discussion is provided in
later chapters. For now, as an introductory example to the extension API, we discuss the
core concept of commands for triggering actions. VS Code extensions always include a
manifest that defines metadata together with contribution points. The contribution points
include commands that are by default exposed in the command palette and can also be
specified to appear, e.g., in context menus or the editor toolbar. Commands are referred
to by a name that is defined in the manifest, and they are registered when the extension is
activated. Listing 2.3 shows the implementation of two command registrations within the
corresponding method that is called upon activation. In line 1 we import the extension
API and register a command to display an information message and another command
to open a new text file with pre-defined content. Figure 2.4 shows the extension in action
with the command palette that contains our two commands. In the background, the
file that is created when executing the New File command is open, and the information
message of the Hello command is displayed in the lower-right corner.

11VS Code Marketplace
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Figure 2.4: VS Code Extension with Commands in Action

2.3 Entity-Relationship Modeling

The Entity Relationship (ER) model is a high-level, conceptual data model, first in-
troduced by Chen [52] in 1976. ER modeling was originally proposed to combine the
advantages of previously dominating data models, namely the network model, the re-
lational model and the entity set model. The core modeling concepts include entities,
relationships, and attributes, to describe real-world objects and their corresponding
properties, together with relationships to other objects. The visual representation of
a model is captured in an ER diagram, consisting of different shapes and labels that
ultimately result in an abstract and unified view of the modeled data. ER modeling is a
common practice in the domain of conceptual database design, to visualize the initial
database structure in form of ER diagrams, which later serves in the creation process of a
logical schema [53]. Conceptual database design with ER models allows for cross-business
communication, e.g., between business analysts and database designers, when advancing
from the requirement analysis to the logical design of a database [54].

With its long history, there have been various adaptions of the underlying, generic ER
model to other domains, featuring varying syntax and semantics, e.g., the temporal- [55],
probabilistic- [56] or leveled [57] models. The Extended Entity Relationship (EER) model
is presumably the most prominent extension, and includes concepts such as generalization
or specialization [58, 59]. A comparative analysis of the different notations can be found in
[60]. ER models consist of simple, yet expressive concepts to describe conceptual models.
In their basic form, conceptual models comprise entities, relationships and attributes,
however, additional refinement of these elements allows the expression of constraints.
In the remaining of this section, we successively introduce the fundamental concepts of
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the ER model, whereas we mainly focus on generic concepts (as originally introduced
by Chen [52]). However, we further back our description by additional literature of the
database domain [53, 54, 61] and for a formal definition, including extension of the ER
model, we refer the reader to [62].

2.3.1 Entities and Attributes

An entity represents a real-world object from a specific problem domain and is distin-
guishable from other objects. The existence of the represented objects can be of physical-
(e.g., person, building, vehicle) or conceptual nature (e.g., company, school). Entities are
identified by a corresponding name and a list of attributes. Attributes are used to describe
individual properties and characteristics of an entity. ER models generally allow for
further classification of attributes, depending on how the data (representing an entity’s
property) should be stored. The most common classifications include differentiation
between:

Composite or Simple — Sometimes an attribute can be further subdivided into mul-
tiple components, e.g. a name consisting of a first name and a surname. In such
cases, we refer to them as composite (also referred to as complex). In contrast, if
an attribute can not be further subdivided, we speak of simple attributes.

Multi-valued or Single-valued — As the name suggests, multi-valued attributes, can
have multiple values to describe a property, e.g. a person can have multiple
addresses. Attributes that only contain a single value, are called single-valued.

Derived or Stored - If the value of an attribute can be computed from another at-
tribute, we speak of a derived attribute, as opposed to a stored attribute. For
example, an age property of a person can be calculated based on the birthday,
assuming birthday is a stored attribute.

Required or Optional — In some cases, instances of attributes do not have concrete
values associated to them, i.e. containing NULL values. It is in general considered
good practice to denote such attributes as optional. Contrarily, we refer to attributes
as required, when it is necessary to have concrete values associated to them, i.e.,
not allowed to contain NULL.

To be able to uniquely identify entities, it is required to define a minimal set of attributes
as a candidate key. The selected candidate key is called a primary key. Keys in ER
models are called identifying attributes, as opposed to descriptive attributes. In many
cases, the candidate key consists of a single attribute (often in the form of an artificially
defined ID) but can also be composed of multiple attributes, referred to as a composite
key. Sometimes the concept of foreign keys is also modeled in ER diagrams, however,
foreign keys are generally not a concern of the conceptual design layer and are treated in
a layer that is closer to the actual database application, such as the logical layer.
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In Figure 2.5 we provide examples for representing different types of attribute classifica-
tions in a common graphical notation. The student_id attribute serves as the primary
key for the entity Student. The entity contains the composite attribute name, which
composes a first_name and a last_name. Furthermore, we have the multi-valued
attribute phone_number, since a student can have multiple telephone numbers associ-
ated to them. Last, the entity has the derived attribute age, which can be calculated
from the simple (also stored, single-valued and required) attribute birthday. We also
want to note that the question, whether an object should be modeled as an entity or an
attribute, is not always straight-forward and can be influenced by factors such as the
modeling context or requirements.

Student
age

phone_number

student_id

birthdayname
first_name

last_name

Figure 2.5: Entity with different types of Attributes

2.3.2 Relationships and Constraints

The ER model defines connections between objects (i.e. entities) with the concept of
relationships. Similarly to entities, relationships are referred to by a name and can
include attributes, however, with the exception of only descriptive attributes being
allowed. A relationship additionally defines a set of associated entities, which we refer
to as participating entities. In a mathematical sense, a relationship R is defined as the
Cartesian product of participating entities E1, E2, ..., En, such that R ⊆ E1×E2×, ...×En.

We define n as the degree, denoting the amount of participating entities in a relationship.
Binary relationships have a degree of n = 2 and are most commonly used in ER models,
e.g. a relationship between a professor that teaches students (Figure 2.6a). A degree of
three (i.e. n = 3) is called a ternary relationship, e.g. a relationship between a doctor
that prescribes medicine for a patient (Figure 2.6c). Higher-order relationships, beyond
ternary, rarely occur in ER models, as they often add unnecessary complexity to models
and are not covered further in this section. Participating entities generally play a certain
role in a relationship, which can be denoted through role names and is commonly present
in recursive relationships. Recursive (or self-referencing) relationships are a special case
of a binary relationship R, where E1 = E2. Figure 2.6b shows this case and how role
names are used to differentiate between the roles of a supervisor and supervisee
within employee entities.
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Professor teaches Student

(a) Binary Relationship

supervisor supervisee

Employee

supervises

(b) Recursive Relationship
with Roles

PatientDoctor prescribes

Medicine

(c) Ternary Relationship

Figure 2.6: Degree of Relationships

Besides the degree, ER models may also specify structural constraints on relationships
to limit the number of possible occurrences of entity instances within the relationship.
Structural constraints are commonly defined in terms of cardinality, mainly differentiating
between 1:1 (One-to-One), 1:N (One-to-Many) and N:M (Many-to-Many) relationships.
Cardinality can be visualized in the form of mathematical relations between sets to aid
in understanding the relationship constraints and how participating entity instances are
allowed to relate to each other. In Figure 2.7 we show such representation of two entity
sets, including relations between instances. Considering the modeling case from Figure
2.6a, we slightly extend the model to include cardinality constraints. By stating that one
professor teaches zero or more students and a student can not be taught by more than
one professor, we express a 1:N relationship (Figure 2.7c). We could also restructure the
sentence to express a 1:1 relationship instead, such that a professor teaches at most one
student and a student is taught by at most one professor (Figure 2.7a). Last, in case of
an N:M relationship, we can state that one professor teaches zero or more students and
one student is taught by zero or more professors (Figure 2.7b).

Sometimes cardinality is further broken down and expressed more detailed, in the form
of a min-max notation, also referred to as multiplicity. This more refined notation allows
specification of concrete values for the lower- and upper-bound of entity occurrences.
Multiplicity is essentially the combination of cardinality- and participation constraints.
Cardinality describes the maximum number of allowed relationship occurrences for
participating entities, thus, corresponding to the upper-bound in the multiplicity range.
In contrast, participation constraints, determine whether all instances of an entity occur
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Figure 2.7: Cardinality Constraints represented as Relations between Sets

1 .. 1Professor 0 .. Nteaches Student

Cardinality

Participation

Figure 2.8: Difference between Cardinality and Participation Constraints

in a relationship (total/mandatory participation) or only some of them (partial/optional
participation). This corresponds to the lower-bound in the multiplicity range. Figure 2.8
shows the differences between the two, with the model describing the case of exactly one
professor teaching zero or more students.

We further note that definitions and representations of the mentioned modeling concepts
and especially constraints can vary greatly when reading through different literature.
For example, multiplicity is sometimes read from opposite directions (e.g. in the UML
notation) or often only cardinality is expressed through values, while participation is
either modeled as a single edge (partial participation) or a double edge (full participation).
For thorough understanding of ER models, it is essential to be aware of the concrete
notations and definitions used for the concepts.
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2.3.3 Weak Entities

The final concept we cover are weak entities. So far, we only considered regular entities,
containing a key attribute that is used for unique identification. ER models further
allow the classification of a weak entity that can not be uniquely identified alone, and
its existence depends on another strong entity. In this case, the dependency between
the two entities is modeled in the form of an identifying relationship, with the weak
entity defining a partial key attribute. The primary key then becomes a combination of
the partial key together with the key attribute defined in the identifying, strong entity.
Furthermore, the identifying relationship is constrained to be either 1:1 or 1:N, with N
and a total participation constraint on the weak side. A weak entity and its identifying
relationships are commonly modeled with a thicker border compared to the regular
counterparts, this graphical representation is exemplified in Figure 2.9. In the figure, a
chapter only contains an attribute for the section number, and thus, can not be uniquely
identified alone. To express a dependency to the strong entity Book (containing the key
isbn), we specify an identifying relationship between the two and declare Chapter as
weak, with section_nr serving as a partial key.

N
Book

1
contains Chapter

section_nrisbn

Figure 2.9: Weak Entity and Identifying Relationship

2.4 Related ER Modeling Tools

With ER modeling being around for a long period of time, there have been numerous
contributions in providing tool support to this field. Traditional tool support ranges from
educational use-cases that focus on the validation of ER models to complete data modeling
applications for the design of databases. There is even support for ER modeling in general
drawing applications, but they often disregard the underlying modeling semantics and
are solely intended for graphical representations. Given the abundance of available tool
support and for alignment with the context of this thesis, we restrict our focus in this
section on recently developed ER modeling tools which are related and comparable to the
bigER Modeling Tool. We found a handful of tools that fulfill our restriction criteria and
provide a comparison in respect to selected tooling aspects in Table 2.2. The basis for
these aspects serves the bigER Modeling Tool which is a web-based VS Code extension
with the code being open-source available on GitHub12. It offers hybrid modeling support

12bigER - GitHub Repository
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based on the LSP with a textual- and graphical editor. Additional key features include
code generation of database tables (in SQL) and model validation.

dbdiagram ERDPlus MIST ERtext vuerd ERD Preview bigER
Open Source ✓ ✓ ✓ ✓ ✓
Web-based ✓ ✓ ✓ ✓ ✓
IDE Integration Eclipse Eclipse VS Code, Atom VS Code VS Code
Textual Editor (DSL) ✓ ✓ ✓ ✓ ✓
LSP Implementation ✓ ✓ ✓
Diagram Rendering ✓ ✓ ✓ ✓ ✓ ✓ ✓
Graphical Editor ✓ ✓ ✓ ✓ ✓
Hybrid Modeling ✓ ✓ ✓
Code Generation ✓ ✓ ✓ ✓ ✓ ✓
Model Validation ✓ ✓ ✓ ✓

Table 2.2: Comparison of Tools and VS Code Extensions for ER Modeling

While the tooling aspects are biased to align with the strengths of the bigER Modeling
Tool, the comparison serves in underlining the tool’s unique contribution factor. It is
the first real modeling tool deployed to the VS Code ecosystem that supports the LSP,
making it relatively simple to realize additional support for other IDEs. Due to its
web-based nature, the bigER Modeling Tool can technically also be embedded in web
pages.

In the following, we discuss each of the selected tools for comparison in more detail and
elaborate on their supported features:

• dbdiagram is available for web browsers13 with a textual- and graphical editor
that also supports hybrid modeling. The tool uses a language server of the DBML
- Database Markup Language for creating database tables and their references
textually, as well as for rendering the diagrams. The tool supports import of
existing databases from, e.g., rails (schema.rb) or SQL (PostgreSQL, MySQL, SQL
Server) as well as export of created models to, e.g., PNG images, PDF documents
or SQL code. The UI has a modern look and feel with dark and light themes or
custom table colors for premium users, as well as collaboration support in the form
of sharing and version history.

• ERDPlus is also available for web browsers14, however, ER models are created
graphically together with form inputs, and it does not offer a textual editor with a
language. It also supports creating relational- and star schemas with transformation
from ER to relational schemas, generation of SQL DDL statements and export to
PNG images. Usage of ERDPlus in the context of database design is described in
[63].

• MIST is the official abbreviation of the Multi-Paradigm Information System
Modeling Tool, which includes a DSL specifically designed for EER modeling

13dbdiagram Website
14ERDPlus Website
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[64]. Through its underlying EER metamodel, it offers a bidirectional (graphical
and textual) approach for conceptual modeling and model transformation into a
relational data model, or a class model. The abstract syntax is specified in Ecore
while the textual- and graphical concrete syntax is defined using Xtext and Eugenia
respectively. MIST can be used in Eclipse and despite using Xtext, the tool is
realized15 with an earlier version that does not support the LSP yet.

• ERtext implements a Xtext-based DSL for conceptual modeling of relational
databases [65, 66]. The code is open-source available on GitHub16 and while
technically being web-based through the LSP the tool is so far only supported
within Eclipse. Textual models offer validation as well as support for generation of
diagrams (PlantUML), logical schemas and SQL code (MySQL and PostgreSQL).
The generated diagrams can not be graphically edited, thus, also lack hybrid
modeling support.

• vuerd is a web-based and purely graphical ER modeling tool, with the code being
open-source available17. The tool is available in two IDEs (VS Code, Atom) and
it also offers a playground in a web browser. The graphically created ER models
(stored as JSON) do not offer a corresponding textual editor, however, the models
can be used to generate SQL code.

• ERD Preview is also available as a VS Code extension18 offering a textual DSL for
the specification of ER models. The DSL (erd-go) translates a plain text description
of a relational database schema to a graphical ER diagram. However, the language
does not implement the LSP and there is no support for graphical editing in the
diagrams.

15MIST Github Repository
16ERtext Github Repository
17vuerd Github Repository
18ERD Preview VS Code Marketplace
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CHAPTER 3
Developing Sprotty-based

Modeling Tools for VS Code

In this chapter we deal with the first research objectives of this thesis, in particular, we
contribute an approach for the development of modeling tools based on Sprotty. The
approach is illustrated with a running example that is iteratively extended with new
modeling capabilities over the course of this chapter. The example features a reasonably
simple modeling language to focus on the principal aspects of the development process
and with the aim to provide an approach that is as generic as possible. Despite its
simplicity, the result is a full-fledged modeling tool, including a textual editor with rich
text editing features and a synchronized graphical representation that supports hybrid
modeling. Code of the running example is provided on GitHub1 and structured according
to each section.

The remaining of this section is structured as follows. First, we look into the architecture
of Sprotty with a particular focus on the client-side and the key features. We implement
a basic client-only diagram for our running example and discuss further customization
options (Section 3.1). In the next section, we shift the focus to developing the underlying
modeling language with Xtext, create a VS Code extension, and connect the language
with the extension for textual editing support (Section 3.2). We then integrate Sprotty
with Xtext, the LSP and VS Code, and implement a diagram corresponding to the
textual editor (Section 3.3). In the last step, we fully utilize Sprotty and enable hybrid
modeling support between the two representations for selected editing features (Section
3.4).

1GitHub Repository of the Running Example
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3.1 Client-side Sprotty Diagrams
A high-level overview of Sprotty is provided in the previous chapter (see Section 2.2.4), we
now draw on the initial introduction and describe the technical aspects of the framework
more in depth. The primary focus in this section is on the client-side of Sprotty such that
we can later leverage the framework in a client-server scenario and add diagram support
to a textual language with a server. For this, we first look into the base architecture
and the concepts needed to create and manipulate diagrams. We then make use of the
established architecture in our running example and implement a client-side diagram
in the browser. The example is relatively simple and intended to highlight the generic
implementation steps, thus, we provide hints on further customization as well.

3.1.1 Architectural Overview

Before we look into the actual components that are part of the core architecture, we first
introduce certain underlying concepts that are relevant for creating and manipulating
Sprotty diagrams.

SModel, Actions and Commands

Sprotty uses an internal representation for models called the SModel, which is basically a
composition of JSON objects containing different properties, e.g. ID, position or size.
The SModelElement interface serves as the base for all other elements with the required
properties for a type and ID, as well as an optional list of child elements and CSS classes.
Other elements inherit this class and define further properties. A class diagram of all the
predefined elements, including their extensions, is shown in Figure 3.1. Sprotty also offers
an extension of the SModel that can be used for representing graph-like models called
an SGraph. An SGraph represents the root of the graph structure and consists of child
nodes (SNode) that are connected by edges (SEdge). An edge requires a source and
target property, which is set in the form of an ID from either a node or port (SPort).
There are different ways to route edges and nodes can further define compartments
(SCompartment) to include elements such as labels (SLabel) and other nested nodes.

Interactions and manipulations on the diagram are encapsulated as actions. An action in
its most basic form consists of a kind property that is used to declaratively describe
an operation on the underlying model. More complex operations include additional
properties to further describe the behavior. An example for the SelectAction, used
to select and deselect certain elements, is given in Listing 3.1. The information, which
elements should be selected and deselected, is provided through additional properties
that contain a list of strings, corresponding to the ID’s of the elements. Actions can be
represented as simple JSON objects, thus, they also serve in forwarding protocol messages
to a remote server in a client-server application scenario.
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Figure 3.1: SModel Class Diagram

export interface S e l e c t A c t i o n {
kind : typeof S e l e c t A c t i o n .KIND
se lec tedElements IDs : s t r i n g [ ]
dese l ectedElements IDs : s t r i n g [ ]

}

Listing 3.1: Select Action Example

To perform an operation on the diagram, actions are converted to commands that
implement the actual behavior of the operation. Each command implements the methods
execute(), undo(), and redo() with each of the methods receiving the context,
containing the current model, as a parameter. Within the methods, the respective
behavior for an action is implemented and an updated SModel representation is returned
for further processing.
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Core Components

The core architecture of Sprotty is shown in Figure 3.2, displaying how the previously
introduced concepts are passed around different components. The architecture implements
a unidirectional cyclic event flow that is commonly present in reactive flux applications
[51] and is an improvement to the traditional Model View Controller (MVC) pattern [67].

Figure 3.2: Client-side Architecture of Sprotty [67]

A ModelSource serves the model to the event cycle and is the entry point for the
client-side of Sprotty. In a client-only scenario, a LocalModelSource is used to
generate a model representation, while in a client-server scenario a remote model source
is used that is connected to a DiagramServer. All form of actions are received in the
ActionDispatcher and delegated to a respective ActionHandler, where actions
are converted to commands. The converted commands are then passed by the dispatcher
to the CommandStack to update the underlying model. Commands are chained and
merged on a stack for supporting undo and redo operations, as well as for animating
changes in the diagram. The updated model is passed to the Viewer, where the diagram
is rendered in a virtual Document Object Model (DOM). The viewer maps each model
element to a corresponding view by looking up its ID in the view registry. Event listeners
and animations are added to the DOM through decorators, allowing to create new actions
in the viewer and passing them to the dispatcher, where the cycle continues.

Sprotty can be customized using Dependency Injection (DI) through the lightweight
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inversion of control container InversifyJS2. Diagrams are implemented by creating a DI
container where bindings to services and the mapping of SModel elements to their view
classes are defined. Sprotty provides several default container modules with bindings
that can be reused by loading them in an own diagram container, and the injected
dependencies can then be used with the @inject keyword. The framework is built to be
highly modular and customizable, thus, all the default components can be customized by
rebinding them to custom implementations. A list and description of the provided default
modules is shown in Table 3.1 with each module corresponding to a certain feature.

Feature Module Description

bounds Bounds (position, size), layout (hbox, vbox, stack) and alignment
button Button handler and SButton model element
command-palette Default command palette (invoked with Ctrl + Space)
context-menu Default context menu (invoked with right-click)
decoration Decorate elements, e.g., issue Markers
edge-intersection Handle intersections for edges
edge-layout Handle edge layouting
edit Create, delete and edit elements
expand Expand elements
export Export the diagram, e.g., to SVG
fade Fade animation of elements
hover Hover support for elements
move Move elements in the diagram
nameable Naming support for elements
open Open elements
projection Display projection markers on borders of the diagram
routing Different routing styles for edges
select Actions to select/deselect (all) elements or get current selection
undo-redo Undo/redo operations, e.g., invoked by keybinding
update Update the model
viewport Viewport manipulation, e.g., zoom, scroll, center
zorder Render elements in front of others

Table 3.1: Default Feature Modules provided by Sprotty

3.1.2 Implementation

By understanding the architecture of Sprotty we can now make use of the framework and
go into the implementation procedure. Before we can use Sprotty, we need to set up a
basic web development project to be able to display the diagrams in a web environment,
such as in a browser. Sprotty is available as an npm package3, as such, it makes sense

2InversifyJS on GitHub
3npm Website
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to use npm or a similar package manager for managing Sprotty and any additional
dependencies. For the remaining of this thesis, we use yarn4 as a package manager. For
the initial project structure, we merely created an HTML file for the diagram container
and defined the dependencies. The dependencies mainly include sprotty (v0.11.1), for
client-side diagrams and http-server, for running the application on localhost.

With the project set up and able to be run in a web browser, the diagrams are ready to be
implemented. The official documentation of Sprotty provides a good starting point, and
the page for getting started5 provides a basic implementation procedure. The procedure
is roughly split into four stages and centered on specifying the following components:

1. Model — Definition of a model for the internal SModel representation.

2. Views — Definition of views (using JSX, SVG) and styling (CSS) for rendering
the model.

3. Configuration — Configuration of Sprotty in a diagram container using Depen-
dency Injection.

4. Model Source — Connecting a remote- or local model source to the configured
diagram container.

In the following, we describe the individual stages in more detail by incorporating the
procedure in our running example and creating a basic diagram.

Model

The first step is to choose a schema for the model representation defined through SModel
elements and forming a tree structure. As mentioned, the interface SModelElement
provides a generic representation that can be reused or arbitrarily extended to cap-
ture additional behavior and properties. The root for a model is defined through an
SModelRoot element with interfaces provided for HTML content and graph struc-
tures (consisting of nodes, edges, ports, compartments and labels). Interfaces extending
PreRenderedElement can be used for HTML and SVG code, e.g., for complex fig-
ures, computing the view on the server, or including existing shapes. In our example,
we do not need to override any of the provided model elements and simply reuse the
existing SGraph model with CircularNode and RectangularNode to represent the
elements.

Views

Sprotty uses the type property of model elements to map them to corresponding views and
rendering the diagram in a virtual DOM using the snabbdom library6. Views implement

4yarn Website
5Sprotty - Getting Started
6snabbdom on GitHub
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the base interface IView with the render() method that returns a virtual node (VNode)
element for a corresponding SModel element and rendering context taken as a parameter.
JSX and SVG is used for specifying the view representation, and additional styling
can be applied through CSS. Views commonly return an SVG container element (<g>)
containing shapes such as rectangles (<rect>), circles (<circle>) or text (<text>).
Based on the passed model element, the shapes can further specify additional classes
and properties, e.g., to define different styling whether the element is selected or to
set the position and size. Sprotty provides defaults for views of various elements that
can be reused and further extended. For our example, we again reuse provided views
for each of the element schemas, namely SGraphView, RectangularNodeView and
CircularNodeView.

Configuration

The next step is the configuration of Sprotty by creating a DI container with the
InversifyJS framework. As listed in Table 3.1, various default modules are provided for
certain features that can be loaded individually or all at once into a container. Sprotty
components are denoted in the TYPES constant with respective symbols that can be
used to add new bindings or rebind their defaults to custom implementations. Custom
bindings are defined in a new container module, together with a registration of the
model elements and their configuration for mapping them to views. In the example,
we create an empty container that loads all the default features of Sprotty using the
provided method loadDefaultModules() and override the defaults by loading a
custom container module. Within the custom container module, we specify the mapping
of the model elements to views, using the configureModelElement() method that
combines registration and configuration. Last, we declare paths to required CSS files and
return the loaded DI container in a function.

Model Source

The last step is to declare the model source that is responsible for generating a repre-
sentation of our model and set values for the required properties of the elements. Since
we primarily focus on the client-side of Sprotty in this section, we use a local model
source and generate the model locally by creating concrete instances of SModel elements.
Opposed to the local approach, a client-server scenario would use a remote model source
with a diagram server to generate a JSON representation with the structure of the defined
model on the server-side. The LocalModelSource class is the default implementation
for the local approach, which can be used by binding the class to the model source symbol
in the DI container. For displaying the diagram, the final application has to create an
instance of the DI container, the action dispatcher and the model source to generate, set
and update the model. In the example, we combine this process and generate an SGraph
element that contains child nodes with specified properties for the position and size. To
add basic user interaction, we add buttons with event listeners to create elements by
making use of the CreateElementAction. The example is finalized by encapsulating
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the procedures of a local model source in a method which is called in the main entry
point of the web application. Figure 3.3 shows the result of the implemented example as
displayed in the browser, with additional nodes created by the respective buttons, and
two of the nodes selected.

Figure 3.3: Result of the implemented Example Sprotty Diagram

3.1.3 Further Customization

The example only covers the implementation of Sprotty diagrams in a basic manner,
and there are loads of customizable functionalities left untouched. Thus, we introduce a
small subset of selected features to give additional hints on how Sprotty can be further
customized. Naturally, new features can always be implemented from scratch, however,
the effort is significantly decreased by adapting the provided defaults. Features provided
by Sprotty target a wide variety of common diagramming use-cases, and it is often
advantageous to look into the available components of modules, as they often contain
supplementary components that are not loaded by default. Official examples in the
repository7 can serve as reference implementations for different diagram types. In the
following, we discuss two of the examples in more detail and put additional capabilities
of the framework to the foreground.

The first example, shown in Figure 3.4, generates a total amount of 50 nodes and 100
edges, with each node containing a label and the source and target of edges chosen

7Sprotty Examples
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Figure 3.4: Sprotty Example - Randomly generated Graph with Automatic Layout

randomly. With the amount of elements, the model is presumably large, and the diagram
requires the implementation of an advanced layout mechanism to aid in understanding the
representation. Sprotty integrates the Eclipse Layout Kernel (ELK) to provide advanced
layout algorithms for graph visualizations, that can be used both on the client-side and
the server-side. ELK ships with different standard layout algorithms that can be reused
and further customized. In this case, the example takes advantage of the standard layered
algorithm and additionally uses edges with gaps on intersections to display an appealing
visualization of the graph.

The second example (Figure 3.5) showcases a simple class diagram with different kind of
model elements and various available interactions. The model consists of nodes for classes
that can be contained within a package node. Class nodes have a header containing an
icon, and their attributes can be expanded or collapsed through the respective button.
The example also shows three different types of edges, namely: a curved Bézier edge,
a standard straight edge and a straight edge with Manhattan routing. Labels are
positioned on different locations and the routing handles can be changed for all the edges
in the diagram. When hovering over classes, a popup shows up, enabled by a custom
PopupModelProvider. The popup model defines an additional SModelRoot, besides
the one in diagram, that can also include other model elements, such as pre-rendered
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Figure 3.5: Sprotty Example - Class Diagram

HTML as shown in the example. Regarding user interaction, the example allows renaming
all the labels with additional label validation, e.g., when the name is empty, and also
comprises a command palette for centering a specific class node.

3.2 Xtext Language and VS Code Extension

Besides a diagram allowing only graphical interactions with a model, the basic editor we
implemented does not utilize the full potential of Sprotty yet. We want to connect the
diagram to a textual editor and take advantage of rich text editing support in VS Code.
For this, we require a textual language with a language server that can communicate
with VS Code through LSP messages. The language workbench Xtext is a good fit for
this scenario, as it allows us to quickly create a DSL with a language server. As the
server communicates through the LSP, the language can be supported within VS Code
by creating a language extension.

In the following, we describe the process of creating a textual modeling language and
adding support in VS Code. First, we show how to create a language with Xtext and
generate a language server. Then we cover the creation of a language extension for VS
Code, including customization of declarative language features. Last, we add support
for programmatic language features by connecting the language server with a VS Code
language client.

3.2.1 Xtext Language Server

Creating a language from scratch is not an easy task, and there are numerous complex
components to consider during the development process. It is crucial in being aware of
underlying aspects when creating a programming language. Two major components are
the lexer for lexical analysis and the parser for syntactic analysis. The lexer converts a
sequence of characters into tokens by using regular expressions, while the parser makes
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sure the structure of statements is valid. After successful lexing and parsing of a program,
commonly an in-memory representation is created for semantic analysis. The internal
representation is usually in the form of a tree structure, such as the Abstract Syntax Tree
(AST). Only after these steps, a program can be interpreted and generation enabled.

It is self-evident that implementing such language features quickly becomes complex
and can easily be prone to errors if not done correctly. When trying to integrate a
language, e.g., into an IDE, this process becomes even more unmanageable and for this
reason the Xtext language workbench comes into play for efficiently creating a DSL.
Xtext requires only the specification of a grammar for generating a whole language
infrastructure. Internally, ANTLR is used for parsing and EMF serves in representing the
AST. Languages created with Xtext can thus be integrated with existing modeling tools
that are also based on EMF. Furthermore, the created languages can be easily reused in
different IDEs as it is one of the first language workbenches supporting the LSP. All the
generated language components can be customized through Dependency Injection with
Guice.

In the following, we cover the required steps for creating a basic language for our running
example, including a language server and LSP support. Since the implementation of
Xtext languages is not our primary focus in this thesis, we do not cover additional
customization of language components and instead refer to the official documentation
[46] as well as the comprehensive book [47].

Project Creation

The easiest way to automatically generate a language server is by creating a new
project and selecting the corresponding options in the creation process. For that, we
open an Eclipse workspace and create a new Xtext Project (File→New→Other→Xtext
Project). Alternatively, for existing EMF-based languages, the wizard also supports
creating a new project from an existing Ecore model. Within the project wizard, we
enter a name for the project and language, together with an extension that defines the
type of files where our language should be used. At this stage, it is important to not
finish the creation process and instead go to the next page for advanced configuration.
Here we define the facets to allow Xtext to generate the packages for the language server,
Figure 3.6 shows the specified options. For a language server, we require generic IDE
support and a regular build. In addition, but not required, we add testing support and
choose Gradle as the build system with a Maven/Gradle source layout.

Once the project creation is finished, the wizard creates the packages for the selected
facets. Namely, this consists of the root package (org.example.basic.parent) with
submodules for the language (org.example.basic) and the generic IDE components
(org.example.basic.ide). The next step is to specify a grammar and customize
the generated defaults.
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Figure 3.6: Advanced Xtext Configuration Page

Grammar

The grammar for the language is specified in the .xtext file located in the language
submodule of the created project. We specify a grammar for a basic modeling language
that allows creating shapes as shown in Listing 3.2. As the official documentation already
offers a comprehensive overview of the language used for specifying Xtext grammars8,
we assume the reader to be familiar with the basic concepts and do not further elaborate
on the grammar.

With the specification of our language finished, we can now generate the corresponding
infrastructure, by right-clicking on the file and selecting the option for generating Xtext
artifacts. The Xtext code generator then uses an MWE2 workflow to generate artifacts
and derive an ANTLR parser with an Ecore metamodel for the grammar. EMF is used
for representing the AST and it is also leveraged by Xtext for generating Java interfaces
with implementations for each rule of the specified language concepts.

8Xtext Grammar Documentation
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grammar org . example . b a s i c .DSL with org . e c l i p s e . xtext . common . Terminals

generate dSL " http ://www. example . org / b a s i c /DSL"

Model :
shapes+=Shape∗
connec t i ons+=Connection ∗ ;

Shape :
C i r c l e | Rectangle ;

C i r c l e :
' Circ l e ' name=ID ;

Rectangle :
' Rectangle ' name=ID ;

Connection :
source =[Shape ] '−>' t a r g e t =[Shape ] ;

Listing 3.2: Basic Xtext Grammar for the Shape Language

Once the generation process is finished, the language can quickly be tested in an Eclipse
editor with various IDE features available out of the box. The Xtext generator also created
an implementation for a language server with LSP support. We cover how to integrate
the language server component with an editor in a later step, when adding support for
VS Code. More complex languages generally require customization of the generated
components. Commonly this includes adding validation and scoping or implementing a
code generator.

3.2.2 VS Code Language Extension

With the textual modeling language ready to be used in an IDE, we first require a VS
Code extension that can support the language. There is no built-in language support
within VS Code, but instead different APIs are available to incorporate language features
into the IDE. VS Code differentiates between two types of language features:

Declarative Language Features that can be supported in form configuration files.
This commonly includes, e.g., syntax highlighting, bracket matching, code snippets
(templates) or toggling comments. In general, such features are declaratively defined
such as through regular expressions, and are generally more primitive than the
programmatic counterparts.

Programmatic Language Features include more complex functionality and are often
available in a dedicated language server that utilizes a powerful programming
language such as Java. These features become available through LSP messages and
can include formatting, refactoring, diagnostics (validation) or hover information.
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For now, we do not go into programmatic language features as they become relevant in a
later stage, when connecting our language server with the extension. The current focus
is on creating a new language extension for VS Code consisting of purely declarative
language features. In the following, we explain how to scaffold an extension skeleton and
customize the initial components.

Scaffold Extension

As with other previously used technologies, we first show the initial project creation
steps required to create a new language extension for VS Code. To get started, we
recommend using yeoman9 with the VS Code extension generator for scaffolding a new
extension project. The generator templates a package.json file and creates the base
folder structure with relevant files, to get started with the development of extensions.
The following command installs both of these two packages globally: npm install -g
yo generator-code. Note that Node.js is required to be installed on the system to
execute the command.

Once the installation is complete, the command yo code starts the generator. Within
the newly opened prompt, we select New Language Support as the desired extension
type and the remaining information should match with the existing language, but can be
changed afterwards as well. Based on the provided information, the generator creates
a corresponding project skeleton including all the necessary files needed for a language
extension. The resulting folder structure, as opened in VS Code, is shown in Figure 3.7.

Figure 3.7: Folder Structure of the newly generated VS Code Language Extension

9yeoman Website
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Most importantly, the generated project includes an Extension Manifest (package.json),
with a TextMate Grammar (syntaxes/erd.tmLanguage.json) and Language Con-
figuration (language-configuration.json). Also generated are markdown files
for the project (README.md and CHANGELOG.md) and a configuration file to exclude
certain files during packaging (.vscodeignore). The extension can be launched with
the provided launch configuration (.vscode/launch.json) and for a quick start guide,
one can refer to the corresponding markdown file (vsc-extension-quickstart.md).

Extension Manifest and Declarative Language Features

The extension manifest is required for all VS Code extensions and is located in the
root directory of the extension. The file includes extension metadata (e.g. author,
description) and application-specific fields. VS Code extensions run as a packaged
Node.js application, so the package includes npm fields, such as scripts and dependencies.
New functionality can be added to VS Code in the form of Contribution Points specified
in the contributes field. The generator already added two contribution points to the
extension, a language configuration and a grammar for syntax highlighting. Both of
the respective fields should link to the corresponding files. The engines field declares
which version of VS Code is compatible with the extension. At this stage, no further
adjustments to the manifest are required, however, we want to note its importance for
developing extensions. Documentation on the available fields is available in the extension
manifest reference10 as well as the npm package.json reference11.

VS Code supports different components to customize the syntax highlighting for a
language. The most basic form is tokenization, powered by a TextMate grammar. On-top
of TextMate, VS Code also supports styling the tokens with theming and a more advanced
tokenization approach with the use of a semantic token provider. As a first step, we
modify the TextMate file to highlight keywords of the new language. The grammar uses
regular expressions to map the contents of the text to tokens, so we define individual
patterns to tokenize the corresponding keywords.

Additional declarative language features can be specified in the language configuration
file. This includes features for the editor such as toggling block comments or bracket
matching. The provided defaults in the file are sufficient for most languages, and in our
case we keep them as originally generated.

Running the Extension

With the appropriate files defined for the declarative language features, the extension
requires a main entry point to be run in VS Code. For this, we first define a new
activation event in the package.json. The extension should be activated whenever
a file in our language is opened in the editor, this behavior can be specified in the
activationEvents field by adding onLanguage:basic. As a next step, we create a

10Extension Manifest Reference
11npm package.json Reference
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main entry source file that implements the functions activate() and deactivate().
To initially test whether the activation events work, we use a function from the extension
API for showing an information message in the activate function.

To finish the set-up, we create a webpack12 bundle and define additional scripts for
building the extension. Once the set-up is complete and successfully built, we can run the
extension within an extension host of VS Code. The running behavior is defined in the
launch.json file, and our running VS Code extension is shown in Figure 3.8. When
opening a .basic file, the extension is automatically activated, as indicated by the
information message. Furthermore, the declarative language features become available,
e.g., syntax highlighting for specified keywords or commands for toggling comments in
the command palette.

Figure 3.8: Basic Language Extension running in VS Code

3.2.3 Connecting the Language with the Extension

We successfully created a textual language with Xtext as well as a VS Code extension to
provide declarative language features in the editor. The goal now, is to connect the two
components to enable full language support in the editor and allow the language server
to communicate programmatic language features to the extension.

The first step is making the language server available for the extension such that the VS
Code language client can communicate with the server through the LSP. By default, when
building the language, the Gradle build creates a zip file that contains the language server
in the distributions folder of the ide package’s build directory. In our case, the
path to this folder is org.example.basic.ide/build/distributions/, and we
could simply copy the zip file to the extension and unzip it to make it available. However,
we automate this task, so that whenever the language is built the server automatically
gets unzipped and copied to the extension.

12webpack Website
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Now that the language server is available for the extension, we need to implement a
language client. The VS Code API provides a language client, which we can create in the
activate() method in our main extension file. We pass additional client and server
options during creation for launching the executable of the server and can then start the
client.

With the language server available and the language client implemented, the extension is
ready to be rebuilt and tested. If we now open a file in our language, various new features
become available in the editor. Xtext automatically provides generic implementations
for programmatic language features, such as, e.g., auto-complete, rename refactoring
or validation. Depending on the complexity of the language, the features provided by
Xtext can vary. Figure 3.9 shows the provided validation feature of our language with a
problem view, error markers and hover information.

Figure 3.9: Validation Language Feature of the Example

3.3 Sprotty Integration with VS Code and Xtext

With the implementation of the textual language and editing features finished, we now
leverage Sprotty to integrate with VS Code and Xtext, and implement a graphical view for
the modeling language. Apart from the client-side package, Sprotty provides additional
packages to integrate diagrams with other technologies. We use sprotty-server13

to add graphical support to Xtext language servers, as well as sprotty-vscode14 to
create Sprotty VS Code extensions and display a graphical view in a panel next to the
textual editor.

In this section, we first provide an architectural overview of our approach and then
proceed with a description of the implementation process for integrating Sprotty, based
on our running example.

13sprotty-server on GitHub
14sprotty-vscode on GitHub
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3.3.1 Architectural Overview

Figure 3.10 provides a high-level overview of the architecture when integrating Sprotty
with VS Code and Xtext. The architecture is realized in the form of a client-server
application, with the client-side consisting of the extension and a web view, while the
server-side includes a Sprotty-enhanced language server that extends the Xtext language
server. In the following, we describe each of the components in more detail.

«extends»

Custom Extension

VS Code
Language ClientSprotty Webview

manages

Sprotty Diagram

LSP / Sprotty LSP

LSP Edit
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generates

Xtext 
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Figure 3.10: Architecture of Sprotty integrated with VS Code and Xtext

The extension contains the entry point and serves as the central component for commu-
nication between the web view and the language server. When the extension is activated,
the respective activate method creates an instance of our custom extension. The custom
extension extends the SprottyLspVsCodeExtension class provided by Sprotty, in
case of adding editing support, the respective LSP edit class is used, as we show in
the next section, when we enable hybrid modeling. The abstract base class for the
extension already provides various functionality, e.g., registering commands or accepting
messages from a language server. To glue the components to the extension, we merely
need to implement the abstract methods getDiagramType(), createWebView(),
and activateLanguageClient(). The web view creation method loads the bundled
JavaScript file of our web view package, and the extension communicates with the dia-
gram in the web view through Sprotty actions. The language client activation method
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launches the executable of our language server, communication is established through
LSP messages together with Sprotty LSP extension messages.

The Webview component is part of the client as well, but is separated from the extension
in its own npm package. As mentioned, the extension accesses the web view component
by loading a single JavaScript file, which is bundled, e.g., through webpack. The main
entry point of the web view extends the provided abstract class SprottyStarter
or SprottyLSPEditStarter. The starter classes set up communication with the
extension, together with additional bindings for VS Code. The diagram is created in the
abstract createContainer() method, in this method we simply return an instance
of our DI container that contains the Sprotty configuration and defines the bindings of
our model elements.

The server-side contains a Sprotty-enhanced language server that adds a diagram module
to the language and generic IDE components of Xtext. An implementation of a Diagram
Generator is required to generate a model representation on the server through SModel
elements. Various diagram components are bound by default in the diagram module, and
we further discuss the underlying components of the server-side in the implementation
process next.

3.3.2 Sprotty-enhanced Language Server
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Operation

Extension

bind

Figure 3.11: Sprotty-enhanced Language Server

As the server-side is slightly more complex, we provide a more detailed overview of the
language server components in Figure 3.11. First, we create a Sprotty-enhanced language
server by integrating the server-side of Sprotty into the language server and enhance
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the LSP with Sprotty actions. For the implementation, we add sprotty-server with
xtext submodule to the Gradle build of the ide package. The generated Xtext language
server contains a setup class that creates Guice injectors for the language’s runtime and
IDE module. In the setup, we add a diagram module to the injectors, which extends the
default module provided by Sprotty.

In the diagram module, we add bindings to the diagram generator that is responsible
for transforming the language concepts to SModel elements, based on the derived Ecore
metamodel. A Java API for the SModel elements is available in the server package of
Sprotty. In our example we map the root to an SGraph, together with the rectangle
and circle concepts of the language to SNodes and connections to SEdges. We further
make use of server-side layout by using the provided layout engine, which internally
is implemented with ELK. Alternatively, we could define a specific position and size
property when generating the model elements, and make the client-side responsible
for the layout. At last, we extend the default diagram server factory with a custom
implementation, and define a diagram type that will be used for creating a diagram
server for a client.

With the necessary components of the diagram module implemented, we additionally
create a custom server launcher by using the provided diagram server launcher by Sprotty
which further extends the server launcher generated by Xtext. In the launcher, we
create a custom language server setup for registering ELK and Sprotty actions. The
setup is based on a predefined class from Sprotty and replaces the language server
with a diagram language server that hooks the diagram generator into the Xtext life-
cycle. Sprotty provides both, a standard and a synchronized diagram server module to
optionally synchronize selections of the text editor and diagram. For properly enabling
the synchronization we add trace information to the generated graphical model that can
also be used for displaying issue markers and popups, e.g., for validation errors, in the
respective diagram elements.

3.3.3 Sprotty VS Code Extension and Webview

The Sprotty-enhanced language server is now ready to be connected with VS Code. For
this, we have to implement two new components, a Sprotty LSP extension and a Sprotty
webview. The extension connects to the language server and is responsible for managing
the webview. This allows the extension to act as the central point for communication
by tunneling Sprotty actions through the LSP and the webview protocol. Glue code to
implement both, the extension and the webview, is provided in the sprotty-vscode
package.

First, we implement the webview component that contains the diagram container. We
can reuse most of the example we developed in the first section of this chapter that is
using the client-side of Sprotty. Since the model is now generated on the server-side,
we do not require a local model source anymore and adapt some bindings in the DI
container. Generated model elements from the server are exchanged as JSON objects
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by the extension to the webview, thus, the bindings of the elements should match with
the types we defined on the server. The container is created in the main entry point of
the webview and is handled by extending the class SprottyStarter. The abstract
starter class includes additional bindings to VS Code, and we only have to implement
a simple method that returns the customized Sprotty DI container. The final step for
implementing the webview involves bundling all our code and dependencies into a single
file such that it can be run by the extension. For bundling, we again use webpack, with
a configuration file and a package script to copy the bundle into the extension.

Now, we move to implementing the extension component. The sprotty-vscode
package provides abstract classes to create Sprotty extensions with different levels of
language integration. Since we want to connect the diagram with our language in the
editor, we use the provided class for an LSP extension and implement the required
methods. There are three methods we have to implement: (i) a method to get the
diagram type that aligns with the one defined in the server, (ii) a method to create an
instance of a SprottyLspWebview that runs the script of our bundled webview and
contains the Sprotty client with the diagram container, and (iii) a method to activate
the language client for which we can simply reuse our existing implementation.

Next, we adapt the main entry file of the extension to create an instance of the LSP
extension in the activation method. We also adapt the deactivation method to deactivate
the language client with the provided method. As a final step, we make changes in
the package.json file and define commands by reusing the default ones provided by
Sprotty. Most importantly, this includes a command for opening the diagram that we
expose in the command palette, explorer and the editor. With an additional activation
event, we define that the extension should also be activated when opening the diagram.

Figure 3.12: Sprotty VS Code LSP Extension Example

The integration of Sprotty with VS Code and Xtext can now be tested by running the
extension and opening a model in our language. The final result of our example can be
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seen in Figure 3.12 with the textual model on the left and the corresponding graphical
representation on the right side. The diagram can be opened with the command we
specified in the contribution field of our extension. Both views are fully synchronized
on selection changes, meaning, if we select an element in the textual editor the diagram
gets focused at the equivalent element in the diagram and the same behavior applies vice
versa. When modifying the textual model, the diagram automatically gets updated and
also displays validation errors. While the elements can be moved around in the diagram,
the positions are not saved and reset on textual changes, since we use the layout engine
in the server for automatically laying out the graphical model.

3.4 Hybrid Modeling

The VS Code extension we implemented throughout the last sections already provides
a powerful modeling tool. However, support for an even better modeling experience
can be achieved by fully utilizing Sprotty and enabling hybrid modeling [20]. Currently,
the diagram only features selection changes that update the selection in the textual
editor. However, by fully utilizing Sprotty we can enable hybrid modeling to add support
for graphical editing in the diagram that also updates the underlying textual model if
needed. Sprotty can enable hybrid model editors by mapping the graphical changes to
textual modifications, mostly in the form of LSP messages, and notifying the server of
the updates. For this approach, it is important to only update the diagram when the
textual changes have occurred to avoid any inconsistencies between the two editors.

In the following, we show an approach on how to enable hybrid model editing with
Sprotty by discussing which components have to be modified and then show selected
editing operations. For discussing the implementation process, we extend the example
developed in the previous sections.

3.4.1 Enabling Hybrid Modeling

As mentioned in the previous section, Sprotty offers different levels of extensions to VS
Code. In the most basic form, an extension merely shows a diagram in a webview panel
and is not connected to a language. The next level adds LSP support and synchronizes
the diagram with the text editor, as implemented in the previous section. Now we
leverage the last level of Sprotty extensions and make use of its LSP edit components.

Since we already created a Sprotty LSP extension and a Sprotty-enhanced language server,
we can reuse the existing implementation and only have to apply minor changes. We enable
hybrid modeling by now using the abstract classes SprottyLspEditExtension on
the extension-side and SprottyLspEditStarter on the webview-side. No additional
changes are required, however, since the approach for hybrid modeling is realized in form
of LSP messages we either have to implement the graphical editing features on our own
or reuse the ones provided by Sprotty.
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3.4.2 Rename Labels

Figure 3.13: Graphical Editing Support for Renaming Labels

A graphical editing feature that can be added relatively easy is support for renaming
labels. To enable this with Sprotty, the label has to include trace information of the
corresponding structural feature in the language, which can then be used to apply a
workspace edit to the respective textual occurrence in the document. In our case, we
already added tracing to names of shapes in the diagram generator. We additionally add
action handlers for workspace- and label-edit actions in the extension, and enable the
feature for the label model element in the DI config of the webview. We further exclude
the UI module for label editing when loading the default modules of Sprotty since we
use the UI of VS Code instead. Figure 3.13 shows the realized renaming support for
labels in our example. When entering a new value, the text occurrence of the name in
the defining element as well as all the references are updated.

3.4.3 Create Elements

Creation of elements in the graphical editor can be enabled by mapping the behavior
to LSP messages in form of Code Actions. A code action allows editing the textual
document by specifying textual updates and at which position they should occur in the
document. Normally this would be used in the textual editor to provide users with a
solution to fix errors or apply a refactoring. However, we can also execute code actions
in the diagram and to our advantage, sprotty-vscode provides a popup palette that
requests code actions from the server and renders them when hovering over the diagram.
From the popup palette, a code action can then be executed which notifies the server
to apply the edits in the textual model and generate a new diagram that contains the
changes.
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In our example, we reuse the provided popup palette and start by specifying code
actions that can create the individual model elements. We implement this in a new class
that implements ICodeActionService2 on the server, for creating both, circles and
rectangles, since the behavior is almost identical. We also bind the new code action
service in the IDE module and configure new model elements in the webview to be able
to display the palette. Figure 3.14 shows the realized code action popup palette with a
new rectangle created in line 1. The palette becomes available when hovering over the
diagram and contains the two actions for creating the elements.

Figure 3.14: Graphical Editing Support for Creating Elements
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CHAPTER 4
The bigER Modeling Tool

The bigER modeling tool is an extension to the VS Code IDE for modeling ER diagrams
and includes both, a textual and a graphical editor. The extension supports hybrid
modeling within both editors, i.e., modifications to the model in either view, update the
underlying representation and the changes are automatically synchronized. This allows
users to choose between creating ER models graphically or textually, and can be further
utilized to allow cross-communication between stakeholders, e.g., business analysts with
no technical experience can initially create an ER diagram for business requirements by
using the graphical editor, while a database engineer refines the model in the textual
editor. The tool also allows generating SQL code out of the models, which can be used
to automatically map conceptual ER models into a logical (relational) database schema.

bigER is a key contribution of this thesis and is based on the development approaches
and architectural considerations, described previously (see Chapter 3). In the course of
this work, we also published a paper, providing a high-level introduction to the tool [23].
After publication, more refinements have been realized to improve the tool and in this
thesis we update on our research progress. The extension can be downloaded from the
VS Code marketplace1 and the source code is open-source available on GitHub2.

In this chapter, we start by giving an overview of the tool’s realized architecture and
discuss specific components in more detail (Section 4.1). Next, we showcase the currently
available modeling features (Section 4.2). As a final part, we evaluate how well different
ER modeling concepts are supported, based on models presented in TU Wien’s database
course, and finish the chapter with results of the evaluation (Section 4.3). Current
ongoing development is discussed in the conclusion (see Chapter 5).

1bigER - VS Code Marketplace
2bigER - GitHub Repository
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4.1 Architecture

The architecture of the bigER modeling tool is realized based on our contributed generic
development approach of Sprotty-based modeling tools for VS Code (see Chapter 3). In
this section, we first describe the general architecture of the VS Code extension and then
take a detailed look into the underlying modeling language.

4.1.1 VS Code Extension

Figure 4.1 shows the architecture of the bigER modeling tool VS Code extension. At its
core, the tool consists of three separate main components, namely the extension, webview
and language server. The architecture is realized as a client-server application with the
extension and webview corresponding to the client-side and the language server on the
server-side.
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Figure 4.1: Architecture of the bigER Modeling Tool

The language server is responsible for providing language-specific functionality of the
ER modeling language to the client. Textual language and generic IDE components are
implemented with the Xtext language workbench that generates a complete language
infrastructure and binds the respective components in the Language IDE Module and
Language Runtime Module. The server is enhanced with graphical language features
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through the Sprotty framework, adding an additional Diagram Module. The diagram
module binds various default implementations provided by Sprotty together with custom
components such as the Layout Engine (based on ELK) to automatically layout diagrams,
a Popup Model when hovering over elements and the Expansion Listener to expand and
collapse elements. Sprotty requires the implementation of a Diagram Generator that
generates the SModel elements of the graphical model representation. Communication
with the client-side is realized in the Diagram Server that extends the Language Aware
Diagram Server implementation provided by Sprotty to handle custom Actions for
additional operations in the diagram. The language server is built as a .jar file and
made available to the client using the Gradle build system.

In the extension, the Language Client executes the available binary of the language server
and handles communication by sending and receiving LSP and extended Sprotty LSP
messages for both textual- and graphical language features. The base of all VS Code
extensions is an Extension Manifest in a package.json file that declares metadata and
extension-specific functionality. Declarative language features of the bigER modeling
tool include a TextMate grammar for Syntax Highlighting and a Language Configuration.
The manifest defines activation points to specify that the extension should be activated
when opening .erd files. Upon activation, an instance of a Sprotty VS Code extension
is created that registers commands, starts the language client and initializes the webview.

The Sprotty diagrams of the graphical model are rendered in a webview panel of VS Code,
as it can display arbitrary web content within an iframe HTML element. Sprotty provides
a starter class for webviews, used in a Sprotty Webview Starter to create the diagram
with additional VS Code bindings. Configuration of the diagram is done through DI in
the Diagram DI Container including custom actions, commands, the model elements
with corresponding views and CSS styles. The webview starter additionally binds a
Toolbar to execute operations on the diagram and a Diagram Server for communicating
with the extension. The diagram server in the webview acts as a model source and is
responsible for handling operations in the diagram that are sent and received from and
to the extension through Sprotty Actions.

4.1.2 Modeling Language

A high-level overview of the modeling language and its components in the bigER modeling
tool are provided in Figure 4.2. ER models conform to a metamodel and are defined in
XMI files. The ER models are visualized in form of a textual- and graphical notation,
which both conform to a respective CS definition that symbolizes the AS. The grammar
serves as the base for the language and specifies the TCS for the underlying textual ER
models. Xtext derives a corresponding metamodel from the grammar and generates the
infrastructure for the language, such as a parser, serializer and various other defaults.
The derived metamodel, defined in the Ecore meta-metamodeling language, specifies
the AS of the language and is used in representing the AST of ER models in XMI files.
The AST is then used by the diagram generator for specifying the GCS of graphical
models by mapping the model elements to diagram representations (Abstract Syntax-to-
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Concrete Syntax (AS2CS) mapping). The language additionally features a code generator
implemented in Xtend to transform the conceptual ER models and generate a relational
schema in the form of SQL CREATE TABLE statements.
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Figure 4.2: Overview of the Modeling Language in the bigER Modeling Tool

The grammar of the bigER modeling tool is listed in Listing 4.1 and shows the avail-
able language concepts and their structure. Each grammar rule including its relevant
properties is mapped to a respective element in Ecore that constructs the corresponding
metamodel. The derived metamodel for the grammar is shown in Figure 4.3, mostly
consisting of EClass elements with EAttributes and connected with each other
through EReferences. From the metamodel, EMF also generates a Java API for the
language that is used, e.g., for model transformation in the diagram generator or the
code generator.
grammar org . b ig . erd . En t i t yR e l a t i o n s h i p with org . e c l i p s e . xtext . common . Terminals

generate e n t i t y R e l a t i o n s h i p " http ://www. big . org / erd / E n t i t y R e la t i o ns h i p "

Model :
( ' erdiagram ' name=ID )?
generateOption=GenerateOption ?
( e n t i t i e s+=Entity | r e l a t i o n s h i p s+=R e l a t i o n s h i p ) ∗ ;

GenerateOption :
' generate ' '= ' generateOptionType=GenerateOptionType ;

Ent ity :
( weak?= 'weak ' ) ? ' ent i ty ' name=ID ( ' extends ' extends =[ Entity ] ) ? '{ '
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( a t t r i b u t e s += Attr ibute )∗
' } ' ;

R e l a t i o n s h i p :
( weak?= 'weak ' ) ? ' r e l a t i o n s h i p ' name=ID '{ '

( source=RelationEnd (( '−> ' t a r g e t=RelationEnd )
( '−> ' t e rnary=RelationEnd ) ? ) ? ) ?
( a t t r i b u t e s += Attr ibute )∗

' } ' ;

RelationEnd :
t a r g e t =[ Entity ] ( ' [ '

( c a r d i n a l i t y=Cardinal i tyType | c u s t om M u l t i p l i c i t y=STRING)
' ] ' ) ? ;

Att r ibute :
name=ID ( ' : ' datatype=DataType )? ( type=AttributeType ) ? ;

DataType :
type=ID ( ' ( ' s i z e=INT ' ) ' ) ? ;

enum AttributeType :
NONE = ' none ' | KEY = ' key ' | PARTIAL_KEY = ' p a r t i a l −key ' |
OPTIONAL = ' opt iona l ' | DERIVED = ' der ived ' | MULTIVALUED = ' mult ivalued ' ;

enum Cardinal i tyType :
ONE = '1 ' | MANY = 'N ' ;

enum GenerateOptionType :
OFF = ' o f f ' | SQL = ' sq l ' ;

Listing 4.1: Xtext Grammar of the ER Language

Figure 4.3: Metamodel of the ER Modeling Language as derived by Xtext
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4.2 Feature Showcase

Once the bigER modeling tool is downloaded from the marketplace, the extension
activates itself within VS Code when opening files ending in .erd. An .erd-file contains
the complete specification of an ER model, however, such a textual view is quite cluttered
and might discourage less technically experienced users from using the tool. Thus, besides
the textual editor, the tool includes additional components to visualize, modify and
transform models, while also adding improvements to usability. The core components of
the bigER modeling tool consist of the following components:

Textual Editor — For the specification of an ER model in a textual DSL including
various rich text editing features, e.g., syntax highlighting, auto-complete, model
validation.

Diagram View — Renders an ER diagram that is synchronized with a corresponding
textual model. The diagram view can be partly used as a graphical model editor,
e.g., for adding, renaming or deleting model elements.

Code Generator — Generates SQL code by transforming a conceptual ER model to
a logical schema for a relational database. Code is automatically generated on
textual changes and can be toggled in the diagram or specified in the header of a
textual model.

Figure 4.4: Main Components of the bigER Modeling Tool in VS Code
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ER Concept Textual Concrete Syntax

Entity entity
Weak Entity weak entity
Relationship relationship
Weak Relationship weak relationship
Inheritance (EER) entity A extends B

Binary Relationship A -> B
Recursive Relationship A -> A
Ternary Relationship A -> B -> C
Cardinality A[1] -> A[N]
Multiplicity / Role A["0..1"] -> A["1..N"]

Attribute and Data Type attribute: datatype
Primary key key
Partial key partial-key
Optional / Nullable optional
Derived derived
Multi-valued multi-valued

Table 4.1: Textual Concrete Syntax of bigER

Figure 4.4 shows the components in VS Code with the textual editor on the left, the
diagram view in the center, and SQL code generated by the code generator on the right.
The figure features a basic example that is a simplified ER model of a university database.
In the example, students take exams of courses that are graded by instructors with
multiple lectures included in courses. Instructors work in a department and have their
office in a room of a department’s building. In the remaining of this section, we further
look into each of the above-mentioned components and showcase their modeling features
based on the university example.

4.2.1 Textual Editor

The complete textual ER model of the university example in the figure is provided in the
appendix (see Section A.1.1). In bigER, textual models are specified in a DSML with
the syntax of the language constructs listed in Table 4.1 and documentation provided in
the GitHub Wiki3. As mentioned, the textual editor supports different language features
through the LSP. Besides syntax highlighting, bracket matching, quick fixes (lightbulb)
and selection, which can be seen in Figure 4.4, the tool also supports validation code
completion, hover information, renaming and finding references. A basic example of
code completion (i.e. auto-complete feature) is displayed in Figure 4.5. Code completion
provides suggestions of keywords and language constructs at the current position, and as

3bigER GitHub Wiki - Language Documentation
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Figure 4.5: Code Completion in the Textual Editor of bigER

Figure 4.6: Validation in the Textual Editor of bigER

seen in the figure this includes adding a new attribute (name), keywords for types, or an
enclosing curly bracket to finish the specification of an entity.

Validation in the textual editor is shown in Figure 4.6, including an error, warning and
information message. Validation messages are underlined at the affected position in the
editor and become visible on hover or can be seen in the problems view. As shown in the
figure for the lower-case entity student, certain validation messages contain suggested
quick fixes for fixing the corresponding mistake. In the case of the figure, the first letter
of the entity’s name would be fixed to be upper-case instead. When the code generator
option is enabled, the validation becomes stricter, as not all constructs can be properly
transformed to SQL code. Validation is also present in the diagram view, as shown in
Figure 4.7, and described in the next subsection.
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4.2.2 Diagram View

From the textual ER model, specified in the textual editor, the diagram view shows a
corresponding graphical representation of the model. Figure 4.7 shows various features
that are available in the diagram view.

Figure 4.7: Diagram View of bigER

The toolbar, located at the top, contains the name of the model in the center and various
buttons for interactions with the diagram. On the left side of the toolbar, new entities
or relationships can be created. Newly created model elements are shown in the figure,
namely, Entity0 and relationship0, and the name is automatically incremented,
depending on elements that are already available in the model, i.e., Entity1 is created
when Entity0 is already present. Also on the left side is a button to toggle the code
generator panel, as shown above the newly created elements with the option off selected
to disable the generator. On the right side the diagram can be centered, all elements
collapsed or expanded and there is a button that links to the wiki for help.

Entities in the diagram can be individually expanded or collapsed, e.g., the entity
Lecture is collapsed. Model elements can be selected, which also synchronizes the
selection with the textual editor (e.g., Student), or hovered, which opens a popup for
the element (e.g., Course). In the popup, the type and name of the element is displayed,
for relationships descriptive attributes are also displayed, and there are actions to rename
or delete the hovered element. If a validation message is present, the respective element
is highlighted in the diagram and the corresponding message is available in the popup.
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Besides renaming through the popup, entities, relationships and attribute names can also
be renamed when double-clicking on the element.

4.2.3 Code Generator

At last, we look into the code generator component of the tool. Currently, only generic
SQL code can be generated, however, with plans to support code generation for concrete
databases in the future, e.g., MongoDB or SQL Server. The generated SQL code from
the textual ER model of the university example is also provided in the appendix (see
Section A.1.2). By default, the code generator is disabled and can be enabled textually
in the editor, by adding generate=sql to the header, or graphically in the diagram
through the button in the toolbar. The transformation from ER models to a relational
schema follows a generic mapping described, e.g., in [54, 53]. Supported ER concepts for
transformation are listed in Table 4.2 (see Section 4.3.2).

4.3 Evaluation

One of the primary use-cases of the bigER modeling tool is its usage for education. The
goal of this section is to evaluate the tool based on the modeling of different ER concepts
and identify any drawbacks. Based on the evaluation, we can then improve certain weak
spots if needed and eventually be able to recommend the tool to database courses that
cover ER modeling. First, we evaluate different ER concepts and how well they can be
modeled. In a further step, we discuss the recreated models and conclude the evaluation
with a summary of the results.

4.3.1 ER Concepts

For the initial evaluation, we compiled a list of concepts to evaluate, based on the ER
modeling lecture from the database systems course taught at TU Wien. The course
material is primarily based on the book [68]. Both, the book and the slides from the course
contain ER models in German language, thus, for consistency purposes, we recreate the
models in German as well. This approach allows us to better compare the original models
with the recreated ones, and is irrelevant in respect to the quality of the evaluation. The
concepts we evaluate include:

1. Entities and Relationships

2. Attributes and Keys

3. Roles and Recursive Relationship

4. Cardinality

5. Ternary Relationship
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6. Multiplicity (min-max Notation)

7. Weak Entities

We now separately evaluate the concepts from the list above. For each concept we show its
representation as originally introduced in the course/book as well as the recreated models
in the graphical editor of the bigER modeling tool. We then compare the representations
and follow up with a discussion to identify any flaws. The corresponding textual models
are listed in the appendix (see Section A.2).

Basic Entities and Relationships

The first concepts we evaluate are basic entities and relationships. The original represen-
tation (Figure 4.8a) models two basic entities StudentIn and Vorlesung, connected
by the relationship hoeren. The recreated model (Figure 4.8b) is equivalent to the
original model. Note that we included a key attribute in both entities of the textual
model to avoid the missing key info message and collapsed the compartments.

(a) Original Model (b) Recreated Model

Figure 4.8: Evaluation - Basic Entities and Relationships

Attributes and Keys

The original representation (Figure 4.9a) contains the entity Person with the key
attribute Svnr together with the simple attributes Name and Address. The model
can be recreated equivalently (Figure 4.9b), containing all the attributes and with the
key being underlined as well. However, the recreated model has a slightly different
representation, as all attributes are contained within the entity. We decided to use this
notation instead, based on the fact that large models can quickly become cluttered when
using the original notation of ellipses.

Roles and Recursive Relationship

Roles are commonly present in recursive relationships, thus, we evaluate the concepts
together. The model contains the entity Vorlesung with three attributes and the
recursive relationship voraussetzen. Roles are denoted as labels on the edges of
the relationship, namely Vorgänger and Nachfolger. The model can be recreated,
however, roles are only partially supported in the tool by using a custom notation. Roles
on relationships do not capture any semantics and, as we see later, they replace cardinality
or multiplicity. Thus, there is no form of validation and the code generator does not
support the concept either. Furthermore, the layout of recursive relationships is not
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(a) Original Model (b) Recreated Model

Figure 4.9: Evaluation - Attributes and Keys

very attractive and is one of the key aspects to be improved. The model is recreated to
align with the original one which does not specify a key attribute and for this reason the
information icon appears on the entity.

(a) Original Model (b) Recreated Model

Figure 4.10: Evaluation - Roles and Recursive Relationship

Cardinality

The cardinality concept can be specified in the form of 1:1 (One-to-One), 1:N (One-to-
Many), N:1 (Many-to-One) or N:M (Many-to-Many) relationships with values on the
edges corresponding to the respective entities on the same side of the relationship. The
original model specified a 1:N relationship for R and the entities E1 and E2. Cardinality
is fully supported in the bigER Modeling Tool including validation and code generation.
However, we note that N:M relationships are expressed as N:N in the tool, which
semantically is not fully valid since N refers to a value and N:N would mean that both
values are equal.

(a) Original Model (b) Recreated Model

Figure 4.11: Evaluation - Cardinality
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Ternary Relationship

Opposed to binary relationships connected by two different entities, a ternary relationship
connects three different entities. The ternary relationship in the original model consists
of the entities StudentIn, Professorin and Seminarthema connected by the rela-
tionship betreuen with cardinality N:1:1. None of the entities contain any attributes.
In bigER the ternary relationship can be recreated with only the layout being slightly
different. However, relationships with an arity greater than three are not supported, but
planned as a future feature.

(a) Original Model (b) Recreated Model

Figure 4.12: Evaluation - Ternary Relationship

Multiplicity

Relationships can be further refined with the multiplicity concept, denoting a minimum
and maximum value. The original model includes both, cardinality and multiplicity on
the respective edges. bigER currently only allows either the cardinality or the custom
notation to be specified for relationships, with no option to declare both. Similar to
roles, multiplicity can be expressed in form of the custom notation, however, also with
only partial support in the tool. Since we already evaluated the cardinality concept,
we recreated the model by choosing to denote the multiplicity now. The layout of the
original model can not be recreated, as the layered layout algorithm in the tool does not
connect entities at the top or bottom-side.

(a) Original Model (b) Recreated Model

Figure 4.13: Evaluation - Multiplicity

Weak Entity

The last concept we evaluate are weak entities. In the original model (see Figure 4.14a)
the strong entity Gebäude with the primary key GebNr is connected to the weak entity

63



4. The bigER Modeling Tool

Raum with the partial key RaumNr. The recreated model (see Figure 4.14b) contains
the same information and both, the weak entity and the relationship are colored with a
stronger border to indicate the dependency to the strong entity. Also, the partial key
is highlighted differently in the recreated model, however, colored in gray and with no
dashed underline as opposed to the original model. We also note that the participation
concept is not supported in bigER, thus, the partial participation edge is drawn the
same as any other edge of a relationship in the tool.

(a) Original Model (b) Recreated Model

Figure 4.14: Evaluation - Weak Entity

4.3.2 Result and Discussion

As part of the initial evaluation of the bigER modeling tool, we evaluated whether the
tool offers the capability for modeling different ER concepts as taught in the database
course at TU Wien. Based on the result we have shown that all the concepts from the
course can be textually- and graphically recreated, however, the evaluation has also
shown to include certain limitations in the modeling process. Limitations include the
following points:

• Partial support for roles and multiplicity. For the two concepts, we mention
that there is only partial support in the tool, meaning that they can only be
expressed by providing a custom concept that does not correspond to ER and does
not capture the correct semantics. For this reason, they can also not be properly
validated and are not supported in the code generator.

• Roles and Multiplicity as a replacement for Cardinality. In the evaluation
we were not able to denote both, multiplicity and cardinality on the same edge.
The same applies for the roles and, thus, modelers have to choose between one of
the concepts that are represented and disregard the others.

• Layout limitations. The layout of the graphical models can be customized,
however, when updating or reopening models, the layout is reset. Furthermore,
when considering the automatic layout, the representation is not always optimal,
with edges only flowing left and right, leading to not always optimal representations,
e.g., when modeling recursive relationships.

A primary goal of the bigER modeling tool is to provide a versatile and high-quality
modeling experience for ER modeling, thus, we plan on providing improvements to
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the above-mentioned limitations in future releases. Furthermore, even though our tool
supports validation of ER models and mapping to a relational schema, the two aspects
were not considered in the evaluation. The reason for this is that the underlying language is
still relatively experimental and expected to change, especially after this initial evaluation.
We definitely consider validation and transformation of models crucial aspects in regard
to the overall usability of the tool, thus, they are both planned to be evaluated in future
work. Furthermore, even though we explicitly mentioned that our initial goal is to only
evaluate concepts from the classical ER model, we also consider the EER model to be an
important data model and plan on supporting and evaluating its features in the near
future.

To conclude this section and summarize the results, we regard the initial evaluation of
the bigER modeling tool a success, highlighting the potential for its use in education.
Nevertheless, when reading through additional database literature, often additional
concepts come up that were not considered in the evaluation. While the course at TU
Wien discusses some of them, there is no adequate model available in the course material
that can be recreated and used for evaluation. Since the goal is to properly showcase the
current capabilities of the bigER modeling tool, we provide an overview of the supported
concepts. The result of the ER concepts we discovered in literature and the corresponding
support in tool is summarized in Table 4.2.

ER Concept Textual Graphical Code Generator

Regular Entity ✓ ✓ ✓
Weak Entity ✓ ✓ ✓

Binary Relationship ✓ ✓ ✓
Recursive Relationship ✓ ✓
Ternary Relationship ✓ ✓ ✓
Higher-Order Relationship
Multiplicity ≈ ≈
Cardinality ✓ ✓ ✓
Participation
Roles ≈ ≈

Entity Attributes ✓ ✓ ✓
Relationship Attributes ✓ ✓ ✓
Datatype ✓ ✓ ✓
Key ✓ ✓ ✓
Composite
Multi-valued ✓
Derived ✓ ✓ ✓
Optional ✓ ✓ ✓

Table 4.2: Supported ER Concepts in the bigER Modeling Tool
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CHAPTER 5
Conclusion

In conclusion of this thesis, we summarize the results of our research and contributions.
In addition, we provide an outlook regarding the bigER modeling tool, including future
work and potential research directions.

5.1 Thesis Summary
In the introduction (see Chapter 1) we introduced the context, motivational aspects, and
problem statement of this thesis, and based on this information we further established
the research objectives (RO1, RO2, RO3). After a description of the relevant background
(see Chapter 2), we presented the contributions of this work to provide answers for the
research objectives. Summarizing the research outcomes of this thesis, we specifically
contribute the following:

• An approach for the development of Sprotty-based Modeling Tools for VS Code
(RO2)

• The bigER modeling tool for ER modeling as an extension to the VS Code
ecosystem (RO3)

A combination of both contributions deals with RO1, as various capabilities of Sprotty
are showcased throughout this work when leveraging the framework for the development
of modeling tools for VS Code.

5.2 Outlook
With completion of this thesis, we release version 0.1.0 of the bigER modeling tool,
however, we continue to actively work on new releases. Current ongoing work includes,
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improvements to quality management of the project, together with testing of the modeling
functionality provided in the tool. Furthermore, another bachelor thesis is currently
in progress that focuses on different notations of ER modeling, and incorporates the
notations to bigER to support different representations of models.

In addition to ongoing work, we plan on adding support for the following features in the
modeling tool:

• Additional hybrid modeling functionality with the aim to support most of the
textual features, graphically as well, e.g., routing edges in the diagram to create
relationships graphically.

• Full support of all ER concepts and additional EER concepts, based on the results
of the evaluation in this thesis.

• Improvements to the current layout and support for additional layout algorithms,
since the evaluation has shown the drawbacks of current layout options.

• Import of existing ER models, e.g., from other tools, and additional export options,
e.g., SQL code generation for concrete database technologies or export to other
files, such as images.
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APPENDIX A
Textual Models

A.1 University Example

A.1.1 Textual ER Model
erdiagram U n i v e r s i t y
generate=s q l

entity student {
id : INT key
name : VARCHAR(255)
birthday : DATE
age : SMALLINT derived

}
entity Course {

course_nr : INT key
course_name : VARCHAR(100)
c r e d i t s : SMALLINT

}
weak entity Lecture {

t i t l e : VARCHAR(255) partial−key
}
entity I n s t r u c t o r {

i n s t r u c t o r _ i d : INT key
name : VARCHAR(255)

}
entity Department {

dept_nr : INT key
name : VARCHAR(100)
a b b r e v i a t i o n : CHAR(5)

}
weak entity Room {

room_nr : INT partial−key
}
entity Bui ld ing {

bui ld ing_id : CHAR(8) key
address : VARCHAR(255)

}
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relationship Exam {
student [ 1 ] −> Course [N]
−> I n s t r u c t o r [N]
p o in t s : DOUBLE

}
weak relationship has {

Room[N] −> Bui ld ing [ 1 ]
}
relationship O f f i c e {

Room [ 1 ] −> I n s t r u c t o r [ 1 ]
}
relationship Work {

I n s t r u c t o r [N] −> Department [ 1 ]
}
weak relationship i n c l u d e {

Course [ 1 ] −> Lecture [N]
}
relationship Locat ion {

Bui ld ing [N] −> Department [ 1 ]
}

Listing A.1: University Example - Textual Model

A.1.2 Generated SQL Code
CREATE TABLE student (

name VARCHAR(255) ,
b i r thday DATE,
id INT,

PRIMARY KEY ( id )
) ;

CREATE TABLE Course (
course_name VARCHAR(100) ,
course_nr INT,
c r e d i t s SMALLINT,

PRIMARY KEY ( course_nr )
) ;

CREATE TABLE I n s t r u c t o r (
i n s t r u c t o r _ i d INT,
name VARCHAR(255) ,
PRIMARY KEY ( i n s t r u c t o r _ i d )

) ;

CREATE TABLE Department (
dept_nr INT,
a b b r e v i a t i o n CHAR( 5 ) ,
name VARCHAR(100) ,
PRIMARY KEY ( dept_nr )

) ;

CREATE TABLE Bui ld ing (
address VARCHAR(255) ,
bu i ld ing_id CHAR( 8 ) ,

PRIMARY KEY ( bu i ld ing_id )
) ;

CREATE TABLE Room(
room_nr INT,
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bui ld ing_id CHAR( 8 ) ,
PRIMARY KEY ( room_nr , bu i ld ing_id ) ,
FOREIGN KEY ( bu i ld ing_id ) r e f e r e n c e s Bui ld ing ON DELETE CASCASE

) ;

CREATE TABLE Lecture (
t i t l e VARCHAR(255) ,
course_nr INT,

PRIMARY KEY ( t i t l e , course_nr ) ,
FOREIGN KEY ( course_nr ) r e f e r e n c e s Course ON DELETE CASCASE

) ;

CREATE TABLE Exam(
id INT r e f e r e n c e s student ( id ) ,
course_nr INT r e f e r e n c e s Course ( course_nr ) ,

, i n s t r u c t o r _ i d INT r e f e r e n c e s I n s t r u c t o r ( i n s t r u c t o r _ i d ) ,
p o in t s DOUBLE,

PRIMARY KEY ( id , course_nr , i n s t r u c t o r _ i d )
) ;

CREATE TABLE O f f i c e (
room_nr INT r e f e r e n c e s Room( room_nr ) ,
i n s t r u c t o r _ i d INT r e f e r e n c e s I n s t r u c t o r ( i n s t r u c t o r _ i d ) ,

PRIMARY KEY ( room_nr , i n s t r u c t o r _ i d )
) ;

CREATE TABLE Work(
i n s t r u c t o r _ i d INT r e f e r e n c e s I n s t r u c t o r ( i n s t r u c t o r _ i d ) ,
dept_nr INT r e f e r e n c e s Department ( dept_nr ) ,

PRIMARY KEY ( in s t ruc to r_id , dept_nr )
) ;

CREATE TABLE Locat ion (
bu i ld ing_id CHAR(8 ) r e f e r e n c e s Bui ld ing ( bu i ld ing_id ) ,
dept_nr INT r e f e r e n c e s Department ( dept_nr ) ,

PRIMARY KEY ( bui ld ing_id , dept_nr )
) ;

Listing A.2: University Example - Generated SQL Code

A.2 Evaluated ER Models

A.2.1 Basic Entities and Attributes
erdiagram Example1

entity StudentIn {
id key

}
entity Vorlesung {

id key
}
relationship hoeren {

StudentIn −> Vorlesung
}

Listing A.3: Basic Entities and Attributes
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A.2.2 Attributes and Keys
erdiagram Example2

entity Person {
Svnr key
Name
Adresse

}

Listing A.4: Attributes and Keys

A.2.3 Roles and Recursive Relationship
erdiagram Example3

entity Vorlesung {
VorlNr
T i t e l
SWS

}
relationship voraus se tzen {

Vorlesung [ " Vorgaenger " ] −> Vorlesung [ " Nachfo lger " ]
}

Listing A.5: Roles and Recursive Relationship

A.2.4 Cardinality
erdiagram Example4

entity E1 {
id key

}
entity E2 {

id key
}
relationship R {

E1 [ 1 ] −> E2 [N]
}

Listing A.6: Cardinality

A.2.5 Ternary Relationship
erdiagram Example5

entity StudentIn {
id key

}
entity P r o f e s s o r I n {

id key
}
entity Seminarthema {

id key
}
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relationship betreuen {
StudentIn [N] −> P r o f e s s o r I n [ 1 ] −> Seminarthema [ 1 ]

}

Listing A.7: Ternary Relationship

A.2.6 Multiplicity
erdiagram Example6

entity Polyeder {
id key

}
entity Flaeche {

id key
}
entity Kante {

id key
}
entity Punkt {

id key
}
relationship Huel l e {

Polyeder [ " ( 4 , ∗ ) " ] −> Flaeche [ " ( 1 , 1 ) " ]
}
relationship Begrenzung {

Kante [ " ( 2 , 2 ) " ] −> Flaeche [ " ( 3 , ∗ ) " ]
}
relationship StartEnde {

Kante [ " ( 2 , 2 ) " ] −> Punkt [ " ( 3 , ∗ ) " ]
}

Listing A.8: Multiplicity

A.2.7 Weak Entity
erdiagram Example7

entity Gebaeude {
GebNr key
Hoehe

}
weak entity Raum {

RaumNr partial−key
Groesse

}
weak relationship l i e g t _ i n {

Gebaeude [ 1 ] −> Raum[N]
}

Listing A.9: Weak Entity
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M2T Model-to-text. 16

MBE Model-based Engineering. 8

MDA Model-driven Architecture. 8

MDD Model-driven Development. 8
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