B Informatics

Integrating GLSP based Tooling
into Visual Studio Code

BACHELORARBEIT

zur Erlangung des akademischen Grades
Bachelor of Science
im Rahmen des Studiums
Software & Information Engineering
eingereicht von

Luca Forstner
Matrikelnummer 11807455

an der Fakultéat fir Informatik
der Technischen Universitat Wien

Betreuung: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Mitwirkung: Dipl.-Ing. Dr.techn. Philip Langer

Wien, 24. Februar 2022

Luca Forstner Dominik Bork

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

B Informatics

Integrating GLSP based Tooling
into Visual Studio Code

BACHELOR’'S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Software & Information Engineering
by

Luca Forstner
Registration Number 11807455

to the Faculty of Informatics
at the TU Wien

Advisor: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Assistance: Dipl.-Ing. Dr.techn. Philip Langer

Vienna, 24" February, 2022

Luca Forstner Dominik Bork

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Luca Forstner

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Februar 2022

Luca Forstner

Kurzfassung

Immer mehr IDEs und Softwareentwicklungswerkzeuge wandern ins Internet. Die Ein-
fithrung des Language Server Protocol (LSP) spielt hierbei eine grofie Rolle. Das LSP
ermOglicht eine Architektur, in der generische Editoren mehrere Sprachen unterstiit-
zen konnen, indem sie die sprachspezifischen Implementierungen von Sprachservern
wiederverwenden. Durch das Entkoppeln der Editoren von sprachspezifischen Details
wird der Entwicklungsaufwand bei der Unterstiitzung neuer Programmiersprachen er-
heblich reduziert. Mit web- und browserbasierten Modellierungswerkzeugen folgt die
modellgetriebene Softwareentwicklung dem Trend ins Internet. Diese grafischen Editoren
stehen jedoch vor dhnlichen Problemen wie textuelle Editoren vor der Einfiihrung des
LSP. Jedes Modellierungswerkzeug muss neue doméanenspezifische Sprachen individuell
unterstiitzen. Die Graphical Language Server Platform (GLSP) mochte dieses Problem
16sen, indem sie ein Konzept fiir generische graphische Clients, graphische Sprachserver
und ein neues graphisches Language Server Protocol bereitstellt, das die komplexen Be-
arbeitungsfunktionen graphischer Modellierungswerkzeuge unterstiitzt. Fir diese Arbeit
und um die Migration von Modellierungswerkzeugen ins Web voranzutreiben, haben
wir eine quelloffene Bibliothek weiterentwickelt, die die Integration von GLSP-Clients
und -Servern in Visual Studio Code, einem hochgradig erweiterbaren browserbasierten
Code-Editor, erleichtern soll. Wir haben unseren Beitrag zur Bibliothek erfolgreich bei
dem zugehorigen Eclipse GLSP Projekt eingereicht.

vii

Abstract

More and more IDEs and software development tools are moving to the web. The
introduction of the Language Server Protocol (LSP) plays a big supporting role in this
movement. The LSP allows for an architecture where editors are generic and can support
multiple languages by reusing the language-specific implementations from language servers.
Decoupling editors from the language-specific details significantly reduces development
efforts when introducing new programming languages. Naturally, model-driven software
engineering followed the trend of moving to the web with the introduction of web-based
modeling clients. However, these graphical editors suffer from the same difficulties textual
editors had before the introduction of the LSP. Each graphical editor has to implement
the support for new domain-specific languages individually. The Graphical Language
Server Platform (GLSP) aims to address this problem by providing a concept for generic
graphical clients, graphical language servers, and a new graphical language server protocol
that supports the complex editing features of graphical modeling tools. For this thesis and
to advance the move of modeling tools to the web, we further developed an open-source
library to facilitate integrating GLSP clients and servers into Visual Studio Code, a
highly extensible code editor that can run in a browser. We successfully submitted our
contribution to the open-source Eclipse GLSP project.

ix

Contents

Kurzfassung vii
Abstract ix
Contents xi
1 _Introduction 1
2 Technology Overview 3
2.1 Visual Studio Codel.o 3
2.2 Language Server Protocol)
2.3 Graphical Language Server Platform| 18
2.4 _Differences between the GLSP-Protocol and the LSP! 24
3 Architecture 27
3.1 Current State of the VS Code Integration Library, 27
3.2 Requirements L L 27
3.3 Available Software Components| 29
3.4 Known Challenges and Limitations to overcome 30
3.5 Components of this Contribution 31
4 Technical Implementation 33
4.1 GLSP VS Code Connector! 33
4.2 Webview e 40
4.3 Quickstart Components 41
4.4 Constructing an Example Extension| 43
5 Showcase 47
5.1 Validations e 48
5.2 _Menu and Command Actions 49
5.3 _Selection Contextl 50
5.4 Document Statel e 51
6 Discussion 53

X1

6.1 Limitations of the VS Code Extension APIl
6.2 SWOT Analysis of the Graphical Language Server Platform
6.3 Opportunities for improving the GLSP VS Code Integration

7 _Conclusion
List of Figures
Listings

Bibliography

93
95
o7

59

61

63

65

CHAPTER

Introduction

Browser-based Integrated Development Environments (IDEs) and developer tools are
rising in popularity. Even large software corporations are starting to move their workflows
to the web [I]. Web-based diagram modeling tools are no exception to this hype. Based
on the interest in web IDEs and browser-based tooling, we intend to explore integrating
web-based modeling software into Visual Studio Code, a lightweight but highly extensible
code editor that runs inside a web browser. At the core, the usage of the Graphical
Language Server Platform (GLSP), a framework to build custom diagram editors in a
browser-based environment, enables this integration.

The textual Language Server Protocol as maintained by Microsoft [2] has shown great
success in the realm of textual development tools. Graphical modeling tools tend to
suffer from similar problems that textual editing tools had before the introduction of the
LSP. Supporting different graphical languages in various editing tools generates a lot of
maintenance effort without a shared communication protocol.

The Graphical Language Server Platform [3] aims to fix this problem with a client-server
architecture alongside a dedicated protocol for graphical |Domain Specific Languages
(DSLs). This protocol permits the implementation of clients that are independent
of the languages they intend to support. The GLSP Protocol [4] has already been
successfully integrated into various tools like Eclipse [5], Eclipse Theia [6] and with
limited functionality into Visual Studio Code [7]. As a next step, existing integrations of
the Graphical Language Server Platform should be developed further to investigate the
protocol’s efficacy and to potentially find novel ways of improving it.

)

For this thesis, we intend to advance the already established “glsp-vscode-integration’
library [§], originally created by the maintainers of the Graphical Language Server
Platform. This library can be used in the development of VS Code extensions to integrate
GLSP software into VS Code extensions and thereby support graphical languages within
VS Code. Our contribution aims to improve GLSP’s integration into VS Code by making

1

1. INTRODUCTION

it possible for users to use native VS Code features in order to interact with GLSP
diagrams. We will submit any developed features as open-source contributions to the
Eclipse GLSP project [9].

CHAPTER

Technology Overview

In this chapter, we will outline and explain the technologies used to achieve the goals of
this thesis.

2.1 Visual Studio Code

Visual Studio Code (often referred to as VS Code) is an integrated development envi-
ronment created by Microsoft. Most of Visual Studio Code’s source code was released
by Microsoft as open source, and it can be downloaded as freeware. Out of the box,
the editor includes usual features for software development like syntax highlighting,
debugging, and refactoring tools for a limited range of programming languages. VS Code
is currently under active (open source) development and receives monthly updates.

VS Code is built on Electron, a framework to develop cross-platform desktop applications.
Electron, in return, uses Chromium, an open source browser, to render the interfaces of
applications. Essentially, this set of technology enables VS Code to run entirely inside a
browser. The VS Code desktop client application just represents a wrapper that hosts
VS Code as a browser application. Its ability to run in the browser is also why VS Code
is highly relevant in the realm of web-based development tooling. There are still some
differences in what is possible on the VS Code desktop application compared to VS
Code on the web, mainly because regular web browsers run web pages in a sandboxed
environment. Electron is only limited by what the operating system the application is
running on allows. One of the differences being, for example, is file system access. While
users can edit files locally at free will on the desktop application, the web client has no
such capabilities because it is running in the browser. The web version of VS Code [10]
is able to open and edit files in a local file system, yet not all major browsers support the
required Application Programming Interface (APT) [11].

2.

TECHNOLOGY OVERVIEW

In order to add additional functionality to VS Code, users can install various extensions
for the application through an interface within the editor or through the Visual Studio
Marketplace website [I2]. VS Code extensions can add a wide selection of powerful
features. Currently, the features of extensions can range from editor support for additional
programming languages to whole new interfaces within VS Code to interact with remote
servers.

Extensions are developed by extension authors. VS Code extensions need to be imple-
mented in Node.js or JavaScript (often transpiled from TypeScript) and can be published
by authors on the Visual Studio Marketplace. In order to implement features for their
extension, extension authors can utilize the VS Code Extension API [13]. This |API
enables authors to interact with VS Code directly and add contribution points like menus,
commands, and notification feedback.

Using the extension API, creating a diagnostic issue within the editor would look like
the following:

import * as vscode from ’vscode’;

const diagnosticCollection =
vscode.languages.createDiagnosticCollection() ;

vscode.Uri.parse (' /path/to/affected/resource.txt’),

[

1

2

3

4

5

6 diagnosticCollection.set (
7

8

9 new vscode.Diagnostic(
0

1 new vscode.Range (2, 11, 2, 18), // This is the affected
range within the resource

11 "This is a description.’,

12 vscode.DiagnosticSeverity.Error

13)

14 1

15) ;

Listing 2.1: Example for creating an entry in the editor diagnostics.

After importing the VS Code |API in line |1, we first create a Diagnostic Collection (line
4)) which represents a grouping of diagnostics. Within this collection we create a new
Diagnostic (lines 6 and 9) for a given resource (line 7). Executing this code block will
display a diagnostic error in VS Code as shown in Figure 2.1.

The VS Code Extension |API offers many different contribution points, which extension
authors can use to influence almost all editor features. However, one particular part of the
extension API is of greater interest to our proposed contribution and to the integration
of a web-based modeling platform into VS Code: The Webview |API.

“Webviews” make it possible for extensions to display any content inside an editor panel
(usually the panels where code is edited) that could also be displayed within a web
browser. With this feature, the application’s extensibility is almost limitless. We will
explore the Webview API’s capabilities further in the next chapter.

2.2. Language Server Protocol

velopment Host] -
resource.txt 7 X
Users > lucaforstner > path > to > affected > resource.txt

This is a...

Diagnostic example!

PROBLEMS 1

resource.txt

This is a description.

Ln4, Col1 Spaces: 2 LF Plain Text)

Figure 2.1: Diagnostic being displayed in VS Code.

2.2 Language Server Protocol
IDEs like VS Code aim to provide features to interact with code in novel ways that make
programming faster, easier, and less error-prone. These features might include:

o Highlighting of sections of code that contain syntax errors. This is also known as

diagnostics.

e Showing documentation for code when hovering over functions.

o Navigating the user to a variable’s declaration when it is clicked.

e Advanced refactoring tools that will restructure code with the press of a button.
Features of this kind are dependent on the programming language the user uses. Variables

are initialized differently from language to language, and refactoring usually cannot be
directly translated between languages. Even though it would be possible for Editors to

2.

TECHNOLOGY OVERVIEW

implement those features for every programming language individually, it would represent
a massive maintenance effort.

Assuming all editors would support all languages independently, N x M different im-
plementations of those features would have to be developed and maintained (where N
are the number of different programming languages, and M are the number of different
IDEs). The approach of having numerous implementations introduces general develop-
ment overhead, might cause inconsistencies across languages and is more likely to contain
errors.

The LSP was invented to simplify [DE development by eliminating the issue of having
to implement language-specific features for each editor individually. The LSP acts as
the communication interface between the code editors and language servers. Its goal is
to decouple the interface and features of a code editor from the logic of programming
languages by having the language-agnostic code editors use the LSP to communicate with
language servers. Language servers understand the syntax and the semantic concepts of
a programming language and can communicate hints and instructions over the LSP to
its clients (clients meaning code editors in this context). IDEs that have implemented a
communication interface for the LSP can easily support any language, as long as a language
server exists for that language. Having language-agnostic clients that communicate over
the LSP with langue servers effectively reduces the number of needed language-specific
implementations to N + M, as multiple different IDEs may use the same language servers.

" " Language
Client 1 Language 1 Client 1 Server 1

) W " Language
Client 2 % Language 2 Client 2 LsP Server 2

" " Language
|
Client 3 Language 3 Client 3 Server 3

(a) N x M different implementations (b) N + M implemenations in client-
through individual language support. server architecture.

Figure 2.2: Comparison of traditional language support vs. language server architecture.

Currently, the LSP is used by the most prominent code editors on the market [14], and
there exist language servers for the most used programming languages [15].

The LSP is governed and maintained by Microsoft. Discussion, research, and development
happen on the GitHub Repository of the LSP. The governance by Microsoft inherently
leads to the LSP being tailored towards Microsoft products (i.e., VS Code and Visual
Studio). LSP features are often developed concurrently on Microsoft’s editors, and the
limitations and features of these editors seem to give direction to the development of the
LSP.

In general, extensions are the primary method of providing support for additional
languages for VS Code. VS Code provides a framework to build language servers and

2.2. Language Server Protocol

clients in the form of a JavaScript library [16]. The goal of this library is to simplify the
implementation of new language servers. Users of this library can implement handlers
for LSP messages to build a LSP-conform language server.

VS Code Extension authors can use the “Programmatic Language Features” to implement
language features without having to implement a whole language server. The |[API of this
programmatic implementation leans heavily on the |API of the library mentioned above.
Here, however, extension authors write handlers for events directly triggered by VS Code
instead of handlers for method calls by arbitrary clients.

2.2.1 Protocol Messages

Messages of the LSP are transmitted via a structure that conforms to the Hypertext
Transfer Protocol (HTTP)|semantics by requiring a header part and a content part. The
header part has to include a Content-Length header that describes the length of the
content part - any additional headers are optional. An extension of the JSON-RPC
specification defines the structure of the content part of a message. Programs following
the JSON-RPC protocol transmit data exclusively in the JavaScript Object Notation
(JSON)| format. This protocol can be used by any programming language, meaning that
a program written in language A may call a procedure of another program written in
language B. A language-agnostic remote procedure protocol is essential for having a
system with interchangeable client and server components.

The LSP differentiates between three kinds of messages which the Language Server
Protocol directly derives from the JSON-RPC specification:

¢ Request Messages represent a request sent by the client or the server. Whenever
the client or server sends a Request Message, they expect to receive a response in
the form of a Response Message. In return, both client and server must send a
response when a Request Message is processed. Request messages must include a
unique identifier and the name of the method to be invoked. Senders of a Request
Message can optionally include parameters for the invoked methods.

« Response Messages are direct responses to Request Messages. Responses must
include the identifier of the request message they are responding to. Response
Messages must differentiate between whether the invocation succeeded or failed.
On success, the Response Message must include a result. If the invocation failed,
the Response Message must not include a result. However, it must include an error
object containing general information about the error, like an error code, a message,
and optional additional information. Some error codes are already reserved by the
LSP and JSON-RPC protocol and can be used to indicate errors while executing
the protocol.

o Notification Messages are messages that must not receive a response. They can
be interpreted as asynchronous events that also invoke methods. The LSP also

2.

TECHNOLOGY OVERVIEW

defines a special kind of Notification Message denoted by the prefix ’$/”. These
messages are messages that may not be implementable by some clients or servers.
In general, these messages are used for interrupting an ongoing method invocation,
which is not always possible, for example, when the server process is single-threaded
and can only process one message at a time.

The LSP also defines a variety of utility interfaces and type structures that are used
throughout the protocol. Utility types include, for example text document objects,
which are structures used to define a range within a text document, or object interfaces
which contribute directly to a language server feature, like, for example, an interface for
diagnostic issues.

Under the specification of the LSP, clients are responsible for the lifecycle of language
servers. It is up to the code editing tool to decide when to start or terminate a language
server and how the runtime of the language server looks like.

2.2.2 Initialization Process

The client-server communication should start with a "initialize" request from the client to
the server. This initialization request contains general information about the client, the
environment of client and server, and the client’s capabilities. The server should then
answer with its capabilities.

Capabilities are a way for the server and client to advertise to each other what features
they provide and what requests and events they understand. This system exists so that
the components know what features to expect from each other. A client, for example,
might support the functionality of jumping to a variable definition in a document while
the language server the client intends to use was not configured to find the locations of
variable definitions. If the client did not know of the server’s inability to find variable
definitions, it would send requests to the language server, asking for the location of
variable definitions, without the server being able to respond. However, because the
client knows of the server’s capabilities, it will not send such requests in the first place.

The number of possible capabilities the client and server can register is large and almost
directly relates to the code editing features the LSP intends to provide.

After the client receives the response for its initialization request, it should send an

‘initialized‘ notification. Then, the initialization handshake is complete, client and server

know of their capabilities, and subsequent method calls can follow.

2.2.3 Synchronizing Document State between the Server and the
Client

Language servers need a mechanism to be informed about changes to documents within
a workspace. Even though language servers are allowed to access the file system directly
to derive information about a project, they cannot directly access the editing buffer of

2.2. Language Server Protocol

Client Server
Request: initialize; Params: General client info, Client Capabilities
Response: initialize; Params: Server name, Server Capabilities U
4 ...
Notification: ‘initialized'
>
loop

Any subsequent messages

Client Server

Figure 2.3: LSP Initialization Sequence

the code editor, which is where changes happen that have not been saved yet. The LSP
defines methods that synchronize changes with the language server while the user edits a
document. The LSP calls this process "Text Document Synchronization".

Client Server

User opens file

Notification: textDocument/didOpen; Params: Document

Y

loop

User edits file

Notification: textDocument/didChange; Params: documentURI, changes

Y

opt [Server may react to document changes]

Any Request or Notification, textDocument/publishDiagnostics for example

A

User closes file

Notification: textDocument/didClose; Params: documentURI

Y

Client Server

Figure 2.4: LSP Text Document Synchonization Sequence

In order to signal to the language server that the client loaded a document into its buffer,

2.

TECHNOLOGY OVERVIEW

10

the client sends a ‘textDocument/didOpen‘ notification to the language server. This
notification must contain data about the opened document: The document’s URI, a
language identifier (the programming language of the document), a version number that
increases after each change to the document, and finally, the document’s content as
text. In most cases, the language server will now load this data (including the document
contents) into its memory. The Language Server does not need to read the file contents
using the URI, nor is it allowed to after the LSP specification. Keeping a reference to
the document is necessary for the following method calls to function.

If the user changes a document, the client must send a ‘textDocument/didChange’

notification to the server. This notification only contains the [Uniform Resource Identifier
(URI) of the document for the server to know what document was changed, an increased
version number, and a set of changes to be applied to the text document in memory.
There are two ways change events can be structured. An incremental change event only
defines a range of text within the document that the server should replace. A "full"
change event synchronizes the entire content with every change. The language server
chooses what synchronization kind to use by setting a capability.

After a change has been applied to the document in memory by the server, it can rerun
analysis on the document and provide the user with feedback on the updated document
contents - for example, by showing error hints.

The LSP requires version numbers of documents to be sent alongside change events but
does not define a specific use case for them. At first glance, they might seem extraneous.
However, in case of a transmission error between client and server where the correct
order of change events is disturbed, the server can compensate by using the version
numbers to reapply the changes in the correct order. Additionally, they can be used for
the ‘textDocument /publishDiagnostics‘ event to specify that a set of diagnostics is meant
for a specific document version.

When the client closes a document, it sends a ‘textDocument/didClose‘ notification to
the server, containing only a [URI| to a document. This notification indicates that the
resource located at the document’s URI|is now entirely up to date. The language server is
free to clear the document from its memory, and the synchronization process is complete.

The three notifications explained above (‘textDocument/didOpen’, ‘textDocument/did-
Change* and ‘textDocument/didClose‘) must be implemented by the client. Language
servers can either implement compatibility for all three of the notifications or none of
them.

2.2.4 Examples and common use-cases of LSP Methods

This section presents examples to illustrate how the methods defined by the LSP contribute
to the developer experience.

2.2. Language Server Protocol

Hover Information

‘HoverProviders‘ within language servers are used to provide users with information when
they hover over a range of text within a document. The code editors usually display the
information in a popup above the affected range.

examplets U X

src > example.ts activate
vscode 'vscode';

activate() {

.createDiagnosticCollection();

.set(
‘('/Users/lucaforstner/path/to/affected/resource.txt'),

(method) .parse(value: string, strict boolean

Uri
Create an URI from a string, e.g. http://www.msft.com/some/path ,
file:///usr/home , or scheme:with/path .

Note that for a while uris without a scheme were accepted. That is not correct as all uris
should have a scheme. To avoid breakage of existing code the optional strict -argument
has been added. We strongly advise to use it, e.g. Uri.parse('my:uri', true)

@see —
@param value — The string value of an Uri.

@param strict — Throw an error when value is empty or when no scheme canbe
parsed.

Ln9, Col25 Sp:

Figure 2.5: Example of Hover Information in VS Code using the LSP.

The procedure for showing hover information in VS Code is as follows: After the user
leaves the mouse over a position in a document for a certain time, the client will send
a ‘textDocument/hover‘ request to the server, containing a document identifier and a
position within the document. The server can then determine which section of a document
is being hovered over and respond with the correct hover text for the requested position.
The server can also respond with ‘null* to indicate the absence of information for the
requested position.

In many cases, this functionality is used in combination with user-provided documentation.
When users write inline documentation for a variable or method, language servers can
use that documentation to provide hover functionality for occurrences of these tokens
elsewhere in the project.

11

2.

TECHNOLOGY OVERVIEW

12

Client Server

User hovers over text

Request: textDocument/hover

alt [Hover information is available]

Response: textDocument/hover; Params: Hover content

4 ..
[No hover information available]
Response: textDocument/hover; Params: null
< ... 1]
Client Server

Figure 2.6: LSP Text Hover Sequence

Diagnostics

Diagnostics are a way for a client to draw the user’s attention to specific sections of code.
Code editors usually do this via colored underlines, where different colors mean different
things (red usually means "error", while yellow means "warning"). Diagnostics may be
displayed for various reasons, such as highlighting a syntax error. In addition to the
underlines, code editors usually have a menu dedicated to diagnostics. In this menu, all
diagnostics for one or multiple files are aggregated and displayed.

The server creates diagnostics by sending a ‘textDocument/publishDiagnostics‘ notifi-
cation to the client. This event contains all the diagnostic information for a particular
document. This event overwrites all existing diagnostics on the client for that document
(except those owned by other language servers). A usual scenario for language servers is to
recompute diagnostics after each ‘textDocument/didOpen‘ or ‘textDocument/didChange
event. If the recomputation result indicated changed diagnostics, an updated set of
diagnostics would be dispatched to the client.

4

Diagnostics are fully owned by the language server, meaning that servers also need to clear
diagnostics. Language servers can clear diagnostics by not sending any diagnostics within
a ‘publishDiagnostics‘ notification. It is up to the implementation of a language server at
which exact moment in time it clears existing diagnostics. However, there are two general
strategies to follow: For single-file languages (like HTML and JavaScript), diagnostics
are cleared when a document is closed in the editor. For project-based languages (like
Java), diagnostics are kept, even when a file containing a diagnostic is closed.

2.2. Language Server Protocol

example.ts activate
vscode 'vscode';

any

Property 'invalid' does not exist on type 'typeof
import(*vscode") .

No quick fixes available
.invalid();

.set(
.parse('/Users/lucaforstner/path/to/affected/resource.txt'),

.Diagnostic(
.Range(2, 12y by
‘This is a description.®,
.Error

PROBLEMS 1
example.ts 1

Property 'invalid' does not exist on type 'typeof import("vscode")'. ts(23:

Ln 1, Col 19

Figure 2.7: Example of Diagnostic Information in VS Code using the LSP.

Client

Server
loop
Notification: textDocument/didChange
>
P Notification: textDocument/publishDiagnostics; Params: Diagnostics
X
Client Server

Figure 2.8: LSP Diagnosics Sequence

Code Actions

Code Actions are modifications to the code triggered by the client and computed by the
server. The modifications usually entail fixes for various issues, automatic refactorings,
or code beautification. If the client has the capability to apply the computed code
modifications, it should do so itself. If the client lacks the necessary capabilities, the
server can also apply the modifications as a backup strategy.

13

2.

TECHNOLOGY OVERVIEW

14

The client discovers available code actions by sending a ‘textDocument/codeAction‘ re-
quest with a relevant document and range to the server. The server responds either with
an array of commands that the server can execute or with an array of code action objects
containing executable commands. The client can now send a ‘workspace/executeCom-
mand‘ request to the server, along with a command to execute. This request essentially
acts as a notification b