
Interoperabilitätsanalyse der
Metamodellierungsframeworks

ADOxx und EMF

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Konstantinos Anagnostou, B.Sc.
Matrikelnummer 11736297

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass. Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Mitwirkung: Univ.-Prof. Mag. Dr. Manuel Wimmer

Wien, 21. April 2021
Konstantinos Anagnostou Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Interoperability Analysis of the
Metamodel Frameworks ADOxx

and EMF

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Konstantinos Anagnostou, B.Sc.
Registration Number 11736297

to the Faculty of Informatics

at the TU Wien

Advisor: Ass. Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Assistance: Univ.-Prof. Mag. Dr. Manuel Wimmer

Vienna, 21st April, 2021
Konstantinos Anagnostou Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Konstantinos Anagnostou, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. April 2021
Konstantinos Anagnostou

v

Danksagung

Zuallererst möchte ich mich bei meinem Betreuer Ass. Prof. Dipl.-Wirtsch.Inf.Univ.
Dr.rer.pol. Dominik Bork bedanken, welcher mich von der Themenfindung, über die
Konzeption und Implementierung, bis hin zur Abgabe der Diplomarbeit stets unterstützt
hat. Vielen Dank auch für das Entegegenkommen und die Flexibilität in diversen Aspekten.
Zudem möchte ich mich für die Chance bedanken, das akademische Leben abseits der
Diplomarbeit erleben zu dürfen, speziell für die Teilnahme an der Konferenz, als auch für
das Angebot als wissenschaftlicher Mitarbeiter weiterhin am Institut mitzuwirken.

Des weiteren möchte ich meinem zweiten Betreuer Univ.-Prof. Mag. Dr. Manuel Wimmer
danken, welcher trotz der Entfernung und der Beschränkung von Treffen auf die virtuelle
Welt, stets viel Untestützung und schnelle Hilfe bei diversen Problemen geboten hat.

Meiner Familie, speziell meinen Eltern als auch meinen Brüdern Ewa und Vasili möchte
ich an dieser Stelle für die seelische und moralische Unterstützung danken, welche mir
trotz der großen Distanz immer geboten wurde.

Zu guter Letzt möchte ich mich bei meinen Freunden Markus, Korni, Niki, Verena, Reza,
Alex und Triinu, sowie meinen Arbeitskollegen Jakob und Sherif bedanken, mit welchen
ich in den letzten Semestern viel Glück und Freude, als auch das eine oder andere Mal
(aber hoffentlich nicht zu oft) meinen Frust teilen konnte. Vielen Dank.

vii

Acknowledgements

First, I would like to thank my supervisor, Ass. Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol.
Dominik Bork, who always helped me in this thesis, from finding a topic to conceptualizing
and implementing the solution, over to submitting the final draft. Special thanks for the
cooperation and the flexibility in various aspects. I would also like to give thanks for the
opportunity to experience the academic life besides this thesis, from participating in the
conference to the offer of working at the institute as a scientific assistant.

I would then like to thank my second assistant Univ.-Prof. Mag. Dr. Manuel Wimmer,
who, despite the distance and the online-only limitation, gave lots of advice and offered
quick help when problems arose.

I would also like to thank my family, especially my parents and my brothers Ewa and
Vasili, who offered emotional and moral help despite the great distance.

Finally, I would like to thank my friends Markus, Korni, Niki, Verena, Reza, Alex, and
Triinu, as well as my colleagues Jakob and Sherif, whom in the last semesters I could
share happiness and joy, but also sometimes (hopefully not too often) my frustration
with. Thanks a lot!

ix

Kurzfassung

Model Driven Engineering (MDE) ist eines der am häufigsten verwendeten Program-
mierparadigmen, welches sich mit dem Erstellen und dem Modifizieren von Modellen
befasst, was große Flexibilität in der Entwicklung und der Nutzung von Modellarte-
fakten ermöglicht. Zwei bekannte Metamodellierungsframeworks sind ADOxx und das
Eclipse Modeling Framework (EMF). Beide dieser Tools beinhalten ein weit gefächertes
Repertoire an Metamodellierungstechniken und mächtige Modellumgebungen. Sie sind
in vielerlei Hinsicht ident zueinander, besitzen aber auch einige Unterschiedlichkeiten in
fundamentalen Implementierungsansätzen und Nutzungsweisen.

Bisher existieren diese beiden Plattformen in Isolation voneinander. Es ist nicht möglich die
Metamodelle beider Plattformen auszutauschen, das bedeutet es gibt keine Möglichkeit ein
Metamodell aus einer Plattform in die andere zu importieren und dort weiterzuverwenden.
Solch ein Feature würde es unterschiedlichen Domainexperten und Modellentwicklern
ermöglichen, gemeinsam an einem (Meta)modell zu arbeiten, ohne sich dabei auf eine
gewisse Plattform beschränken zu müssen.

Diese Thesis beantwortet die Frage, ob solch eine Interoperabilität zwischen den beiden
Plattformen möglich ist und wie sie implementiert werden kann. Es wird sich zeigen, dass
Interoperabilität zwischen den beiden Modellierumgebungen für die meisten Metamodelle
tatsächlich möglich ist. Zudem wird sich zeigen, dass der erarbeitete Lösungsansatz
sowohl syntaktisch als auch semantisch valide ist, also gültige Metamodelle für die Ziel
Plattform erstellt werden können.

Dazu werden zuerst die beiden Metamodellierungsplattformen miteinander verglichen und
deren Gemeinsamkeiten und Unterschiede ausgearbeitet. Danach wird ein Konzept erstellt,
mit dem man eine Brücke erstellen kann, welche Metamodell Dateien von einer Plattform
in die andere überführen kann. Diese Brücke wird anschließend implementiert und im
letzten Schritt mit Hilfe einer Evaluation auf Basis von unterschiedlichen Metamodellen
auf syntaktische Korrektheit und semantische Äquivalenz validiert.

xi

Abstract

Model-Driven Engineering (MDE) has become a pivotal way to conduct software engi-
neering, focusing on model creation and modification, introducing great flexibility in
development and operation. Two major metamodeling platforms used in this context
are ADOxx and the Eclipse Modeling Framework (EMF). Both tools offer a great set
of metamodeling techniques and environments. They share a lot of similarities but also
have differences in crucial aspects of their implementation and usage.

As of now, both these two platforms exist in isolation. It is impossible to use the two
platforms interchangeably, i.e., take a metamodel or model from one platform and use it
in the other. With this feature enabled, domain experts and model engineers could work
on the same (meta)model, independently of their desired choice of tool.

This thesis focuses on answering whether and how a transformation procedure can enable
interoperability between the two platforms. It will show that interoperability between
the two is feasible for most of the given input metamodels and that the proposed solution
results are syntactically and semantically valid.

This is done by first analyzing the differences and similarities of the two platforms and
then creating a concept for a bridge that maps metamodel files from one platform to
another. Later, the implementation of the bridges for both directions is performed, and
the evaluation results are analyzed in the context of syntactic and semantic equivalence
based on various metamodels.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Structure . 3

2 Foundations 5
2.1 Metamodeling . 5
2.2 ADOxx . 9
2.3 EMF . 15
2.4 Interoperability . 19

3 Related Work 21

4 Comparative analysis of ADOxx and EMF 25
4.1 Core Modeling Concepts . 27
4.2 Classes . 27
4.3 Relationships . 28
4.4 Attributes . 29
4.5 Inheritance . 30
4.6 Grouping . 31
4.7 Constraint Language . 31

5 Metamodel transformation 33
5.1 Transformation overview . 33
5.2 ADOxx to EMF . 34
5.3 EMF to ADOxx . 43
5.4 Scenario . 55

xv

6 Evaluation 63
6.1 Syntactic Evaluation . 65
6.2 Semantic Evaluation . 76

7 Future Work 83

8 Conclusio 85

List of Figures 89

List of Tables 91

List of Algorithms 93

List of Code Examples 95

Bibliography 97

Appendix: DevOps Manual 101
Module introduction . 101
Prerequisites . 105
Execution . 106

CHAPTER 1
Introduction

This section will introduce to the main topic, goals and structure of this thesis. First
it will give a motivation and explain, what the current problem is, how the idea arose
to find a solution and what benefits the research will have for model developers and
researchers. The following section then introduces the goals of this thesis and mentions
the concrete research questions. Finally, an explanation of the structure follows, that
describes the contents of each individual chapter.

1.1 Motivation
Metamodeling platforms play a vital role in developing model-based applications that can
be used in various ways, from model transformation to code generation. Two prominent
solutions of metamodeling platforms are ADOxx and the Eclipse Modeling Framework
(EMF). The metamodeling platform ADOxx is best known for its advanced graphical
components, which allows to create intuitive and fast models. EMF, on the other hand, is
known for its strong bondage with the programming language Java, providing a familiar
base for such developers to create (meta)models, as well as providing advanced features
like model-to-code transformations.

Those platforms show similarities in many ways, like sharing similar first-class concepts or
attribute types. They also differ in many ways, from composition concepts to inheritance
patterns. While using one of these platforms only extensively provides a good solution to
create model-driven applications, the need for interoperability arises. This feature would
create a lot of benefits, like giving developers a way to exchange their (meta)models with
experts of the other platforms, increasing overall productivity.

"Interoperability extends the border of already existing systems and enables the connection
to other systems."[Ker16]. With the help of enabled interoperability between these two
platforms, the dependence of a model or domain engineer to a single platform vanishes: It

1

1. Introduction

is possible for teams to collaborate in big and complex model-driven projects, without the
need to collectively work with the same environment. Different users may be familiar to
different tools; organizations may only offer a certain solution of modeling environments.
These and many other factors contribute to the usage of various metamodel environments.
If two platforms would be interoperable, the teams and individuals could continue working
with their desired environment throughout the development and maintaining process, on
a single metamodel or model project.

Another benefit of interoperability is the fact, that the best tool can be used for the job.
Metamodeling platforms differ in their implementation and some of their key concepts,
like inheritance or composition patterns. A sub part of a metamodel could benefit from
the features of one platform, while another task could benefit from features of the other.
Also, the creation of metamodels and models can differ in either platform. Some may
offer advanced features for users to create metamodel elements with a graphical UI.
Other platforms may offer an advanced API that allows to build metamodels and models
programmatically. With interoperability enabled, an individual semantic subsection can
be developed with one platform, while it is then transformed to a model of the target
platform, where the remaining part can be implemented. This way, the best features of
both metamodeling platforms can be used to create a desired metamodel, which is only
possible when having interoperability between them enabled.

As of now, both of the platforms ADOxx and EMF exist in isolation, allowing no exchange
of models or metamodels between the two in an intuitive way, other than rebuilding
those (meta)models manually in the other platform. Kern and Kühne showed in [KK07],
that such model interoperability is indeed possible between ARIS and EMF and that it
can create benefits for the users of either platform when they can transform and later
use their created models in the other platform.

This thesis focuses on mitigating the problem of missing interoperability between ADOxx
and EMF by describing first the problem, proposing a transformation bridge as a solution
to interoperability, creating a prototype, and finally analyzing it.

1.2 Goals

This scientific work aims to reveal the possibilities, difficulties, and limitations of in-
teroperability of metamodeling platforms in the concrete context of ADOxx and EMF.
The thesis will show differences, similarities, and a procedure to enable interoperability
between these two platforms. The findings and conclusions of this task can then be used
to derive knowledge in the more general context of interoperability in metamodeling
platforms.

This scientific research incorporates creating a programmatic tool that enables interop-
erability for a model engineer, who will be able to easily transform a (meta)model of
one platform to another. Another goal of this work is to create an evaluation based on

2

1.3. Structure

semantic and syntactic categories, which will further prove the feasibility and performance
of this interoperability proposal.

Concretely, the goal of this thesis is to answer the following research questions:

1. Is interoperability between the two metamodel platforms feasible?

2. If interoperability is feasible, how well performs the proposed solution
syntactically and semantically?

1.3 Structure
In chapter 2, we will give an introduction to the critical topics of this thesis. This includes
an introduction to metamodeling and model creation, followed by an introduction of
the metamodeling platforms ADOxx and EMF, and rounded up with a short dive into
interoperability, where we will cover its definition. These foundations should help build a
knowledge basis for the rest of the work to follow.

In chapter 3, a focus on different research areas connected to this work will be provided.
Similar work will be mentioned, and a representation of the state-of-the-art. Also,
the question will be answered whether this type of interoperability analysis has been
conducted before.

In chapter 4, a comparative analysis of the metamodeling frameworks ADOxx and EMF
will follow, which will build a basis for the metamodel transformations that are to come
in the following chapters. This analysis will reveal differences and similarities between
the two by categorizing language features and comparing them.

Chapter 5 will then describe the metamodel transformation. The whole process of
transforming one metamodel to another will be covered from the used technologies to
the concept, over to the actual mapping and implementation details. In section 5.2, the
transformation from ADOxx to EMF metamodels will be covered, in section 5.3 the other
way will be described. This chapter’s last section 5.4 will show, based on an example
scenario, the structure and details of the generated artifacts.

In chapter 6, an evaluation of the performed transformations will follow. Thereby, the
two main categories for evaluation, namely semantic and syntactic evaluation, will be
examined, and the subcategories of the evaluation will be later explained. Finally, the
results will be collected and interpreted.

The chapter 7 will focus on the future work that might be conducted with unclear or
unfinished topics that arose during the writing of this thesis.

The final chapter of this thesis is chapter 8, which contains a conclusion of the work as
well as the results of the evaluation. The research questions that were introduced in the
beginning of this thesis are reintroduced and answered.

3

1. Introduction

Additionally, an appendix is provided containing the Dev Ops Manual, which will serve
as a code documentation and execution manual for the created code artifacts throughout
this thesis.

4

CHAPTER 2
Foundations

This chapter introduces the software development concept of metamodeling and gives
insight into the metamodeling platforms ADOxx and EMF. It helps to understand the
primary software development paradigm analyzed in this thesis and the used technologies,
which builds a knowledge basis for the rest of this work.

Metamodeling is an integral part of this thesis, building the foundation of an interop-
erability analysis between metamodeling platforms. Therefore, it describes thoroughly
the concept of modeling, the ideas of model abstractions (i.e., metamodeling) and its
advantages, the different types of metamodeling and also model transformation, the key
research area of this scientific work.

ADOxx and EMF are then described based on their characteristics, strengths, and usages
in real-world scenarios. For each metamodeling platform, an analysis follows that sheds
light on how metamodels and models are practically created. Then the metamodels
of either platform are described, which gives a deep knowledge of the insides of either
platform and function as a basis for the comparative analysis in chapter 4.

Finally, the foundations chapter concludes with a definition of interoperability, while also
describing certain concerns in context to this scientific work.

2.1 Metamodeling
2.1.1 Modeling
Modeling is the central part of Model-Driven Software Engineering (MDSE), which
represents creating models to create programs and environments in the domain of
computer science for production use and research. Models can be interpreted as an
abstraction of phenomena from the real world [BCWB17]. The phenomena that can be
abstracted are theoretically limitless: a model could be an abstraction of the hierarchy of

5

2. Foundations

the animal kingdom (abstracting static behavior of real-world phenomena), abstracting
processes in a manufacturing line of a car company, or simulating the behavior of weather
phenomena like a tornado (both of which represent abstractions of the dynamic behavior
of real-world phenomena).
Abstraction, which is an equivalent term when it comes to modeling, can be defined
as "[...] the capability of finding the commonality in many different observations and
thus generating a mental representation of the reality [...]" [BCWB17]. Finding the
commonalities implies that an abstraction always only consists of a part of reality and
can never fully represent the complex behavior of the real world.
Even though abstractions cannot fully represent real-world phenomena, they are still
suited to understand them better. The limited information about the natural world they
contain allows us humans to better process this information and derive knowledge from
it, as they are abstracting away from irrelevant aspects, thereby focusing on the relevant
ones. Therefore the concept of modeling is well suited to solve problems in computer
science alongside classical approaches. Modeling a domain system may help to outline
the structure and the behavior of the project, allow non-tech experts to participate in
the software engineering process, and with the help of code generation, speed up the
overall development process.

2.1.2 Modeling Layers
Following the fact that a model is an abstraction of real-world phenomena, a model
can also be abstracted by another model. This abstracted model would describe how a
model is defined, what elements and arrangements are allowed to be created, and what
operations can be performed upon it. Such a model of a model is called a metamodel,
since it describes structure and behaviour about another model (from the Greek word
meta meaning by means of).
Abstracting a metamodel even further would yield a meta-meta model, which would
describe the characteristics and constraints of a metamodel. In [BCWB17], Brambilla et
al. suggested that going with this abstraction procedure beyond the meta-meta model
would be possible (up to infinite instances in theory); in practice, a higher abstraction
level than the meta-meta model layer is not necessary since further abstractions can be
defined by the meta-meta model itself (for example MOF, which is a meta-meta model
can be described by itself using MOF elements).
In general it can be said, that a lower level of modeling always conforms to a higher level
of modeling. The Figure 2.1 illustrates these concepts by using an example scenario (a zoo
infrastructure), represented by a model and accompanied by its different metamodeling
layers.
On the lowest layer, the M0 layer, the model instances of the real world objects and
phenomena reside. In this scenario, Zoo1 is an instance of the model element Zoo, which
contains a multitude of animals (Lion1, Lion2 and Tiger1), which live in a distinct
enclosure (Enclosure1 and Enclosure2).

6

2.1. Metamodeling

Figure 2.1: Visual representation of metamodel layers of UML

The Model Layer M1 contains the UML definition of the allowed combinations of elements
that a Zoo instance can have. Therefore, the model instance on the M1 layer conforms to
the metamodel instance on the M2 layer. As can be seen, Zoo, Animal, and Enclosure are
represented as UML class elements, while the relationships between them are represented
as UML relationship elements, along with different cardinalities.

Going one layer further, the M2 layer, or metamodel layer, defines all the elements of

7

2. Foundations

UML and their relationships. As noted in [cs.], those consist among others of Feature,
Classifier and Relationship, which are sufficient to represent the given model.

On the M3 layer, the meta-meta model layer is defined, which describes the different
elements and constraints a UML instance can have. It shows that UML conforms to the
meta-meta model of the Meta-Object Facility (MOF). The meta-meta model, in this
case, uses the elements from MOF to describe itself, therefore, showing that MOF is
recursively defined and another layer above the M3 layer is not required.

2.1.3 Creating metamodels
When it comes to metamodeling, there are different ways to create a metamodel and
therefore create model instances out of it. Graphical metamodel platforms are the
standard in creating metamodels. They come with lots of advantages for the metamodel
editor and the model user.

Graphical metamodeling tools include ADOxx and EMF, which will be described in
sections 2.2 and 2.3 respectively. Those tools use graphical elements or pre-defined
structures to create metamodels. EMF uses a graphical metamodeling interface that
allows the user to drag and drop, create and edit certain elements to a canvas, and build
the metamodel incrementally by using a UML-like graphical syntax. ADOxx allows for
creating metamodel elements within the metamodel editor, consisting of windows and
various input fields, where metamodel elements are represented in a graphical, hierarchical
way. The authors in [BKP20] conducted various research in graphical metamodeling
platforms and categorized their structure, specification and notation. They showed that
common structures of modeling languages include slicing, i.e., separating the elements
in different semantic or syntactic chunks, referencing, i.e., linking metamodel elements
by name to avoid redundancy and matrices, i.e., an environment that supports the
creation and editing of table-based metamodels to support the idea of relatedness and
structuredness for the metamodel editor.

Key aspects of this work also include the possible serialization formats that the metamodel
environments support. To save the state of metamodels or share them with other parties,
the user chooses to serialize them into a specific format. The specific metamodel
environment usually limits the capabilities of a particular format. The authors in
[BKP20] show that the compatibility, readability, and extendability of those formats
differ for each platform. Therefore the serialization specification of a metamodel and
model artifact plays a vital role in metamodel and model interoperability. Model files of
a source platform must be accessible to process their information, and metamodel files
must be adjustable to create files with the correct information for the target platform.

2.1.4 Model Transformations
Model-driven development is more advantageous than non-model-driven development
because developers can perform model transformations on a particular model. Model
transformations procedures can transform a model into another model by describing

8

2.2. ADOxx

specific transformation rules that are either defined by the developer (model mapping),
derived automatically by creating rules from an external system, or by using the principle
of "everything is a model" where the transformation itself can be described as a model
that conforms to a shared metamodel of all involved models. [BCWB17]

Model transformations are used to alter certain elements or model behavior in an easy and
preferably automated way. This can help the developer or user of a model to implement
changes that arose due to changed requirements.

There are differences in how model transformation procedures can perform such a
transformation:

On the one hand, transformations can be performed on the same level of context, i.e.,
concrete elements of the same model are altered and changed to other elements that
are part of a shared metamodel. Taking the Zoo scenario as an example: a model
transformation could be performed by replacing all lions in the model instance with tigers.
On the other hand, a transformation does not have to be bound to the same context.
EMF, for example, allows for the creation of a complete and valid Java model out of a
given Ecore model that represents the same model but is part of different scope, i.e., no
longer within EMF but within the scope of the Java programming language.

Since metamodels are models themselves (as they are just a higher abstraction of a specific
model), certain transformation procedures can transform them in the same way. As will
be seen in chapter 5, this scientific work heavily focuses on transforming metamodels from
one environment (ADOxx or EMF) to the other, therefore representing a transformation
that is not bound to the same context of the source metamodel.

2.2 ADOxx
2.2.1 Introduction
ADOxx is mostly used nowadays in the academic context in order to create rich-feature
modeling tools [BWA21]. It is part of OMiLAB, "an open digital ecosystem designed to
help one conceptualize and operationalize conceptual modeling methods"[BBK+19], which
helps to perform scientific and academic research in the context of model engineering,
gaining insights in this area and benefits for researchers and model engineers.

ADOxx puts a lot of emphasis on graphical visualization and interaction, i.e. model
instances can be easily created with a graphical UI, where class instances and relationships
can be instantiated and modified. The support for graphical editing is natively embedded
in ADOxx, in contrast to other metamodeling platforms like EMF, where 3rd party
graphic-based modeling environments have to be installed and configured in order to
enable graphical model features.

ADOxx’s strength is also attributed to the use of a rich-feature scripting language, namely
AdoScript. Not only can constraints be defined by this language, but also procedures for
model elements defined. The use of AdoScript can therefore extend the functionality of

9

2. Foundations

metamodel elements, which enables developers of metamodels to create domain-specific
environments that are tailored to a pre-defined use case. The scripting language will be
heavily used in the EMF to ADOxx transformation in section 5.3, where it enables the
possibility to define behaviour not natively supported by the platform, but needed for
the transformation purposes.

ADOxx is open-use but not open-source. This scientific work does, to some extent, rely
on services made publicly available by the developers of ADOxx, like the ADOxx ALL
Public API [adoc] mentioned in subsection 5.3.1, of which the source code cannot be
viewed. This poses potential problems to validity of created artifacts, extensive trial and
error phase in order to develop certain features and general feasibility concerns of the
metamodel transformation.

2.2.2 Usage

In order to enable the ADOxx environment for metamodel engineers, it is needed to
install the ADOxx standalone application. ADOxx requires a Microsoft SQL Server
database instance, which is installed in this process, followed by the installation of the
main applications needed for metamodel and model creation. The SQL Server instance is
needed in order to store the metamodel and model data, which stems from the architecture
and design choice of ADOxx. This is contrary to EMF, where the models and metamodels
are stored in XML-based files and read in RAM just-in-time when they are used.

From a metamodel engineer perspective, the user has to "1) configure the specific meta-
model by referring its concepts to the ADOxx meta-metamodel; 2) define a visualization
for the concepts; 3) combine the concepts into logical chunks, i.e., ADOxx modeltypes;
and 4) realize additional model processing functionality like model transformation or
simulation." [BPB21].

After the installation is finished, two applications are made available for the user:

• The ADOxx Development Toolkit

• The ADOxx Modelling Toolkit

The ADOxx Development Toolkit is the metamodeling tool of ADOxx. Through the
development toolkit, users can be created and roles assigned as well as new metamodels
instantiated, modified and exported for further purposes.

ADOxx supports two libraries per project, that can be used independently:

• The dynamic library

• The static library

10

2.2. ADOxx

Figure 2.2: Sample ADOxx class hierarchy editor

The dynamic library is intended for the creation of metamodels in the domain of generic
simulation (e.g. path analysis) and is mostly used by metamodel developers when creating
any metamodel project. The static metamodel on the other hand provides a generic tree
based structure, which can be helpful to more easily model static behaviour of a real
world scenario (e.g. an organizational structure).

After selecting a specific library, the user can create and modify metamodel elements via
the Class Hierarchy Editor. Figure 2.2 shows a sample ADOxx class hierarchy editor
with a sample metamodel, as well as the various actions that can be performed on an
element. Creating classes can be done via selecting a specific existing class, accessing the
context menu and selecting the option New Class.... The class that was selected in
this process automatically becomes the super class of the new class.

Attributes can be added to a class in a similar way, i.e. selecting a class, selecting the op-
tion New Attribute... or New Class Attribute..., specifying a name and an
attribute type. Relation Classes can be created via selecting the folder Relation
Classes, accessing the context menu and selecting the option New relationclass,
where a name, as well a source and target class can be selected from a drop-down menu.
Editing any element can be done via selecting the desired element, accessing the context
menu and selecting the option Edit..., where ADOxx allows to modify various values,
like name, datatype or abstraction flags, depending on the type of the selected element.

11

2. Foundations

Figure 2.3: Sample ADOxx modelling toolkit palette and canvas

It is here, that various important attributes can be set, like the AttrRep attribute,
that controls which attributes are actually editable in the model editor. But also
the ClassCardinality attribute on Classes, which allows to specify min and max
values of incoming and outgoing relationships. Worth to mention is also the attribute
AttrInterRefDomain attribute, which is a distinct attribute of Interref instances that
allows to specify the properties of such an element.

The ADOxx Modelling Toolkit on the other hand is used to create and modify models
based on a pre-defined metamodel. After logging in to the Modelling Toolkit, the user can
create a new model out of the Model Groups Explorer’s context menu. The metamodels,
out of which models can be defined, can be set in the user settings of the ADOxx
Development Toolkit. Depending on which model or model groups were chosen, the user
can select a new model type based on a certain metamodel.

Figure 2.3 shows a sample instance of the Modelling Toolkit, with the palette on the
left, the canvas right next to it, and various classes instantiated inside of it. Adding
class instances to the model can be preformed by selecting the appropriate element from
the palette and clicking onto the white canvas next to it. The representation of palette
items is defined through the AttrGraphRep attribute, that was modified in the ADOxx
Development Toolkit on the corresponding class. The white canvas, where elements from
the palette can be added, functions as a graphical representation of the metamodel, i.e.
it corresponds to the underlying model, while providing graphical features that allow to
easily interact with the model elements.

By double-clicking on a created class on the canvas, the Notebook pop-up of that

12

2.2. ADOxx

particular class opens, where the class’s attribute values can be modified. Relation
Classes can be created by selecting the relation class from the palette, followed by a
selection of two class instances on the canvas between which the relationship should be
created. ADOxx gives hints as to which classes can be statically connected, i.e. if a source
or target class matches the static specification defined in the ADOxx Development Toolkit
for a particular relation class, the corresponding class receives a light-grey border when
hovering over it. If the desired class is invalid for this type of relation class, no border
appears and an error message shows up, stating an invalid-object error. Additionally,
ADOxx allows to select the source and target class in opposite order when trying to
create a relationship. This however does not resemble the inverse property that EMF
posses, which will be described in section 4.3; rather the relationship is created internally
in the pre-defined constellation of source and target class.

2.2.3 Metamodel
Figure 2.4 shows an excerpt of the ADOxx meta-metamodel. The emphasize in this
meta-metamodel lies on the element Metamodel, i.e. the metamodels that can be
created in the ADOxx Development Toolkit refer to this meta-metamodel element.

‚

Modeling Class

Predefined
class

User-defined
class

Relation Class

Predefined
Relation Class

User-defined.
Relation Class

Modeltype

User-defined
Class hierarchy

ADOxx
Metamodel Metamodel

AttributeClassattribute Facet

Is subclass-of

1..1

0..1

1..*

1..1

1..*

1..1 1..11..1

1..*1..*1..*

1..1
Is From-Class

Is To-Class

0..*

0..*

1..1

1..1

0..*
1..n

0..*

0..*

has

1..* 1..1
1..1 1..1

1..1 1..1

0..*
0..*

Figure 2.4: Excerpt of the ADOxx dynamic meta-metamodel [Bor18]

As can be seen, a Metamodel has exactly one Modeltype, which in turn consists
of several Modeling Classes and Relation Classes, and is composed of the
ADOxx Metamodel. Both Modeling Classes (which represent the first-class con-
cept of classes) and Relation Classes (which represent the first-class concept of
relationships), can contain several Attributes. An Attribute can also be of type
Classattribute, where every class or subclass receives the exact same one value.[adof]

Facets in ADOxx are contained by Attributes. The Facets contain meta informa-
tion for an attribute, e.g. a help text for a attribute, which is displayed to the user, or
cardinality information, that enforce the instantiation behaviour of certain classes on the

13

2. Foundations

‚

Figure 2.5: Attribute Facets available per attribute type [adoe]

model plain. Different facets are available to different attributes of a certain type. An
overview of the different facets and their corresponding attribute types can be seen in
Figure 2.5. [adoe]

The ADOxx metamodel is a set of statically defined classes, that are part of every
metamodel created within ADOxx. The team of ADOxx introduced certain name
conventions and best practices in order to ease the development of metamodels and
to introduce a clearer structure to the project: Double underscores before and after a
class name mark this particular class as an abstract ADOxx metamodel class. Single
underscores should be used by the metamodel developer to denote a user-created abstract
class of the metamodel.

In Figure 2.6, an excerpt of the ADOxx dynamic metamodel can be seen in red, as well
as a sample metamodel that contains elements referring to the metamodel element in
blue. The class __D-construct__ is the top class in the inheritance hierarchy, i.e.
every other class that is either predefined by ADOxx or created by the user within the
dynamic library, will inherit at some point from this specific class.

14

2.3. EMF

‚

Figure 2.6: Relation of ADOxx dynamic metamodel and user-defined metamodel [adog]

2.3 EMF
2.3.1 Introduction
The Eclipse Modeling Framework (EMF) "can be considered as the Java-based realization
of the Meta-Object Facility (MOF) standard" [BWA21]. It offers not only metamodel
and model creation tools but also various features related to model transformation and
model accessing. Brambilla et al. state in [BCWB17], that with EMF one can

1. Create and edit (meta)models

2. Use generation components for programmatic manipulation with (meta)models and
tree-based modeling editors

3. Serialize and de-serialize (meta)models from/to XMI

4. Use additional modeling plug-ins

EMF provides a graphics-based tool for creating metamodels based on UML modeling
techniques, which this work will further describe in subsection 2.3.2. EMF offers a
tree-based editor within Eclipse to perform these tasks by creating models from a defined
metamodel and modifying them.

EMF is strongly bound with the Integrated Development Environment (IDE) Eclipse,
i.e., most tools that EMF provides can only be used within an installed instance of

15

2. Foundations

‚

Figure 2.7: Sample EMF metamodel editor instance

Eclipse. However, as mentioned in the second item, programmatic solutions, like the
Eclipse API [emfc], which will also be used in chapter 5, can provide a way to read and
modify metamodel and model elements.

EMF uses XMI, which is based on XML [Gro15] to serialize and de-serialize metamodels
and models. XMI is, on the one hand, easy to read and modify for developers, but
since it is based on XML, it can be used by XML parsers to access and modify elements
programmatically.

Lastly, one of EMF’s characteristics is its strong support for plug-ins developed mainly
by the EMF community. Prominent plug-ins are Sirius [emfd], which is a graphical
modeling tool that allows, based on an EMF metamodel, to create an own graphic editor
through which instances of models can be created. ATL [emfa] is another popular plug-in
that allows performing model-to-model transformations with a tailored Domain Specific
Language (DSL).

2.3.2 Usage

To enable metamodel creation and editing in EMF, one needs to download and install
Eclipse as a prerequisite. The specific version with the EMF modeling tools can be
downloaded; alternatively, a basic Eclipse version can be installed and the EMF modeling
plugins added later via the plugin manager.

Figure 2.7 shows an example instance of a created project, which a metamodel engineer
uses to create or edit metamodels.

16

2.3. EMF

‚

Figure 2.8: Sample properties section of an EMF metamodel element

The model engineer can add various elements of the metamodel on the canvas. The
available options appear on the palette. The metamodel developer can initially only
add items from the category Classifier to the canvas. Items from the category
Feature can only be added inside those Classifier elements, while the user can
only create objects from the category Relation between them. The EMF metamodel
editor generally hints which elements the user can interact with within a specific context,
i.e., certain non-allowed symbols appear on the cursor if the user hovers over an invalid
element.

When clicking on an item, like a class or an attribute, the Properties section of the
editor changes accordingly, giving the developer an interface through which he can modify
certain meta-information of an element. Figure 2.8 shows an example of the different
flags and other meta-information that can be configured for an Attribute.

There are different ways to create a model out of an existing metamodel in EMF. Creating
a dynamic instance will be described here, although creating an own Eclipse Runtime
from an existing metamodel and instantiating models from there is also possible.

When the metamodel development finishes, the developer can create a new dynamic
instance from the context menu of a metamodel element. After assigning a name, a
new file with the ending .xmi, EMF’s serialization format, is created in the Eclipse
project. As can be seen in figure Figure 2.9, the EMF model editor gives the model
editors the chance to create elements based on a previously created metamodel. Accessing
the context menu of a certain item allows the developer to create new instances of model

17

2. Foundations

Figure 2.9: Creating and editing a sample EMF model

elements, either as children (i.e., contained within an element in this tree structure, like
Root Class and Public Transport Infrastructure, but also as siblings (i.e.,
on the same hierarchy level) like Shipyard and Boat, based on the defined structure
of the metamodel.

Finally, as with the metamodel elements, a model element might have its metadata
(i.e., its defined attributes in the metamodel) modified through a similar interface as in
Figure 2.8.

2.3.3 Metamodel
Ecore is the name of the meta-metamodel of EMF. Classes in Ecore have the prefix
E, followed by the name of the first-class concept they resemble. EClasses therefore
resemble the concept of class, EEnum resemble the concept of Enums and so forth.

As can be seen in the excerpt of the Ecore meta-metamodel in Figure 2.10, every class
inherits from the abstract class ENamedElement, which ensures that every element of
the generated metamodel has a name assigned to it.

Figure 2.10: Excerpt of the Ecore meta-metamodel[BWA21]
The EPackage element resembles the root element of every metamodel. EPackages
can be nested (as seen by the self-composition), but also contain instances of EClass,

18

2.4. Interoperability

which in turn can be either abstract or instantiable and have a super type reference
to other EClasses or data types, of which EEnums are a part of. EEnums are also
composed of an arbitrary number of EEnumLiterals, which resemble the different
values an enum can possibly have.

EStructuralFeatures are classes that contain specific attributes like ordered, unique,
lowerBound and upperBound. EAttributes inherit from this class, while also providing
the attribute type, which can be set to an arbitrary type that can be part of the Ecore
metamodel (like EEnums) or regular Java classes.

EReferences are also a sub type of EStructuralFeature, and define additionally
the Boolean flag containment, which marks if this particular relationship resembles
a composition. If a class has this ability enabled (i.e. it is a compositum), every
composed instance can only be created through an instance of this class. If an instance
of compositum is deleted on model level, all composite elements will then be deleted as
well.

What is different from other metamodeling platforms is that the Ecore’s meta-meta
model has its relationships contained inside an EClass, as opposed to ADOxx, where a
relationship is represented as a separate object on the root metamodel level, together
with other class definitions.

2.4 Interoperability
Interoperability in the context of MDE describes the ability to interchange metamodels
and models between two selected tools [Ker08]. This definition implies that a model
engineer can use a metamodel of one platform in the other platform and vice versa.

Such a procedure would yield several benefits: For one, the developer of a metamodel can
switch to a different tool that is either more familiar to him or her or possesses improved
features that make the development of a metamodel faster and easier. Several people or
teams can work together on a common metamodel while using different metamodeling
tools. This benefit is advantageous when two various parties are familiar with one
metamodel editor but not the other. Following this procedure could reduce costs within
the overall project since no team has to be trained on the other platform, enabling the
development of robust metamodels. Model engineers and domain experts could then use
the best tool for a particular job.

In [KM06], Kühn and Murzek state, that interoperability in MDE involves two dimensions:

1. Information Heterogeneity and

2. System Heterogeneity

Information Heterogeneity describes the level of heterogeneity of metamodel information,
both semantic and syntactic when comparing the metamodels of the source and target

19

2. Foundations

platform. Semantic heterogeneity is measured by the degree of meaning of a metamodel
being equivalent, while syntactic heterogeneity is evaluated by the manifested structure
of the source-platform metamodel conforming to the structure of the target-platform
metamodel.

Information Heterogeneity is essential for interoperability since the information must be
consistent for both the source and the target platform metamodel. Semantic heterogeneity
is considered more important than syntactic heterogeneity. The meaning of the metamodel
being consistent in both platforms can help create a shared experience in both platforms,
therefore strongly enabling interoperability. Syntactic heterogeneity, while less important,
is not negligible, though, since static behavior, e.g., a much bigger file size of metamodels
in the target platform, can create a bad experience due to worse performance, lowering
the value of a particular interoperability solution.

System Heterogeneity describes the layer of different metamodeling platforms’ capabilities,
such as the distinct creation, representation, and persistence mechanisms of metamodels
and models. System Heterogeneity is important when proposing an interoperability
solution, as different features and procedures present in either platform can reveal
considerations when choosing a particular approach. A high degree of system heterogeneity
between two platforms could ease the interoperability due to lots of commonalities between
them, while a lower degree might even impose barriers, like certain features not being
present in the other platform, which makes interoperability to some degree infeasible.

One way to achieve interoperability is to take a metamodel of one platform and transform
it into the metamodel of another platform by applying specific rules derived from
the characteristics of either platform, followed by a concluding comparison of these
characteristics. This scientific work uses this approach to enable the interoperability of
the metamodeling platforms ADOxx and EMF.

20

CHAPTER 3
Related Work

Some past research, which is related to this work, has already been conducted. This
chapter tries to summarize those findings, emphasizing this scientific work’s content,
which leads to a better understanding of the state-of-the-art and the different techniques
that are used throughout this thesis.

Some implemented approaches that enable interoperability between platforms other than
ADOxx and EMF already exist. These include the work of [BCC+10], where the authors
present a method for metamodel transformation and provide an example. The work
includes the derivation of transformation rules based on the meta-meta models of the
respective metamodel environment and (semi)automatic application of these rules on
existing metamodels. The authors provide an example transformation where a bridge
between EMF and the Microsoft SQL server modeling tools is successfully created.

This thesis is heavily inspired by the work of [Ker16], who created (meta)model bridges
between the metamodeling environments EMF and ARIS, MetaEdit+ and Microsoft Visio,
respectively. The author uses M3 level-based bridges per two metamodeling environments,
providing a foundation for all related model transformations. Transformations on the
M3 level represent a transformation on the meta-meta model level. The author analyzes
the differences and similarities of both meta-meta models and derives mapping rules
that define how the transformation procedure maps one item or structure from a source
environment to the target environment. Besides the metamodel transformation (i.e., M2
level transformations), the author also realizes model instance transformations (i.e., M1
level transformations) between two environments based on mapping definitions that are
derived from the metamodel transformation.

Additionally, the author presents an approach that shows that it is not needed to create
N · (N − 1) bridges to create full interoperability for a set of metamodel environments
of size N . It is sufficient to create only N − 1 bidirectional bridges between a central
metamodel environment (EMF in this case) and all other environments and use this

21

3. Related Work

central entity as an intermediary instance for all other transformations. Assuming
that bidirectional bridges exist between an arbitrary metamodel environment A and
the central metamodel environment C and the metamodel environments B and C, one
does not need to create a new transformation from A → B. Instead, one can use the
existing transformation from A to the central environment C and from C to the target
environment B (A → C → B).

Additional work is present in the broader term of metamodeling interoperability. In this
research area, interoperability is not bound to a concrete metamodeling platform but
to the transformation of the level of technical spaces. Those technical spaces include
Modelware (i.e., model languages and tools) and Grammarware (i.e., textual-based
languages and tools). These terms contain a broader set of meta-meta models, thus not
being bound to any specific metamodel as presented in the previous works.

A bridge between those two technical spaces has been conducted in the work of [WK05].
In this work, the authors analyzed a more general approach to metamodel and model
transformation based on the EBNF of the specific language. The transformation is based
on the M3 level, where the derivation of rules and the transformation’s execution is
performed automatically.

Additional findings on this more general approach appear in the work of [NBM+15], where
the authors created a bridge between Modelware and XMLware. XMLware comprises
the fields of XML processing and the XML representation. A similar bridge between
Modelware and JSONware is described in the work of [CGB+21]. As with XMLWare,
the authors analyze the processing and representation of schemata, but in the context
of the meta-language JSON. With the findings of these two interoperability analyses,
the benefits of XML and JSON documents, i.e., well-structuredness or readability, can
be combined with model-driven aspects. The results could be model instances that a
software developer created out of a given XML or JSON definition or schema documents
or concrete schemata corresponding to a provided model of a concrete metamodeling
platform.

In [KBJK03], the authors described the concept of metamodel integration patterns by in-
troducing the method of Enterprise Model Integration (EMI). Instead of defining concrete
mappings for elements from one environment to the other, patterns like the aggregation or
the reference pattern are defined, which can be used to generalize metamodel integration
using object-oriented meta-modeling concepts.

Finally, a research group researched the field of method chunks. "A method chunk is an
autonomous, cohesive and coherent part of a method providing guidelines and related
concepts to support the realisation of some specific system engineering activity"[RBKJ06].
Solutions to various interoperability problems are connected to method chunks, ac-
companied by guidelines and possible examples that help the model engineer create
interoperability by applying them to existing metamodels.

As could be seen, there is a multitude of work present on interoperability of framework-
combinations other than ADOxx and EMF and several works on more general inter-

22

operability approaches in the context of metamodeling. But as of now, there exists no
scientific work that establishes a bridge between ADOxx and EMF. While an analysis of
language features of ADOxx has been made in the work of [FRK06], and several studies
of EMF have been made in other works, e.g., in [Ker16], no work has thus combined the
knowledge to create a bridge and enable interoperability between these two metamodeling
platforms.

23

CHAPTER 4
Comparative analysis of ADOxx

and EMF

In the previous chapters 2.2 and 2.3, the foundations of the two meta-modeling platforms
ADOxx and EMF have been described. The next step is to compare the two platforms
in the context of their meta-meta model features. This comparison gains insight into the
abstract syntax of each platform, which helps to implement the metamodel bridges at a
later step.

The comparison is divided into different groups, i.e., Core Modeling Concepts, Classes,
Relationships, Attributes, Inheritance, Grouping and Constraint language. Each group
then lists the different concrete feature implementations on each platform.

This comparison helps to comprehend the differences and similarities between the two
platforms. Their results will also build the basis for the transformation rules that will be
used in the chapter Metamodel Transformation, thus making them an essential part of
this thesis. The Table 4.1 summarizes the findings of this comparison in an illustrative
way. The similarities and differences of these meta-meta model features will be described
in detail per category in the upcoming sections.

25

4. Comparative analysis of ADOxx and EMF

Table 4.1: Comparison of M3 Level features of ADOxx and Ecore [BWA21]

Criteria ADOxx Ecore
Core Modeling Concepts
Class Class EClass
Relationship Relation Class EReference
Attribute Attribute/ Class At-

tribute
EAttribute

Classes
Abstract Classes
User-defined root element 1

Relationships
Arity binary2 binary
Inverse 3

Composition 3 (only visual)
Multiplicity
Endpoints Class EClass
Unique Names (per Metamodel) (per Class)
Link to Model
Attributes
Applicable to Class/Relation Class EClass
Multiplicity single-/multi-valued single-/multi-valued
Unique
Ordered 3

Default Value
Custom Data Type 4

Inheritance
Single/Multiple single multiple
Instantiation single single
Class Inheritance
Relationship Inheritance
Grouping ModelTypes EPackage
Constraint Language AdoScript OCL
1 every class in ADOxx inherits from a predefined abstract class
2 n-ary with Interref 3 realization via AdoScript possible 4 via Record Classes

26

4.1. Core Modeling Concepts

4.1 Core Modeling Concepts
Core modeling concepts are basic features that describe the way in which information
can be persisted and relationships defined.

Class Classes in ADOxx are represented by the Class feature. The equivalent item on
the Ecore site is EClass. Classes in both platforms resemble the MOF element of
class.

Relationship Relation classes are used on the ADOxx side to determine a rela-
tionship between two classes. Ecore uses the EReference feature to represent a
relationship between 2 classes. Notably, ADOxx implements here the Relation
classes as standalone features on the top level of the metamodel. In contrast,
EReferences are contained within the class object where the relationship origi-
nates from.

Attribute Attributes in ADOxx are represented by either the Attribute feature or the
Class Attribute feature. As described in the ADOxx documentation, the differ-
ence is that "Class attributes receive one value for every class. Instance attributes
receive one value of each instance or relation."[adoa]. Class Attributes in
ADOxx represent static attributes in programming languages like Java, where only
one value per class can be defined. A class attribute is final, i.e., it is only definable
within the ADOxx Development Toolkit and not changed in model instances in the
ADOxx Modelling Toolkit.
The equivalent feature to an attribute in Ecore is the EAttribute type. Ecore
does not support the feature of static attributes. This work describes concrete data
types and features both in ADOxx and EMF in the Attributes section.

4.2 Classes
Classes in metamodeling are a central feature. They support the ability to hold certain
information about themselves, like names, attributes, and relations. References can only
be defined between and attributes can only be defined inside them, further proving their
relevance in this domain.

When comparing the two metamodeling platforms ADOxx and EMF, certain features
are implemented differently in either:

Abstract Classes In both ADOxx and EMF, an abstract flag can be selected, denoting
that specific class as abstract. Once a class is abstract, the metamodel environment
does not allow creating an instance of that particular class on the model level. Only
non-abstract sub classes of an abstract class are instantiable. This behavior applies
to both ADOxx and Ecore.

27

4. Comparative analysis of ADOxx and EMF

User-defined root element In ADOxx, there is no need to have a user-defined root
class to create a concrete model object on the model level. Every class inherits
from a predefined class, i.e., the RootClass. This class is implicit and cannot
be changed or omitted. On the model-editor site, the model engineer can fill the
canvas with various instances of RootClass. Since all classes inherit from this
class, any class is addable to the model without constraints.

On the other hand, Ecore forces the user to create a root element, out of which he
or she can create all other elements on the model level. This root element has to be
selected on metamodel creation. An instance of any other class can only be added
to the model when this root class has a contains- relationship to that other class.

4.3 Relationships
Relationships in metamodeling define the connectedness between two components. In
most cases, the connecting components are classes, but they can also be of a different
type, as described below. Relationships can also possess different attributes and support
different behavior, where a description for both platforms follows in this section.

Arity Both in ADOxx and Ecore, relationships (Relation Class and EReference)
are binary, meaning that the degree of relatable objects that participate in a
relationship is two.

ADOxx additionally allows to reference multiple other elements from one class with
the help of Interrefs. An attribute with this datatype can be defined inside
a class, which can have links to several other classes, all with a possible different
cardinality. This way, one is able to define custom n-ary relationships with different
cardinalities in ADOxx.

Inverse In Ecore, a relationship can be bidirectional by checking a flag in the relation’s
properties. Therefore, one can define an inverse of a relationship, which has the
opposite source and target of the original relationship. In ADOxx, such a feature
is not present. The metamodel engineer can only define a relationship in one way.
An inverse relationship would have to be defined explicitly.

Composition In ADOxx, compositions are not a built-in feature of the platform. Thus
one cannot create Compositums and Composed Instances and perform a certain
action, e.g., when a Compositum is deleted, the composed instances are also deleted.
However, it is possible to create such behavior in ADOxx via AdoScript. This
will be described in more detail in section 5.2. Instances of __D_Container__
however can be used to provide visual, but not semantic compositions, i.e., the
container instance can hold several sub-class instances and group them visually in
the model editor.

28

4.4. Attributes

In Ecore, the feature of compositions is supported natively by the platform. There-
fore creating composition features within the models and metamodels does not
require additional code as with ADOxx.

Multiplicity Both in ADOxx and Ecore, one can define the multiplicity of a relationship,
i.e., determine the upper and lower limits of instantiable objects throughout a model
that are part of this particular relationship. While Ecore allows setting multiplicity-
values of a certain relationship for two parameters, namely Lower Bound and
Upper Bound, ADOxx comes with the possibility of modifying four parameters
per involved class, i.e., min-outgoing, max-outgoing, min-incoming and
max-incoming, totaling in 8 different alterable parameters.

Endpoints ADOxx allows to define relationships only on the core modeling concept of
Class. Ecore also only allows to define relationships on the core modeling concept
of class, this being EClass.

Unique Names Relationships in ADOxx are structures defined on the highest meta-
model layer. Since they are treated similarly to classes, one cannot duplicate a class
and use its exact name again in the metamodel since they must be distinguishable.
Therefore ADOxx does not support defining multiple relationships with the same
name within a metamodel.
Ecore, on the other hand, does not have this limitation since relationships are
defined within every source object rather than on the metamodel’s top layer. While
it is still impossible to define two relationships with the same name within a source
class, it is possible to use that same relationship name in other classes of the same
metamodel.

Default Value Both ADOxx and Ecore allow adding a default value to relationships,
which the metamodel engineer can use to store additional information as text for
that relationship.

Link to model ADOxx allows creating links to a model via Interrefs. Their usage
comprises not only referencing another class (as in an internal relationship between
two objects of the same metamodel) but also referencing a whole other metamodel
(which can be achieved by using the mref keyword in the Interref definition).

4.4 Attributes
Metamodeling platforms use attributes to store additional information on certain meta-
model objects. Usually, attributes can be added to class elements, allowing the model
engineer to edit specific additional information of a class. Attributes can possess different
properties and capabilities, which is compared for ADOxx and EMF in this section,

Applicable to Both ADOxx and EMF possess attributes on classes and relationships.
Attributes are however, in ADOxx, addable to a Class and Relation Class.

29

4. Comparative analysis of ADOxx and EMF

In Ecore, the metamodel developer can only add attributes to an EClass. While
there is a possibility to change values of pre-defined attributes in EReferences,
there is no possibility to add new ones.

Multiplicity Both in ADOxx and Ecore, it is possible to define attributes that function
both as single-valued attributes (e.g. of type integer, holding a numerical value)
and multi-valued attributes (e.g., a multi-selection enum). Multi-valued attributes
in ADOxx are represented by the datatype ENUMLIST, which allows selecting
multiple values of a pre-defined ENUM. In Ecore it is possible to define a specific
upper bound of an EEnum, allowing to select multiple values for one attribute, thus
making Ecore’s multiplicity multi-valued as well.

Unique Both in ADOxx and Ecore, it is impossible to define two attributes with the
same name inside one class, even when defining different attribute types. Thus,
attributes are unique on both platforms.

Ordered In EMF, it is possible to enable the ordered flag on an attribute, which will
cause the affecting attribute values to be in a natural order (e.g., ascending by
string characters or numbers). ADOxx does not support this behavior natively, but
its realization is feasible when writing AdoScript that reproduces this logic.

Default Value Both metamodel platforms support the possibility to define default
values for any attribute type.

Custom Data Type In ADOxx, it is possible to define custom data types via Record
Classes. One can select the entire library and create a Record Class, which
can be then be used by any attribute which is part of the static or the dynamic
library by assigning the attribute data type to the newly created Record Class.
In Ecore, it is also possible to define custom data types on the metamodel level
within the metamodel editor. Once defined, the metamodel developer can assign the
custom data type to any attribute within the same or other referenced metamodel.

4.5 Inheritance
Inheritance is a key feature when it comes to metamodeling. Through inheritance, the
metamodel developer can define the same behavior and properties in one central place for
the class itself and all its subclasses, rather than defining explicit behavior for every class
in question on every change. There are differences in essential features for inheritance
patterns, but also some similarities in ADOxx and EMF:

Single/Multiple In ADOxx, it is only possible to inherit from one single other class,
thus only supporting single inheritance on the metamodel level. In Ecore, it is
possible to inherit from an arbitrary number of classes. Thus EMF supports multi-
inheritance. This multi-inheritance is one of the key differences between the meta-
metamodeling concepts of ADOxx and EMF, which needs additional procedures to

30

4.6. Grouping

achieve semantic correctness on ADOxx when performing the transformation from
EMF to ADOxx. This scientific work mentions this procedure in more detail in
section 5.3.

Instantiation Instantiation in this context describes the multiplicity of instantiable
classes in a multi-inheritance relationship. It, therefore, describes the assignment
of a sub class to a super class type.
In ADOxx, the instantiation is trivially single since only single inheritance is
supported. Therefore every instance of a sub class can only be attached to a super
class of one type. In Ecore, a sub class is also always connected to one type of
super class, although multiple inheritance is supported in this environment, which
could support multi-instantiation patterns.

Class Inheritance Both ADOxx and Ecore allow inheriting classes from one another.
The hierarchical depth for both platforms is unlimited.

Relationship Inheritance In both metamodeling platforms, it is impossible to inherit
a relationship from one another, thus making relationships final in terms of extend-
ability.

4.6 Grouping
Grouping describes the term of bundling multiple metamodel elements inside a container,
creating benefits like applying modifications or relations to the container, which are
implicitly assigned to all contained elements, rather than having to define that same
behavior for each contained element individually. Grouping also helps to separate concerns,
e.g., where a developer can create different Grouping objects for different sub-domains
within a domain, yielding an order and clear structure to the metamodel.

Grouping In ADOxx, the metamodel developer can achieve grouping by using the data
type ModelTypes. These ModelTypes can be created by accessing the library
attributes of a certain Library, assigning a name to the ModelType, and including
the various classes and relationships that should be part of this ModelType.
Ecore offers the data type EPackage to group any metamodel elements within
a container. The metamodel engineer can create these package objects either on
the root metamodel level or inside any other instance of EPackage. EPackages
are an important feature in Ecore when it comes to importing them inside another
metamodel or when using the Ecore API, which is an essential part of the model
and metamodel transformation described in chapters chapter 5.

4.7 Constraint Language
Constraint languages are essential for defining additional behavior on metamodel and
model elements. This additional behavior can be either constraints (e.g., limiting a

31

4. Comparative analysis of ADOxx and EMF

certain number of instantiable classes when a condition is met) or automated features
embracing specific behavior (e.g., deleting composed instances of a composition; a vital
component of the metamodel transformation which is described in section 5.2).

Constraint Language In ADOxx, the constraint language for defining custom behavior
is called AdoScript. AdoScript is a rich DSL that allows defining any type of
behavior on model level, thus also functioning as a constraint language since the
metamodel engineer can easily define constraints through it. [adoh]
Ecore uses the Object Constraint Language (OCL)[BG14], which allows the meta-
model editor to define additional constraints for metamodel objects, which in turn,
the metamodel framework applies on the model level. EMF, which is the most
popular metamodeling framework in the domain of Model-Driven Engineering,
has adopted OCL, which is also one of the most widely used constraint languages
for model engineering: "OCL has become a key component of any model-driven
engineering (MDE) technique as the default language for expressing all kinds of
(meta)model query, manipulation and specification requirements."[CG12].

32

CHAPTER 5
Metamodel transformation

The metamodel transformation between ADOxx and EMF is the crucial feature to enable
interoperability of the two platforms. By creating such a transformation, one can take
a metamodel file from a source platform and let the transformation project produce a
valid transformed metamodel file for the target platform.

The generated artifacts of a metamodel transformation are the transformed metamodel
file, which metamodel engineers can later import to the target environment. Therefore, the
transformation project consists of two unidirectional transformations, one for transforming
ADOxx metamodels to EMF metamodels and one for transforming EMF metamodels to
ADOxx metamodels. A description of both of these procedures follows in more detail
in section 5.2 and section 5.3.

5.1 Transformation overview
In this section, the overall transformation in both directions is described, to give a holistic
picture of the two transformations and show their interconnectedness. Figure 5.1 shows a
technical overview of both transformations. On the left side, every aspect of the ADOxx
ecosystem is pictured, on the right side every aspect of EMF. The middle part comprises
all the transformation relevant features.

The top section of the left and right boxes represents the respective platforms’ meta-
meta models. They are an essential asset in this transformation, as the transformation
procedure uses their APIs to create specific metamodels elements, which conform to this
meta-meta model. The Mapping-based Transformation Specification, which is used to
map features from one platform to another, uses both of these meta-meta models.

On the left and the right side, one level below, reside the metamodels of either platform,
which are instances of the respective meta-meta model. One side always resembles the
input of a transformation; the other side resembles the output.

33

5. Metamodel transformation

Figure 5.1: Technological view on the two unidirectional transformations [BWA21]

The ADOxx metamodel consists of a pre-defined metamodel and a user-defined metamodel,
inheriting from the previous one. The pre-defined metamodel contains all elements which
are part of the ADOxx dynamic library. In contrast, the user-defined metamodel includes
all elements that a user added to a certain metamodel. Ecore does only contain one
user-defined metamodel, i.e., it does not have a pre-defined metamodel that needs to be
included in every metamodel instance.

Looking at the transformation direction from ADOxx to EMF, the transformation
procedure first takes an XML export file from an ADOxx metamodel. It then transforms
the file contents to a Java model via JAXB, which has the advantage of accessing the
different features of the metamodel in Java in a programmatic way. With the help of the
EMF API, the procedure creates an .ecore file that contains all mapped elements in
an xmi-serialized format. A user can then import this file to EMF.

Looking at the other direction, and .ecore file, which represents a certain metamodel, is
taken and read into a Java program via the EMF API [emfc]. With the help of the ADOxx
ALL Public API [adoc], it is possible to create a complete ADOxx metamodel .all
file, which includes both the pre-defined metamodel and the user-defined metamodel.
Following this step, the procedure calls the ALL2ABL Web Service [adod] to create an
.abl file from a given .all file. A metamodel engineer can import only this file to
ADOxx via the ADOxx Development Toolkit. The transformation procedure eventually
performs this task as its last step.

5.2 ADOxx to EMF
This section contains the description of the transformation of an ADOxx metamodel
file to an Ecore metamodel file by referencing the used technologies, followed by an
explanation of the actual procedure.

5.2.1 Used technology
Various reasons led to the use of the programming language Java for implementing the
transformation program from ADOxx to EMF. One of the reasons is the great familiarity

34

5.2. ADOxx to EMF

with the Java language due to long-term experience in previous projects. The capabilities
of Java are clear, and we soon discovered that Java would be powerful enough to enable
a transformation correctly and efficiently.

One key advantage of Java is the implementation of the software engineering concept of
Object-Oriented Programming (OOP), which is suited for this project when it comes to
accessing and transforming the various components by their semantic belonging. Java is
also beneficial in that it supports different libraries that makes the transformation easier
from a programmatic point of view.

The first library used in this procedure is JAXB. JAXB is a popular library that enables
developers to read an XML file and transform it into a Java-based object structure (i.e.,
unmarshalling). Since the ADOxx metamodel export is an XML file, this library is
well suited to read in the file and instantiate a Java object containing all the relevant
information. A prerequisite is to create a Java model with different Java classes that
would incorporate all the various elements, containments, and correct assigning of values
and attributes from an ADOxx XML metamodel file. Numerous transformation projects
are available online that transform an exemplar XML input to Plain Old Java Objects
(POJOs). For this work, the tool JSON2CSharp [jso] is used, which contains an XML
to Java transformation routine that created the corresponding Java files with a distinct
naming pattern.

During the development process we discovered, that some information are not correctly
mapped (e.g. in some occasions, attributes of type Double are not correctly interpreted
by the XML-to-POJO-tool, leading to falsely assigning the type Integer to them).
Those tool errors were resolved manually during the implementation process.

After adding this structure to the project, one is able to perform the unmarshalling by
using the following commands as shown in Code Example 5.1

JAXBContext jaxbContext = JAXBContext.newInstance(Library.class);
Unmarshaller jaxbUnmarshaller = jaxbContext.createUnmarshaller();
Library library = (Library) jaxbUnmarshaller.unmarshal(file);

Code Example 5.1: JAXB unmarshalling of ADOxx metamodel XML file

5.2.2 Transformation procedure
The overall procedure for transforming the metamodels consists of several procedural
steps. An overview is shown in algorithm 5.1. Each step is described in more detail
further below in this section.

One thing worth noting, which applies to all structures that the transformation procedure
creates in this transformation, is naming convention issues. EMF follows certain naming
conventions directly adapted from Java’s naming conventions. This phenomenon stems
from the fact that it is possible to create Java files from a given metamodel, which must
be valid and consistent. For example, underscores are not allowed in certain places of

35

5. Metamodel transformation

Algorithm 5.1: Overall procedural transformation from ADOxx to EMF
Input: (adoxxLibrary)

1 initP ackages()
2 initHelperClasses()
3 addClassesT oP ackages()
4 addSuperT ypesT oClasses()
5 addAttributesT oClasses()
6 addRelationshipsT oClasses()
7 addBasicContainments()
8 resolveDuplicateNames()
9 outputT oEcoreF ile()

10 outputMappingF ile()

attributes; classes are not allowed to start with a numerical literal. Before adding a
certain structure, a procedure is performed that takes a possible name as input and
transforms it into a valid name. This procedure can be seen in algorithm 5.2.

Algorithm 5.2: Name transformation algorithm to create valid names in EMF
Input: (nameCandidate)

1 foreach literal ∈ nameCandidate do
2 if isIllegalCharacter(literal) then
3 nameCandidate ← replaceCharacterByLegalOne(nameCandidate, literal)
4 end
5 end
6 if nameCandidate.length == 0 then
7 nameCandidate ←� M �
8 end
9 else if nameCandidate.startsW ithNumber() then

10 nameCandidate ←� M_� + nameCandidate

Init Packages The first step of the transformation is to create 3 packages. those are:

1. ADOxx metamodel package
2. Metamodel dynamic package
3. Metamodel static package

In total, the transformation procedure creates three EPackages due to 1) a sepa-
ration of concerns between the ADOxx metamodel and 2) to distinguish between
dynamic and static libraries since both are declarable with various metamodel
objects in ADOxx at the same time and 3) to avoid naming convention errors, that
are a result when multiple classes with the same name are defined in one Ecore
package. Significantly the latter helped reduce naming transformation steps within
the newly created Ecore metamodel. Classes with an identical name but defined
in different packages yield no errors on the Ecore metamodel side. Generating
a separate ADOxx metamodel package is also necessary for this transformation
since many classes in ADOxx inherit from its metamodel classes. The transforma-
tion procedure also maps ADOxx metamodel classes to Ecore to guarantee that

36

5.2. ADOxx to EMF

inheritance relationships behave correctly and don’t throw any errors, e.g., when a
certain superclass is missing.

Init Helper Classes This method is supposed to create classes containing helper meth-
ods and functions used throughout the application. Those classes are initialized
with particular objects (e.g., all packages), and various other classes shall use them.
Those helper classes are made publicly available to preserve consistency among the
different transformation classes, following the singleton pattern. Whenever another
class needs a particular helper, it is referenced by the main transformation class,
guaranteeing to offer the single helper that is correctly initialized.

Add classes to packages The first action that this step performs is to create from a
source ADOxx class a corresponding Ecore class (EClass). The transformation
procedure can achieve this by creating a new instance of EClass and assigning
the class name from the ADOxx class to this new class. After that, the ADOxx
class attributes are read to determine whether this class is abstract or not. If the
flag is set to "1" in the ADOxx class, the generated class in Ecore is set to abstract
by selecting the corresponding Boolean flag’s value to true.

The transformation procedure then adds that particular class to the appropriate
package that was created a step earlier.
A static configuration class exists that lists the ADOxx metamodel class names.
The name of a possible candidate class is checked upon that list, revealing if it is
part of the ADOxx metamodel. If this is true for a certain class, the transformation
procedure adds the class to the ADOxx metamodel package.

If a class is part of the dynamic library in ADOxx, the transformation procedure
should add it to the Metamodel dynamic package. ADOxx does not provide this
information directly on class-level in the metamodel XML file. The transformation
procedure reads the superclass information of a class recursively to obtain this
information. Every class in ADOxx inherits at some point from one of the two
classes: __D-construct__, being the top-layer class of all classes in the dynamic
library, and __S-construct__, being the top-layer class of all classes in the
static library. If any superclass is the abstract class __D-construct__, this class
has to be part of the Dynamic Library (denoted by the ’__D’ at the beginning
of the class name). If the abstract superclass is __S-construct__, this class is
part of the static library and has to be assigned to the Metamodel Static package.

Add supertypes to classes The next step is correctly assigning the superclasses to
the created Ecore classes. The procedure firstly iterates through all created classes
on the EMF side. For any Ecore class, the corresponding ADOxx class is found in
the ADOxx library object (read via JAXB), and then its super class attribute is
read. This superclass attribute represents the name of the class’s superclass. It is
then once again searched for in all created Ecore classes. The Ecore superclass is
then assigned to the base class as a superclass.

37

5. Metamodel transformation

The superclasses are not assigned a step earlier, right when the classes on Ecore
side are created, because some superclasses might not have been initialized at this
point. This phenomenon stems from the fact that the items in the ADOxx XML
file can have an arbitrary order, not guaranteeing that the procedure reads the
actual superclasses into the ADOxx Java model before their base classes. This
approach ensures that if a base class has a superclass, it is definitely found and
correctly assigned to that base class.

Add attributes to classes In this step, all attributes of an ADOxx class are created
and correctly assigned to the corresponding Ecore class. As a first step, the
transformation procedure checks if a specific attribute of an ADOxx class is defined
in any superclass of the corresponding Ecore class. This is because ADOxx preserves
the attribute information for all sub-classes in the metamodel XML file. This check
is performed to avoid duplicate creation of an attribute in both super- and subclass,
which would yield errors when importing the generated Ecore metamodel to the
modeling environment. The attribute creation stops here in positive instances, i.e.,
the attribute already exists in any superclass. If the check is negative, the ADOxx
attribute is then further processed.
Based on the ADOxx attribute type, the transformation procedure creates an
EAttribute, where its type should semantically match the source type. Most
of the ADOxx data types for attributes represent primitive data types in various
programming languages. The procedure searches for a suitable equivalent on the
Ecore side and, if found, manifests the mapping rule. Different procedures are used
for some data types to achieve semantic mapping.
The following listing shows how the different data types are mapped and why we
decided to map them in that particular way:

• string, longstring → EString
string and longstring are different classes in ADOxx, the distinguishing
feature being a different upper bound of characters for each. The string
type can hold a maximum string of 3699 symbols, while longstring can
hold up to 32000 symbols [adof]. The procedure maps both of these types to
an EString, which represents a string in the programming language Java.
EString does not have an upper bound, so we decided to map both ADOxx
attribute types to this Ecore attribute type.

• integer → EInt
Both integer and EInt represent the primitive datatype integer, so this
mapping is semantically suitable.

• double → EDouble
The same as for integer applies to double and EDouble respectively.

• date → EDate
An EDate is in ADOxx represented in the format ’YYYY:MM:DD’, which
can be represented as well by the Ecore type EDate.

38

5.2. ADOxx to EMF

• enum, enumlist → EEnum
An enum in ADOxx can be mapped to an EEnum in Ecore, both semantically
representing the data structure enumeration. However, an enum in ADOxx is
simply an attribute that is part of the class where it is defined, just like any
other attribute. On the other hand, Enums in Ecore are standalone constructs
that have to be created and then assigned as the attribute type on the desired
attribute.
An instance of EEnum has to be created and assigned with the correct values to
craft an Ecore Enum out of an ADOxx Enum. For each option in an Enum in
ADOxx, the transformation procedure creates an EEnumLiteral, containing
the corresponding literal value. Then the default value, which is set in ADOxx,
has to be set for the EEnum by selecting the matching EEnumLiteral as
the default value. Finally, the procedure assigns the corresponding attribute’s
type with the EEnum type that was just created.
An ADOxx enumlist can be created in the same way as just described. The
difference between an enum and an enumlist is the amount of selectable
items: While for an enum a user can only select one value, for an enumlist
a user can select a set of available values. This behavior is implemented on
the EEnum by setting its property upperBound to the size of all literals
within that enum. In this way, a multi-select EEnum can be created, matching
semantically the enumlist in ADOxx.
It is worth noting that enum names have to be unique within the same
EPacakge. To avoid name clashes, every enum is renamed by using the
following pattern: <containedClassName>_<enumName>.

• interref → EReference
Since interrefs describe a relationship between two elements, and them
following the same definition principle as EReferences (i.e. defined within
the source class), the best suitable structure in Ecore is not an attribute, but
an EReference.
This is performed by finding the source Ecore class based on the ADOxx
class’s name, finding the target class by the value of val-c within that
specific interref attribute and creating an EReference, where the target
class that was just extracted is assigned as the reference type.
Before adding the EReference to the source class’s EStructuralFeauture,
the correct cardinalities have to be set. Interrefs in ADOxx allow to define
a global maximum value on the REFDOMAIN level, that applies to all concrete
interref implementations within that REFDOMAIN. However, individual
values for a specific interref implementation can be set. Their lowest value
is chosen, which mimics the behavior on the ADOxx side.

• default(all remaining cases) → EString
As of now, there are some attributes left that have their attribute values
represented as EString in Ecore. This has various reasons, some of which

39

5. Metamodel transformation

are simply the missing target type in Ecore, but other times, a transformation
would require building new data types on the Ecore side, which is not part of
this work’s scope. However, the goal is to preserve the information, so the user
of the target metamodel can use this information to replicate needed aspects
themselves. Therefore, we chose the target transformation type of these types
to be EString.
The transformation procedure does not directly map datetime and time
to temporal types since Ecore only provides the datatype EDate by default.
This is unsuitable for both types, as only date but no time values can be
stored in objects of this type.
Programmcall represents routines on ADOxx, which are system-specific and
therefore not applicable to Ecore.
Instances of type table represent tables in ADOxx, which cannot be easily
mapped in Ecore, other than including table tool libraries.
Expression contain ADOxx specific expressions to interact with metamodels
elements. This type is also not directly applicable to EMF.
Clobs are Character Large Objects, frequently used to store arbitrary files
like pictures in databases. Since a clob is just a concatenation of characters,
a transformation to EString is very suitable, as the information remains the
same, and a model engineer can further process this information in the target
platform.
The AttributeProfileRef data type, which is used to make references to
attribute profiles, is also mapped as an EString, since this semantic feature
is not present in EMF.
Custom datatypes are mapped to instances of EString. Record Classes
can be used in ADOxx to create structures of (primitive) datatypes, which sym-
bolizes custom datatypes. The same can be achieved with custom datatypes
in EMF. A mapping between the two platforms with these two datatypes is
therefore feasible. This mapping is not yet realised in the current version of
the transformation procedure and will be implemented in a future iteration.

Add relationships to classes The next step is to add the relationships that the
ADOxx source metamodel defines to the Ecore metamodel. ADOxx stores the rela-
tionship information as RelationClasses. Those are located in the XML on the
same level as classes. It is then needed to iterate through all RelationClasses,
read their attributes and values, and create the correct EReference on Ecore
side.
From the ADOxx RelationClass, it is possible to extract the source and target
class name with JAXB. The transformation procedure searches for both of these
classes on Ecore side. The procedure then assigns the name from the ADOxx
RelationClass to a new instance of EReference, along with the type assigned
to the target class. Setting the type of the EReference in Ecore indicates, that
this type (i.e. this EClass) is the target class of this relationship.

40

5.2. ADOxx to EMF

The containment property is set to false for every relationship. The containment
flag in Ecore determines whether this reference marks a composition, leading to
the ability to create new target class instances out of this source class instance
on the model level. Since this behavior is not implemented by default in ADOxx
(because every element can be added to the canvas directly), the decision fell to set
the containment flag for all of these relationships to false.
The last step is to extract the cardinality information of the corresponding ADOxx
RelationClass, which is stored in the source ADOxx Class and apply the
same values to the upperBound and lowerBound property to the EReference
object.

Add basic containments As of now, it would not be possible to create any object on
Ecore side for two reasons:

1. There is no root element present
2. There is no composition-relationship present

In order to mitigate these problems, this step creates at first a RootClass, which
represents the internal root element of any class and relationclass of ADOxx.
Every Ecore model needs a root class to be able to create child instances out of it.
The next step is to add two EReferences, one named dynamicContainments
and the other named staticContainments. Both relationships represent a
container that possesses the classes of the dynamic library and the classes of
the static library, respectively. This is performed by setting the type of the
EReference to __D_construct__ and __S_construct__ respectively. Since
every class inherits from either of these classes, the behavior in ADOxx on model
creation, where every model instance can be created directly on the canvas, is
semantically achieved.
The final two steps are to set the containment attribute of these EReferences
to true and add them to the structural features of the RootClass. Figure 5.2
shows an excerpt of the achieved behaviour on metamodel level.

Figure 5.2: Metamodel containment feature of target Ecore metamodel

Resolve duplicate names Since EMF is strongly tied with the programming language
Java, and eventually, valid Java code should be generated from the created meta-
model, it is necessary to follow the Java naming conventions on Ecore side. This
procedure helps resolve issues regarding regular expression for Java classes, packages,

41

5. Metamodel transformation

and attributes and avoids duplicate names of classes within a package, duplicate
attribute names within a class, and duplicate relationships within a class.
This step focuses on resolving duplicate class names and duplicate relationships
names. It is important to note that two classes within one package can be con-
sidered duplicates by Ecore (yielding a warning) if they have a different amount
of underscores in arbitrary order and all other characters and their order remain
the same. E.g. the name SomeClass is considered as equal with the name
__Some_Class__. This is especially to be taken care of in this transformation
since a lot of ADOxx’s classes start with underscores, causing potential problems
in this transformation.
The algorithm iterates at this stage through all classes and relationships respectively,
reiterates through the same group, and identifies duplicate names. If the procedure
finds duplicate names, an increment counter with the value of 2 is defined, which is
appended to every identical name and incremented after every use. The complexity
of O(n2) could be considered too high, given the idea that the transformation
procedure could have resolved duplicate names during the creation of the class and
relationship. However we chose the iteration approach to avoid maintaining a map
throughout the transformation that stores information about the old and the new
name of a certain object. We considered that maintaining such maps would result
in higher implementation effort and overall complexity.

Output ecore file This step creates an Ecore metamodel file containing all the infor-
mation created so far, which can be read and interpreted by the Ecore modeling
framework. For this purpose, a file called <source>.ecore is created, where
<source> represents the original file prefix of the ADOxx .xml metamodel file.
Then, the transformation procedure adds the information of these three created
packages to the file. This is done via EcoreResourceFactoryImpl, which can
create a valid Ecore file out of the given Java objects related to Ecore, such as
EPackages.

42

5.3. EMF to ADOxx

5.3 EMF to ADOxx
This section describes the procedure of transforming an Ecore metamodel file and
creating an ADOxx metamodel file by introducing to the used technologies, followed by
an explanation of the actual procedure.

5.3.1 Used technology

As with the transformation from ADOxx to EMF in section 5.2, the transformation from
EMF to ADOxx also uses Java as the transformation program’s programming language.
Besides the great familiarity with Java, it provides the additional benefit of using tailored
libraries for this use case:

The same Ecore API [emfc] that is used in the transformation from ADOxx to EMF can
also be used here to import the .ecore metamodel files into the Java Runtime and access
their structure, their object, and their values programmatically. Using this API saves the
step of creating an XML to POJO Mapping, as it is described in subsection 5.2.1.

The second external library that the transformation procedure uses is the ADOxx ALL
Public API [adoc]. This library provides, just as the Ecore API [emfc] for an Ecore
metamodel does, an API to create, access, and modify objects of an ADOxx metamodel
programmatically. This way, it could be combined with the language features of Java,
performing the development of the transformation program with minimum effort. Another
advantage of this API is that it provides an easy way to create the ADOxx metamodel
classes, which are equal to any user-defined ADOxx metamodel, in a few steps, rather
than having to create the classes with their attributes individually. Finally, the API can
create .abl files, which are binary ADOxx metamodel files, that can be imported to an
ADOxx environment, thus completing the transformation cycle.

5.3.2 Transformation procedure

The algorithm 5.3 shows the overall procedure of the transformations. The individual
methods, which represent the single steps of the transformation, are explained in more
detail below.

Set Library Name In contrast to ADOxx, an .ecore file can consist of multiple
packages, each with a different amount of classes. Furthermore, classes can reference
packages in other packages. Splitting metamodel elements into different packages is
oftentimes done to add a structure to the metamodel, to separate concerns and to
improve readability. However, without providing dedicated meta-information as to
which package is the main package (i.e. the package that contains the semantic core
features), it is not possible to retrieve this information from arbitrary metamodels.
Therefore, the decision fell to assign the file name (omitting the .ecore postfix)
to the library name, which is performed in this step.

43

5. Metamodel transformation

Algorithm 5.3: Overall procedural transformation from EMF to ADOxx
Input: (ecorePackages, file)

1 setLibraryName(file)
2 foreach eP ackage ∈ ecoreP ackages do
3 addClasses(eP ackage)
4 end
5 addDependentClasses()
6 foreach eP ackage ∈ ecoreP ackages do
7 addAttributes(eP ackage)
8 addRelationips(eP ackage)
9 end

10 processClassesW ithMultipleInheritance()
11 addMetaInformationT oLibrary()
12 outputF ile()

Add Classes This method is responsible for transforming an EClass to an ADOxx
Class and adding the newly created class to the ADOxx Library element. The
first step is to find the appropriate superclass of that particular EClass, which is a
piece of mandatory information that needs to be provided when the transformation
procedure creates a Class.
While ADOxx does not provide multiple inheritanc, Ecore does. Therefore the
procedure then checks, how many direct superclasses (i.e., inheritance level equals
one) the concrete EClass possesses. The approach of how exactly the procedure
performs the multiple inheritance mapping is described in more detail later in this
section in the paragraph Process Classes With Multiple Inheritance. However, one
crucial step that needs to be performed at this stage is to choose one of the many
superclasses and assign it as a superclass to the ADOxx Class. The decision
fell to choose a greedy approach and take the first item appearing on the list of
superclasses to reduce complexity at this stage.
If the Class has more than one direct superclass, the transformation procedure adds
it to the list classesToProcessMultipleInheritance. Items from this list
are handled and resolved at a later stage of this transformation. If an Eclass does
not have any superclasses, the abstract ADOxx superclass __D-Construct__ is
assigned as the superclass. This property applies to every EClass that sits on
the highest level of the package hierarchy. Since every class does either possess
this property or eventually inherits from a class that owns this property, this
step ensures that every class has __D-Construct__ as its base class. This logic
enables the model editor to add this class to the dynamic ADOxx package when
creating or editing a model. The dynamic package is used as the default since
when interacting with an ADOxx metamodel, users of ADOxx preferably use the
dynamic over the static library.
The next step consists of instantiating the class, with the name derived from
the EClass and the super class derived from the previous steps. Additionally, a
procedure is performed, that checks whether the EClass has its abstract property
set to true and assigns the value of 1, denoting true, to the ADOxx Class’s

44

5.3. EMF to ADOxx

abstract class attribute.
The transformation procedure then sets a default graph representation string value
to finalize the class-creation step. This step is performed because when creating a
model element on the ADOxx model editor, the palette would show a blank spot
on the model item selection, making it difficult for a user to grab an element from
the palette and use it.
Once the procedure fully created and configured a particular class, it adds it to
the ADOxx library, which the procedure instantiated in the previous step. This
step might sometimes fail, which is described and handled in the next step ’Add
dependent classes’.

Add Dependent Classes During the development of the transformation procedure, it
is discovered that when trying to iterate through all EClasses, the transformation
procedure may handle the elements in an arbitrary order. This phenomenon
might result from the fact that Ecore reads the defined elements of an .ecore
file in a random order when using the EMF ResourceSet, or that the method
ePackage.getEClassifiers() does not guarantee the items to be read in the
same order they were added. This finding implies that we cannot guarantee that the
procedure reads a superclass before its subclass, which results in a Runtime error
in the previous step ’Add Classes’, when it tries to add a Class to the ADOxx
library, which does not have its superclass instantiated yet.
To mitigate this problem, all classes that failed in the previous step ’Add Classes’
are collected and re-iterated in this step. For every class that is part of this list, the
procedure tries again to add it to the ADOxx library, assuming that the superclass
was created during the previous process. If this fails again, the conflicting class will
be handled in the next iterations of this procedure, and so on, until this procedure
can successfully add this class to the ADOxx library. The overall procedure repeats
until no more classes are left in this list.
Using this optimistic approach of trying to add a class eagerly, rather than an-
alyzing the capability beforehand, results in the advantage of being minimal in
implementation size while also reducing program complexity due to omitting the
pre-analysis of hierarchical patterns.
After the transformation procedure finishes this step, every EClass has been
successfully transformed to an ADOxx Class and added to the ADOxx library.

Add Attributes When adding attributes to metamodel classes, two things have to be
considered:

1. The attributes have to be added to the correct class, deriving name and
cardinalities from the source class

2. The Attribute Graph representation string has to be edited in the correspond-
ing ADOxx class to enable editing of attributes on model level

45

5. Metamodel transformation

For handling the first issue, the procedure iterates through all available attributes
of a particular EClass. Then the target type is derived from the source type.
We chose the following mapping to replicate the different elements from source to
target platform semantically:

• EString → longstring
An EString from Ecore is mapped to a longstring in ADOxx. While
ADOxx supports both the data types string and longstring (both dif-
fering in their maximum character size, the latter being higher), we decided
always to choose a longstring for this transformation. This way, it is more
likely to avoid errors of reaching the maximum character cap. ADOxx limits
the longstring datatype to 32000 characters, so it is still possible, although
improbable, to reach this limit since Ecore does not have an upper size for
literal values represented as EString. A procedure to handle this issue, which
is not the scope of this work, would be to create multiple attributes with an
incrementing index and partition the literal value of those attributes.

• EInt → integer
Since both EInt and integer represent the primitive datatype integer,
choosing this mapping is the most fitting decision for this transformation step.

• EDouble → double
Since EDouble and Double represent the primitive datatype double, this
mapping is also trivial.

• EDate → date
An EDate can be easily converted to a date data type in ADOxx since both
represent the temporal value date.

• EEnum → enumeration, enumerationlist
When it comes to Enums, it has to be decided if the appropriate target type is
an enumeration or an enumerationlist. The procedure achieves this by
checking the attribute upperBound of a particular EAttribute. If this upper
bound is greater than one, the target type is an enumerationlist. If it
is exactly one, it is an enumeration. Ecore allows the metamodel engineer
to define how many different literal values are choosable (e.g., providing an
EEnum with four different literals, where at max two can be chosen). This
behavior cannot be replicated in ADOxx, since an enum allows the user to
choose exactly one literal, and an enumerationlist allows to select at
max as many literals as this object contains. However, mapping EEnum with
an upper bound higher than one to an enumerationlist is semantically
the most fitting transformation procedure since the semantic attribution of
multi-selection of literals can be preserved.

• default(all remaining cases) → longstring

We considered mapping all remaining attribute types to the type longstring.
Ecore supports the creation and the use of arbitrary types to assign them

46

5.3. EMF to ADOxx

to an EAttribute. In ADOxx, this mapping could be realised with the
help of RecordClasses. Both custom datatypes in Ecore and record classes
in ADOxx allow to define multiple constructs of simple other (primitive)
datatypes. This step is not yet part of the transformation procedure an will
be implemented in a future iteration.
We decided to preserve the information of a default attribute as a longstring
to conserve the semantic meaning of the source type in the target environment
and to help the user take appropriate actions when handling this data type
on ADOxx side.

After selecting the type, the default value of the literal is derived. If the EAttribute
has a default value defined, it is also used for the newly created Attribute in
ADOxx. If it is not defined, default literals are chosen based on the literal type.
This is for string values „Default value“, for numeric values the number 1 or 1.0
for integers and floating point types respectively, for temporal values the 1st of
January 2022 in its appropriate representation, and for enumerations the first value
present in the list of enumeration literals.

The ADOxx attribute is then created with the information of name, identifier,
and default value derived in the previous steps and assigned to the containing
ADOxx Class. Additionally, the flag isClassAttribute is set to false, and the
default facets are set via the ADOxx_ALL API [adoc].

For enums, the transformation procedure applies a special routine: It initially creates
an attribute without a default value. Literals in ADOxx have to be concatenated
as a string, where every literal is separated with an ’@’ symbol. After creating
this string from the derived Ecore literals, it is then added to the special facet
EnumerationDomain, thus making it a valid ADOxx enumeration. A second
attribute must be created, with the same name, only with the default value set,
to add the default value to this enum. This combination of duplicate attributes
is necessary to register the default value to the enum and avoid warnings when
trying to import the metamodel file in ADOxx. Code Example 5.2 shows such an
example construct, where the enum Type-Selection is defined along with default
value literal being type-3.

Finally, the attribute representation of the class has to be solved. The transformation
procedure handles this in parallel to the routine of creating the ADOxx attribute.
The creation of the attribute representation is needed in order to enable the user
to edit the different attributes in the model editor. While the transformation
procedure transformed an attribute, it crafted a special string containing the
NOTEBOOK keyword along with a chapter and description information, followed by
the attributes represented as ATTR, adding the attribute name at the end. Every
attribute information is also added to the string in this procedure to mimic the
behavior of Ecore to ADOxx, where every attribute is editable when creating a
certain model object. After handling all attributes for a class, the transformation

47

5. Metamodel transformation

ATTRIBUTE <Type-Selection>
TYPE ENUMERATION

FACET <EnumerationDomain>
VALUE "type-1@type-2@type-3"

FACET <MultiLineString>
VALUE 0

FACET <AttributeHelpText>
VALUE ""

FACET <AttributeRegularExpression>
VALUE ""

ATTRIBUTE <Type-Selection>
VALUE "type-3"

Code Example 5.2: ADOxx ALL file excerpt showcasing enum creation

NOTEBOOK
CHAPTER "Description"
ATTR "axlesCount"
ATTR "condition"
ATTR "tankSizeInLiters"
ATTR "vehicleName"

Code Example 5.3: Sample ADOxx attribute representation value

procedure adds the crafted string to the AttributeRepresentation attribute of that
particular ADOxx Class.
A sample attribute representation is referenced in Code Example 5.3, where the
attributes author, age, and location are added to the representation. Figure 5.3 shows
additionally a corresponding comparison of the attribute modification interface for
a source EMF model instance and a target ADOxx model instance.

Add Relationships The next step consists of adding the relationship information from
the source Ecore metamodel to the target ADOxx metamodel. For this, the
EReferences of a particular EClass are derived and then iterated. For every
relationship, the procedure first checks whether it is containment or not (by checking
the containment flag of the EReference). If it is a containment, the relationship is
specially treated with the Composition Converter, which is further described
in the upcoming item Process Compositions.
If it is a regular relationship, however, the information of its name and target

48

5.3. EMF to ADOxx

(a) Attribute editor in EMF (b) Attribute editor in ADOxx

Figure 5.3: Comparison of attribute editing interface of both metamodeling platforms

class is derived from the EReference. Since in Ecore, a reference is contained
within the EClass where it’s defined, the transformation procedure can trivially
derive the source class name of the to-be-created ADOxx Relation Class from
the currently inspected EClass. After gathering this information, the ADOxx
Relation Class is then created and added to the scope of the dynamic ADOxx
library.
The last step is to process the cardinalities of an EReference. The transformation
procedure defines the cardinality information in Ecore within the EReference,
where it derived its information from. In ADOxx, the cardinalities must be defined in
either of the two involved classes (i.e., the source or the target class). ADOxx allows
to set specific attributes for cardinalities, namely min-outgoing, max-outgoing, min-
incoming and max-incoming. The first two are suited to define semantic constraints
on the source class, while the two latter can be used to define constraints on the
target class. We decided to only define the cardinalities min-outgoing, max-outgoing
within the source class, by deriving the information from the lowerBound and
upperBound information of the corresponding EReference. We chose the source
class to hold the constraints information, as it is the most appropriate semantic
place. It’s easier for a user to understand how many instances of a relationship to
another class are allowed rather than how many incoming relationships to a target
class are permitted. Additionally, we can semantically replicate the behavior of
Ecore, where the cardinality information is derived from the source and not the
target EClass, since Ecore defines the EReference within that particular source
EClass.
A final consideration is to make the cardinalities consistent within source and
target ADOxx Class, by setting the min-outgoing value of the source class as the
min-incoming value of the target class, as well as the max-outgoing value of the
source class to the max-incoming value of the target class. However, this approach

49

5. Metamodel transformation

is redundant since providing the information on the source class alone is sufficient
to produce the correct semantic behavior. Additionally, when considering later
refactoring of the generated metamodel, it is easier to define cardinalities only
within one ADOxx Class, which would present a single point in the metamodel
where cardinality information has to be changed, rather than having to worry
about multiple occurrences in the metamodel that have to be kept consistent. Since
relation class names have to be unique, the relationships are renamed, following
this specific pattern: sourceClassName-ecoreReferenceName-targetClassName.

Process Compositions If a relationship is determined to be a composition, the trans-
formation procedure handles it in this step of the transformation procedure. The
first step is to determine all the instantiable classes of a particular compositum,
i.e., all composites. The compositum information is derived from the EType infor-
mation of the composition’s EReference, which represents the source class of the
relationship.
For each composite instance, the compositum interref information has to be
updated. Every composite needs to have an interref relationship between its
compositum and itself to be properly handled through the composition procedure
written in AdoScript. Therefore, the transformation procedure searches for the
composedInstances attribute in the compositum class. This attribute has to be a
well-formed string that contains all the information of the various interrefs. If no
prior definition exists, the procedure creates this attribute, simultaneously assigning
an upper bound by setting the ’max:’ string value to the value of upperBound
property of this attribute defined on Ecore side. If the interref attribute already
exists, the procedure appends the information of the new interref to the already
existing attribute facet. If the facet needs editing, a special line break escape
procedure is executed, which replaces line breaks that are hard-coded as \n by
the ADOxx ALL API [adoc]. Ignoring this step might lead to the value of the
composedInstances attribute getting malformed, resulting in an invalid .abl file,
which the user cannot import to ADOxx.
An example InterRefDomain value can be seen in Code Example 5.4, where
numerous composite-relations are defined for a certain class. The last two steps
consist of editing the compositeClasses and compositumClass strings, that are added
as attributes to the class __LibraryMetaData__. This is done by appending
the corresponding class names to a string and separating them with a comma. This
information is needed to handle the creation and deletion of composition elements
properly.

Process Classes With Multiple Inheritance This step handles the correct assign-
ing of attributes for multiple-inheritance classes, as well as creating the appropriate
structures for dealing with incoming relationships of a multi-inheritance class.
Figure 5.4 gives an overview of an example multiple-inheritance pattern and how it
is translated during the transformation. In the previous step, ’Add relationships’,

50

5.3. EMF to ADOxx

REFDOMAIN
OBJREF

mt:"BibTeX"
c:"Misc"
min:0

OBJREF
mt:"BibTeX"
c:"Unpublished"
min:0

OBJREF
mt:"BibTeX"
c:"Proceedings"
min:0

OBJREF
mt:"BibTeX"
c:"InProceedings"
min:0

OBJREF
mt:"BibTeX"
c:"MasterThesis"
min:0

OBJREF
mt:"BibTeX"
c:"PhDThesis"
min:0

Code Example 5.4: Sample Attribute InterRefDomain value of a compositum

Figure 5.4: Multi-inheritance example (a) and the adapted expansion pattern (b) [BWA21]

classes that have more than one superclass on Ecore side were implemented as
follows: Only one of the available superclasses was directly assigned as a superclass
on ADOxx side. This stems from the fact that ADOxx only supports single but
not multiple inheritance. The attributes of the other classes that are not used
as superclasses must be added to that particular ADOxx class. Therefore, the
attributes of every other superclass are determined and put in a list. For each found

51

5. Metamodel transformation

element in that list, the attribute is added to the appropriate ADOxx Class:
First, the transformation procedure ensures that there is no attribute with the
same name and the same type already defined in one of the superclasses of the
ADOxx Class. If this step would be ignored, the resulting .abl file would be
invalid, resulting in a non-working import in ADOxx. To determine whether that
attribute is already used in one of the superclasses, the procedure iterates through
all superclasses and retrieves all attributes. If any of these attributes is semantically
equal to the attribute desired to be added, the procedure ignores it and continues
with the next attribute.
Secondly, the procedure has to ensure that no attribute in a subclass is equal to the
attribute that has to be added. This scenario might occur in certain metamodels
because the procedure might read classes and attributes in an arbitrary order, not
corresponding to the actual hierarchy pattern that the Ecore metamodel provides,
as already described in the section Add dependent classes. If the transformation
procedure finds a semantically equal attribute in one of the sub classes, it is removed
from there and added to the currently handled class. This step ensures as well that
no malformed .abl is generated in this process.
The next step is to handle the incoming references of superclasses of a particular
Ecore class, that are part of a multi-inheritance pattern. The transformation
procedure has to handle incoming references specially, i.e., assigning them to the
abstract superclass __D_construct__ and limiting the classes that can be part
of the relationship. This procedure has to be performed to achieve semantic equality
of the behavior of incoming relation classes of a multi-inherited class:
First, all the incoming relationships of a particular superclass are retrieved. The
transformation procedure does this by checking if any EReference has as its
target class this particular class assigned. For every relationship, a new ADOxx
Relation Class is created, which has the EReference’s source class as its
source class, and the abstract class __D-construct__ as its target class. The
procedure then adds the created relationship to the ADOxx library. The next step
consists of modifying the attribute string multiInheritanceClasses, which becomes
part of the abstract class __LibraryMetaData__, which is needed to handle the
multi-inheritance relationship functionality on ADOxx side properly. The last step
consists of adding or modifying the attribute validIncomingRelationClasses with the
information of the classes that are part of the incoming relationship (in Figure 5.4
this would be class C and class D). The procedure achieves this by adding the
name of every valid incoming Relation Class to this attribute, separated by a
comma.
There are alternative inheritance patterns available, as described in the work
of [CMR02], which represent an alternative solution to resolve the problem of
transforming a multi-inheritance to a single inheritance pattern. However, we
decided to choose this overall procedure, as it is possible to preserve all the static
information present in the source metamodel (i.e., the attributes and relationships)

52

5.3. EMF to ADOxx

but also to create semantic equivalence in the target platform ADOxx, i.e., the
same behavior as in the source metamodel, as we could use AdoScripts to introduce
constraints and rules to the target metamodel.

Add Meta Information to Library In this step, the transformation procedure adds
additional information to the metamodel to

1. register the metamodel elements to the metamodel domain and
2. enable the correct behavior of special transformation features such as compo-

sition and multi-inheritance

The first step of this procedure is to edit the MODELTYPE of the library and add it to
the MODI library attribute. Finishing this procedure enables the possibility to create
new instances of model elements based on their metamodel definitions in the model
editor. Since only instantiable classes are addable to the MODELTYPE attribute,
the procedure iterates through every class that is present in the ADOxx library,
confirms that the class is non-abstract, and adds a new line to the MODELTYPE
string with the scheme INCL followed by the class name. An example MODELTYPE
value for the library BibTeX, corresponding to a distinct Ecore metamodel, is given
in Code Example 5.5.

MODELTYPE "BibTeX"
INCL "BibTeXFile"
INCL "Author"
INCL "Unpublished"
INCL "Proceedings"
INCL "InProceedings"
INCL "Misc"
INCL "PhDThesis"
INCL "MasterThesis"

Code Example 5.5: Sample MODELTYPE value of an ADOxx library

The transformation procedure then has to add the names of the Relation
Classes defined in the ADOxx metamodel in the same fashion, which it performs
in the following step.
The next step is to edit the ExternalCoupling information of the ADOxx
library to enable the correct behavior of compositions and multi-inheritance. In
this attribute, the procedure concatenates the previously defined code for handling
compositions with the special events corresponding to those files. This is done
by firstly defining the event, e.g., ON_EVENT „AfterCreateModelingNode“, and
secondly enclosing the code that the procedure read from the stored code file
packaged with the application between two braces.

53

5. Metamodel transformation

For this transformation, the following events are used:

• AfterCreateModelingNode
The code inside this event is triggered when a model user creates a new
modeling node on the model canvas. The code responsible for checking and
verifying the presence of an existing compositum class for a given composite
class in the model instance is defined here.

• BeforeDeleteInstance
This event is triggered when a model user deletes a certain element from the
model editor. Here, the code is embedded that checks whether the class that
is about to be deleted is a compositum class, then searches for all-composite
classes, and deletes them from the model.
The pseudo-code algorithms in algorithm 5.4 illustrate these two composition
procedures on the model level in ADOxx.

Algorithm 5.4: AdoScript code for handling composition [BWA21]
Input: classid, objid, and modelid of the object o to be created

1 ON_EVENT "AfterCreateModelingNode"
2 compositeClasses ← LibraryMetaData.compositeClasses()
3 if compositeClasses contains classid then
4 compositumClass ← o.compositumClass()
5 availableCompositumObjects ← GET_ALL_OBJS_OF_CLASSNAME(modelid,

compositumClass)
6 if availableCompositumObjects.size() > 0 then
7 selectedCompositumObject ← LISTBOX(availableCompositumObjects).selection()
8 ADD_INTERREF(selectedCompositumObject, o)
9 else

10 DELETE_OBJ(o)

Input: classid, objid, and modelid of the object o to be deleted
11 ON_EVENT "BeforeDeleteInstance"
12 compositeClasses ← LibraryMetaData.compositeClasses()
13 compositumClasses ← LibraryMetaData.compositumClasses()
14 if compositumClasses contains classid then
15 for Composite c : o.composedInstances() do
16 DELETE_OBJ(c)
17 end
18 else if compositeClasses contains classid then
19 compositumClass ← o.compositumClass()
20 availableCompositumObjects ← GET_ALL_OBJS_OF_CLASSNAME(modelid,

compositumClass)
21 for Compositum com : availableCompositumObjects do
22 if com.composedInstances().contains o then
23 REMOVE_INTERREF(com, o)
24 end

• AfterCreateModelingConnector
This event is triggered when a user adds a new relationship to the model, i.e.,
two classes are connected by a Relation class. The code embedded in
this event is responsible for checking that the relationships derived from a
multi-inheritance structure in Ecore behave correctly, i.e., are allowed between
the desired two classes.

54

5.4. Scenario

The algorithm 5.5 gives a pseudo-code overview of the overall procedure that
models based on the transformed metamodel perform.

Algorithm 5.5: AdoScript code for handling multiple inheritance [BWA21]
Input: classid, relationid, modelid, toObj, and fromObj of the relation r to be created

1 ON_EVENT "AfterCreateModelingConnector"
2 multiInheritanceClasses ← LibraryMetaData.multiInheritanceClasses()
3 if multiInheritanceClasses contains classid then
4 validIncomingRelationClasses ← toObj.validIncomingRelationClasses()
5 if !validIncomingRelationClasses contains classid then
6 DELETE_CONNECTOR(r)
7 end
8 end

The last step is to add the names of the classes needed for the scripts in the
previous step to work to the metamodel. We decided to put this information as new
attributes into the abstract class __LibraryMetaData__ since it is semantically
most suitable to define this information as metadata that is needed for the library
to perform correctly. Three attributes where created, namely compositeClasses,
compositumClasses and multiInheritanceClasses, all containing the strings that were
acquired in the previous steps of the transformation process and that represent the
desired classes respectively.

Output File This last step converts the generated metamodel defined in Java through
the ADOxx_ALL API [adoc] to .all and .abl files. The .all file is a human-
readable format that represents the created metamodel. While this format is easy to
read and understand, ADOxx does not offer an option to import it to its metamodel
editor.
The transformation procedure must create an .abl file to allow users to import
generated metamodels into ADOxx. The transformation procedure generates this
file by using the ADOxx ALL to ABL web service [adod], which takes an .all
file as input and converts it into an .abl file. The code for this transformation is
closed-source, meaning that a local execution without using the web service is not
possible. The API conveniently invokes this web service, which avoids the definition
of writing additional code to perform this web-services call.

5.4 Scenario
This chapter is accompanied by an illustrative scenario based on an example of a Fleet
Management system to gain a better understanding of the transformation and show that
a metamodel engineer can use the transformation procedure for an actual use case. The
term "illustrative scenario" is adapted by the authors in [PRTV12], that introduced it in
the context of evaluation methods. According to the authors, "[illustrative scenarios] apply
the artifact in a synthetic or real world situation to demonstrate its utility" [PRTV12],
which resembles the procedure that is taking part here.

55

5. Metamodel transformation

This illustrative scenario includes all the features that both metamodel platforms share
(e.g., core modeling concepts) and emphasize the differences between the two (e.g., different
inheritance patterns). The illustrative scenario covers those differences, especially to
reveal that the transformation procedure can find a solution for mapping differences in
core features and resolving edge cases.

The UML metamodel in Figure 5.5 functions as a blueprint to create the metamodel on
a specific platform. We used UML for this purpose since its instances are easily readable,
generic (i.e., metamodels on either platform can be easily created out of it due to common
first-class concepts), and familiar with the general audience of model engineers.

Figure 5.5: UML class diagram metamodel of the illustrative scenario

The illustrative scenario consists of a Fleet class, which holds all information about
the different Vehicles of a fleet. It has a composition-relationship to the class Vehicle,
which means that instances of Vehicle can only be created when an instance of Fleet
exists, as well as instantiation bounds of at least one and at max ten. The Vehicle
class is abstract and holds two variables: One is the vehicleName, a string to represent
the name, the other is condition, which is an Enum, where the values can be either
OPERATIONAL or IN_MAINTENANCE. Two abstract classes inherit from Vehicle,
namely SeaVehicle, which holds a numeric floating point attribute of draught and
LandVehicle, which holds a numeric integer attribute of tankSizeInLiters.

With this constellation, the core modeling features of class and attribute are already
covered with all attribute types (including Enums) and single inheritance. The instantiable
class Shipyard is added to the metamodel, and two unidirectional relationships between

56

5.4. Scenario

Figure 5.6: UML class diagram metamodel for the direction ADOxx to EMF

Shipyard and SeaVehicle, both with different cardinalities, to cover the core modeling
feature of relationships and cardinalities.

The Boat class is then added, holding the attribute motorHorsepower and inheriting from
SeaVehicle. The Train class is added as well, holding the attribute of axlesCount
and inheriting from LandVehicle. These two classes are now instantiable, inheriting
from different and common superclasses, which helps to reveal the semantic correctness of
the transformation when it comes to single inheritance pattern and the related attribute
assignment.

Finally, the Hovercraft class is added, also instantiable, with a parameter fanDiameter.
This class is special in that it inherits from both SeaVehicle and LandVehicle,
trying to enforce the correct multi-inheritance behavior of the transformation project.

5.4.1 ADOxx to EMF
Since ADOxx does not support multiple inheritance, the illustrative scenario that we
introduced in the previous section in Figure 5.5 is adapted slightly to preserve the
semantic correctness of the proposed metamodel while also creating a metamodel that
conforms to the rules of ADOxx.

In Figure 5.6, it can be seen that the inheritance of the class Hovercraft to SeaVehicle
has been deleted. The attribute draught is derived from the class SeaVehicle and
directly added to the class Hovercraft. A new bidirectional relationship between

57

5. Metamodel transformation

Figure 5.7: Transformation scenario: From an ADOxx to an Ecore metamodel

Hovercraft and Shipyard is added, based on the existing relationship between
SeaVehicle and Shipyard, adapting its cardinalities to preserve these relationships
which the metamodel would have otherwise lost. Finally, since ADOxx does not support
composition directly, the composition between Fleet and Vehicle is transformed to
regular relationships, while also preserving the cardinalities.

The transformation in Figure 5.7 shows an excerpt of the transformed metamodel. Lines
with a circle at the end represent a "target element is part of source element" relationship,
dashed lines with an arrow on either end represent a regular relationship, arrows with
a diamond on one end represent a composition, and the inheritance arrows represent a
"target element is a subclass of source element" relationship.

Inside the Ecore metamodel, three Packages (in orange) have been created, namely
ADOxx Metamodel, Fleet Management Library Static and the library Fleet
Management Library Dynamic.

The package ADOxx Metamodel contains all classes that are part of the ADOxx meta-

58

5.4. Scenario

model, including __D_construct__, as well as the implicit superclass of every element
in ADOxx, the RootClass. This class contains a composition relationship with the class
__D_construct__ to be able to create an arbitrary number of elements underneath
this level. For one, this copies the behavior of ADOxx, where a model user can add every
element on a single plane (the canvas). For the other, it enables the Ecore user to create
model-element instances. Only if an element is part of a composition can it be created
through the model editor.

The package Fleet Management Library Static contains only classes of the static
library. This package exists to avoid name clashes. Splitting classes with the same name
but in different packages yields no error for an Ecore metamodel.

The Fleet Management Library Dynamic package contains all transformed classes.
Italic classes are abstract classes, while all other classes are instantiable. We preserved
the inheritance pattern that we initially provided during the transformation. Also, the
inheritance pattern involving the class __D_construct__, that is present in ADOxx,
is preserved here. This step is important in order to perform the correct instantiation of
the other metamodel classes.

The attributes are also added and mapped with the appropriate name and type inside
the corresponding class from the source metamodel. Additionally, the transformation
procedure creates an enum that is part of Vehicle on ADOxx inside the dynamic
package. The literals of type EEnumLiteral have been adapted and added to this
object. This enum is then referenced in the attribute vehicleCondition of the class
Vehicle on Ecore side.

Finally, for every RelationClass in ADOxx, relationships inside the corresponding
source class have been created. The procedure preserved the cardinalities, though it
adapted the relationship names with the string-appendix _ref to mitigate name clashes
with existing attributes.

5.4.2 EMF to ADOxx
The illustrative scenario for this direction is adapted from Figure 5.5 and needed no
special transformation as in the previous subsection 5.4.1. As shown in Figure 5.8, the
transformation takes an Ecore Metamodel and transforms it to an ADOxx metamodel.

The orange element on Ecore side, the Fleet Management is the package of this Ecore
metamodel. The blue elements on either side represent classes. Abstract classes have an
italic label, while instantiable classes have a normal label. On either side, attributes of a
class are represented through green elements. The violet element on Ecore side represents
an Enumeration object. The red elements on ADOxx side are metamodel elements of the
ADOxx Library, which are pre-generated and non-deletable. Yellow elements on ADOxx
side represent Relation Classes.

The diamond arrow on Ecore side represents a composition. The dashed arrow on Ecore
side between two classes represents an EReference, i.e. a relationship. Dashed arrows

59

5. Metamodel transformation

Figure 5.8: Transformation scenario: From an Ecore to an ADOxx metamodel

on ADOxx side also represent a relationship, but of type Interref. The inheritance
arrows between two classes resemble a subclass relationship.

Out of the ecore package element FleetManagement, the ADOxx library is created
and named. All classes from Ecore are created on ADOxx, deriving the name and their
instantiation-capability from the Ecore class. The transformation procedure mapped
all attributes by creating and adding them to the corresponding ADOxx class based on
the definition on Ecore side. For enums, a special procedure applies, which this work
describes in a subsequent section.

Since the Fleet object is a compositum element, the transformation procedure created
a new attribute ADOxx side, namely the composedInstances attribute, that holds the
information of all composite elements of this compositum class. For every composite class,
the procedure created a new attribute, namely compositumClass, that holds information
about every compositum class it is part of.

The class Vehicle contains an internal attribute reference to the EEnum: Vehicle
Condtion. On ADOxx side, this enum is represented in the class Vehicle, where simply
an attribute of type enum is added. In Ecore, the class Hovercraft inherits from both
the class LandVehicle and SeaVehicle. On ADOxx side, the class Hovercraft
only inherits from one of these classes, namely LandVehicle. The attribute that is
part of SeaVehicle on Ecore side is duplicated and added to the class Hovercraft.

The bidirectional relationship between the classes SeaVehicle and Shipyard can be
viewed as two unidirectional relationships. It follows that 2 RelationClasses have

60

5.4. Scenario

to be created on ADOxx side, one named shipyard, which represent the relationship
between SeaVehicle and Shipyard and one named seavehicles, which represents
the relationship between Shipyard and SeaVehicle. Since the latter represent a
relationship, where the target class is a multi-inheritance class that is not directly
referenced as super class in the ADOxx metamodel (i.e. SeaVehicle is not the super
class of Hovercraft on the ADOxx side), the RelationClass needs to have the
target class as __D-construct__, in order to enable the valid handling of incoming
relation classes of multi-inherited classes. The cardinalities on Ecore side are applied on
the source classes on ADOxx side. On the classes Hovercraft and SeaVehicle, the
attribute validIncomingRelationClasses is added to fully enable the handling of incoming
relation classes based on multiple inheritance.

61

CHAPTER 6
Evaluation

In this evaluation chapter, the results of an evaluation-based experiment for a sample
of representative size are collected and analyzed. The procedure of evaluating the
transformation consists of taking every source metamodel of a framework, performing the
transformation procedure and collecting the results of the metamodels before and after.

The evaluation is split into a syntactic part in section 6.1 and a semantic part in section 6.2.
The syntactic evaluation analyzes the different structural features of metamodels before
and after the transformation. Those findings reveal how the transformation procedures
map elements like classes, attributes, and relationships to the other framework. Through
this step, the possibility arises to recognize and evaluate certain patterns (e.g., a larger
size of relationships in the target platform) and conclude different transformation findings.
The syntactic evaluation also describes how it is possible to make statements about the
validity of the transformation, i.e., by knowing how the transformation works internally, it
is possible to validate the size of the elements created to make sure that the transformation
behaved correctly.

The semantic evaluation helps to find out, whether the source and the target metamodels
behave semantically correct. This means that this step consists of manually checking a
subset of source and target metamodels and seeing if the semantic features like names,
composition and inheritance patterns were mapped semantically equal from one platform
to another.

We chose the samples from a variety of sources: For ADOxx, we took a set of 45
metamodels from the analysis of [Bor18]. In this work, the author conducted an evaluation-
based analysis of those metamodels. A set of 29 metamodels are chosen for the EMF
evaluation from the ATL-Zoo for EMF at [emfb]. We chose only metamodels that are not
dependent on other metamodels (.ecore files), which would imply an additional amount
of logic to be implemented in the evaluation program. From the given super set of more

63

6. Evaluation

than 100 Ecore metamodels, only 32 (excluding a custom made metamodel not part of
the super set) could be used for this experiment.

In both cases, metamodels from different domains and a great variety of characteristics are
chosen to show the feasibility of the transformation on different domains and metamodel
sizes. Those characteristics include the size of classes, relationships, inheritance depth,
and containments. This broad scope of metamodels can yield interpretable results
regarding the impact of metamodel size on syntactic structures and semantic correctness.
Table 6.1 gives an overview of the source metamodels that the evaluation section used
per direction.

Table 6.1: Metrics overview of the source metamodels used in the experiments

ADOxx EMF

Min Med Max Min Med Max

Classes 5 30 180 1 7 93

Abstract Classes 0 2 24 0 1 12

Relations 1 11 81 0 2 59

Compositions 0 2 13 0 2 36

Attributes 2 86 1165 1 6 64

Inheritance Depth 1 3 6 0 1 4

Multi Inheritance Classes1 - - - 0 0 4

Enumerations 0 17 270 0 0 7
1 Multi inheritance is not supported in ADOxx

The set of ADOxx metamodels is generally more expressive since it offers a greater
variety of metamodels with different characteristics. Most attributes are usually more
abundantly present in metamodels of the ADOxx sample, as denoted by the median
values of those characteristics. One could conclude that the Ecore source metamodels are
much smaller than their ADOxx counterpart in terms of the size of internal structures.
But looking at the maximum values for the same characteristics yields that within the set
of Ecore metamodels, there are still metamodels with a similar amount of characteristics
as in the ADOxx sample available.

The characteristic Classes, Relationships, Attributes and Enumerations gives an overview
of the amount of first-class concepts present in either sample. A variety of these
characteristics gives a general picture of the metamodel size and the amount of different
items available. The amount of Abstract classes helps to verify the correct mapping of
the abstract features of a class in either metamodel environment.

The Inheritance Levels on either platform show how well the transformation behaves
with inheritance patterns. Especially for the EMF samples, it is essential to include
metamodels with multiple relationships (noted by the characteristic Multi Inheritance

64

6.1. Syntactic Evaluation

classes) as well as incoming relationships, which would yield important insights about the
correct behavior of transforming multiple inheritance structures from EMF to ADOxx.
While most metamodels do not have any multi-inheritance class, few metamodels have a
significant amount, with the highest present amount of classes being four.

But also, including metamodels from EMF that contain many compositions is important
for this evaluation. This way, it is possible to verify that the transformation procedure
manages to represent composition features syntactically and semantically correct in
ADOxx.

6.1 Syntactic Evaluation
The syntactic evaluation of the transformation helps to gain insight into the nature of
the generated artifacts. As part of the procedure, we chose different categories based
on previous work conducted in metric-based evaluation on metamodeling platforms: In
[KHK11], the authors compared the various metamodeling features of the platforms ARIS,
Ecore, GOPPRR, GME, MS DSL Tools and MS Visio and tried to identify different
categories, by grouping metamodel characteristics together. This work largely helped
identify the different static features of this evaluation, such as the number of classes or
relationships. In [LMWK14], the authors analyzed openly available UML models by using
a set of various UML models and batch analyzing them by different metrics. The number
of language units used per model and language unit usage frequency are calculated and
evaluated, among other metrics. This previous work impacted this evaluation, which
also uses countable metrics for the syntactic analysis since they can provide great insight
into the static nature of metamodels before and after a transformation. Finally, the
work of [DRDRIP14] introduced the concept of metamodeling measurement in general.
This evaluation adopted the procedure described in this paper (i.e., metric calculation →
defining metric correlation → selecting metric correlations → data analysis). Additionally,
this paper further provided additional categories that could be used for static metamodel
evaluation, such as number of generalizations and maximum inheritance level.

The evaluation is split in two parts: in subsection 6.1.1, the metrics for the transformation
from ADOxx to EMF will be described and analyzed, in subsection 6.1.2 the metrics
from EMF to ADOxx.

We gathered the metrics in various fashions: For gathering metrics in ADOxx, the
evaluation procedure read an XML file containing the library information into an XML
parser, analyzed the different attributes, and accumulated them. The source code is
mainly used from the work of [Bor18], which analyzed metamodel metrics of ADOxx,
accompanied by a Java XML analysis program. We slightly adapted the code to conform
to the maven module structure that is used for this and other related modules of this
thesis, but also to include additional metrics that were not present beforehand, like the
total amount of enums used in a metamodel.

For gathering the metrics in Ecore, this evaluation is accompanied by a self-written

65

6. Evaluation

standalone module that takes an .ecore file in XMI fashion as an input, loads the
packages with the Ecore Java API [emfc], and iterates through all available elements
in a programmatic way. This approach has the advantage of using the powerful Ecore
API [emfc] with its language features in Java to easily navigate through the different
elements, rather than using an XML parser that would have to include additional logic
to achieve the same result. While iterating through the various elements, the procedure
incremented a counter for every matching category and returned the results as a Java
object containing all the different information.

The overall procedure consisted of taking a source metamodel from an environment,
analyzing it, then transforming it, and analyzing the result. Finally, the result is outputed
to an .xlsx file to provide adequate visual represent ability. The algorithm 6.1 gives a
pseudo-code overview of the evaluation procedure.

Algorithm 6.1: Evaluation procedure of one analysis direction
Input: (sourceMetamodel)

1 sourceMetamodelMetrics ← analyzeMetamodel(sourceMetamodel)
2 targetMetamodel ← performMetamodelT ransformation(sourceMetamodel)
3 targetMetamodelMetrics ← analyzeMetamodel(targetMetamodel)
4 evaluationExcelF ile ← createEvaluationF ile(sourceMetamodelMetrics, targetMetamodelMetrics)

When evaluating either direction, we decided not to include the metamodel classes and
attributes of ADOxx in the statistics. The abstract metamodel instances from ADOxx
are irrelevant for the evaluation since they are a necessary, non-changeable, and equal
part of every ADOxx metamodel. Not including these classes in the evaluation metrics
shifts the focus to the actual metamodel transformation, which gives more expressiveness
to the main research area of this work, which is to transform user-defined metamodels
from one platform to another.

The static analysis consists of the following categories:

1. Successful import ratio in the target environment

2. Total number of classes per MM before - after

3. Total number of abstract classes per MM before - after

4. Total number of multi-inheritance classes per MM before - after

5. Total number of relationships per MM before - after

6. Total number of compositions per MM before - after

7. Total number of attributes per MM before - after

8. Total number of enumerations per MM before - after

9. Inheritance depth per MM before - after

66

6.1. Syntactic Evaluation

6.1.1 ADOxx to EMF
In this chapter we evaluate and analyze the different metrics for each category defined in
the previous section for the transformation direction ADOxx to EMF. Table 6.3 shows
all the various source ADOxx metamodels that the evaluation procedure used in the
experiment, along with their gathered metrics. In Table 6.4, the generated metamodels
along with their metrics are represented.

Successful Import ratio In the transformation from ADOxx to EMF, the import
success ratio is 100%, i.e., all transformed metamodels are importable to EMF.
EMF does not have a complex import procedure like ADOxx; rather, the generated
files can be opened in Eclipse with various tools, like the Sample Ecore Model
Editor. As part of the evaluation procedure, we imported every .ecore file to
the environment, which was error- and warning-checked. Errors in the metamodel
would lead to displaying no metamodel information in the editor other then an
error message; warnings in the metamodel occur, e.g., when duplicate names for
attributes are used and manifest in the metamodel editor as a warning symbol
on the affected entity. Viewing, opening and editing the metamodel is possible
nonetheless. Those errors are categorized by the value Errors/ warnings in Table 6.2.
The transformation produced valid files for every input metamodel without errors
or warnings.

Table 6.2: Successful import metric for ADOxx to EMF transformation

Transformation
Direction

Cases No errors/
warnings

Errors/
warnings

Success
rate

ADOxx → Ecore 45 45 0 100%

Classes before and after The size of classes before and after is the same for the source
and the target environment for every metamodel. This finding validates that the
transformation performs a 1 : 1 mapping of any class from the source to the target
environment.

Abstract Classes before and after As with the classes, the abstract classes are equal
for every metamodel in any environment. This finding validates that the trans-
formation procedure correctly set every source abstract class to abstract in Ecore
during the transformation process.

Multi-Inheritance Classes before and after The ADOxx metamodeling environ-
ment does not support multi-inheritance, thus the multi-inheritance count on
ADOxx for every metamodel is zero. In EMF, the multi-inheritance count is also
zero for every metamodel. This observation validates that no class falsely inherits
from more than one class in the target environment.

67

6. Evaluation

Relationships before and after The relationships in ADOxx differ from those in the
generated EMF metamodels. One important fact to notice is that the relationship
size in EMF is always greater than or equals to in ADOxx, i.e. |Relemf | ≥
|Relado|. This stems from the fact that every Interref attribute IRCado in
ADOxx is converted to an EReference Relemf in Ecore. In fact, the amount of
relationships in Ecore corresponds to the sum of those interrefs and the normal
relationships defined in the ADOxx metamodel |Relado|. The complete formula
thus is: |Relemf | = |Relado| + |IRCado|. It is worth noting that the Interref count
only applies to Interrefs that map to a class, and not to another model, as denoted
by the letter C in the Interref notation. This validates the correct transformation
of every RelationClass and Interref from ADOxx to EMF.

Compositions before and after In the metrics of Table 6.3, compositions are defined
as every class that inherits from __D_Container__, while in EMF a composition
is defined as a class that has a containment relationships to another class. Those
values differ in either environment, showing that the transformation procedure does
not yet map the compositions from an ADOxx source metamodel to compositions
in EMF, as denoted by the value zero for every EMF metric in this category.

Attributes before and after Attribute sizes in ADOxx are always greater than their
EMF counterpart, i.e. |Attado| ≥ |Attemf |. Since Interref attributes are always
converted to an EReference and not to an attribute on Ecore side, the amount
of attributes on Ecore side is always lower. The attributes count in EMF |Attemf |
thus corresponds to |Attemf | = |Attado| − |IRCado|, |IRCado| being the amount
of Interrefs that reference other classes in ADOxx. Through the comparative
metrics, the expected behaviour of lower amounts of attribute on EMF side can be
validated.

Enumerations before and after As can be seen in the metrics, the amount of enu-
merations in every source metamodel and their corresponding target metamodel
is the same. This observation validates the correctness of the transformation part
that is responsible for reading all enums from an ADOxx file and converting it to
an EEnum on EMF side.

Inheritance depth before and after The inheritance level is for all metamodels of
source and target platform equal. This finding resembles the desired behavior,
where a distinct inheritance pattern from ADOxx is translated to the semantically
equivalent inheritance pattern in EMF, thus validating the correctness of this
transformation step.

68

6.1. Syntactic Evaluation

Table 6.3: ADOxx source metamodels metrics

Metamodel Total
Clas-
ses

Ab-
stract
Clas-
ses

Multi
In-
heri-
tance
Classes

Rela-
tion-
ships

Com-
posi-
tions

Attri-
butes

Enums Inhe-
ritance
Level

4em 75 0 0 19 0 59 6 2
advisor 33 5 0 2 2 153 33 2
bd-ds 17 2 0 3 3 58 16 2
bpfm 58 12 0 36 9 664 170 3
bprim 18 1 0 11 0 2 2 1
codek 56 12 0 21 9 649 165 3
comvantage 71 2 0 21 7 243 45 4
cutide 180 24 0 54 9 581 262 6
diba 31 0 0 17 0 31 1 3
dice 72 12 0 22 10 31 10 5
dicer 14 0 0 4 1 49 10 3
dmn 9 2 0 4 2 52 2 2
e-gpm 37 2 0 31 5 347 66 2
enterknow 16 0 0 2 3 36 0 1
evaluationchains 52 0 0 29 3 265 73 3
fleet_mgmt_ado_export 8 3 0 3 0 15 1 2
fleet_mgmt_thesis 8 3 0 5 0 9 1 2
fleet_mgmt 7 3 0 2 0 11 1 2
hcm-l 12 0 0 9 2 207 5 3
horus 54 17 0 11 1 164 18 3
istar 14 1 0 10 1 57 17 3
jcs 11 0 0 1 0 12 10 3
kamet 23 1 0 6 2 16 2 2
kwd 84 4 0 31 9 800 196 3
learnpad 152 17 0 56 12 1168 270 3
local_env 11 2 0 2 0 15 3 2
melca 54 4 0 31 7 642 48 1
memo 127 3 0 81 0 740 105 2
muviemot 14 1 0 13 0 26 3 1
petrinets 6 2 0 7 0 5 1 1
pga 14 2 0 1 0 18 1 3
pss 55 0 0 21 9 86 37 3
public_transport_inf 9 4 0 3 0 16 1 2
rupert 98 0 0 26 13 839 176 4
save 22 0 0 10 4 49 13 3
sdbd 70 5 0 32 7 720 86 3
securetropos 28 0 0 22 2 85 1 3
semfis 96 4 0 39 13 1104 245 6
serm 5 0 0 3 0 7 1 1
simchronization 27 3 0 6 0 101 27 2
sIoT 116 0 0 26 4 912 262 4
smartcity 35 0 0 7 1 153 25 2
som 38 0 0 67 7 251 36 2
team 62 0 0 11 0 56 35 1
userstorymapping 13 0 0 5 1 115 20 2
min 5 0 0 1 0 2 0 1
median 29,5 2 0 11 2 85,5 17,5 3
max 180 24 0 81 13 1168 270 6

69

6. Evaluation

Table 6.4: Ecore transformed metamodels metrics

Metamodel Total
Clas-
ses

Ab-
stract
Clas-
ses

Multi
In-
heri-
tance
Classes

Rela-
tion-
ships

Com-
posi-
tions

Attri-
butes

Enums Inhe-
ritance
Level

4em 75 0 0 48 0 30 6 2
advisor 33 5 0 15 0 140 33 2
bd-ds 17 2 0 15 0 46 16 2
bpfm 58 12 0 43 0 657 170 3
bprim 18 1 0 5 0 8 2 1
codek 56 12 0 25 0 645 165 3
comvantage 71 2 0 94 0 170 45 4
cutide 180 24 0 33 0 602 262 6
diba 31 0 0 17 0 31 1 3
dicer 14 0 0 4 0 49 10 5
dicer 14 0 0 4 0 49 10 3
dmn 9 2 0 4 0 52 2 2
e-gpm 37 2 0 79 0 299 66 2
enterknow 16 0 0 18 0 20 0 1
evaluationchains 52 0 0 38 0 256 73 3
fleet_mgmt_ado_export 8 3 0 6 0 12 1 2
fleet_mgmt_thesis 8 3 0 5 0 9 1 2
fleet_mgmt 7 3 0 2 0 11 1 2
hcm-l 12 0 0 179 0 37 5 3
horus 54 17 0 26 0 149 18 3
istar 14 1 0 17 0 50 17 3
jcs 11 0 0 1 0 12 10 3
kamet 23 1 0 2 0 20 2 1
kwd 84 4 0 68 0 763 196 3
learnpad 152 17 0 165 0 1059 270 3
local_env 11 2 0 4 0 13 3 2
melca 54 4 0 101 0 572 48 1
memo 127 3 0 330 0 491 105 2
muviemot 14 1 0 17 0 22 3 1
petrinets 6 2 0 6 0 6 1 1
pga 14 2 0 1 0 18 1 3
pss 55 0 0 21 0 86 37 3
public_transport_inf 9 4 0 6 0 13 1 2
rupert 98 0 0 60 0 805 176 4
save 22 0 0 7 0 52 13 3
sdbd 70 5 0 105 0 647 86 3
securetropos 28 0 0 74 0 33 1 3
semfis 96 4 0 260 0 883 245 6
serm 5 0 0 3 0 7 1 1
simchronization 27 3 0 5 0 102 27 2
sIoT 116 0 0 88 0 850 262 4
smartcity 35 0 0 6 0 154 25 2
som 38 0 0 77 0 241 36 2
team 62 0 0 19 0 48 35 1
userstorymapping 13 0 0 16 0 104 20 2
min 5 0 0 1 0 6 0 1
median 27,5 1,5 0 17,5 0 52 17,5 3
max 180 24 0 330 0 1059 270 6

70

6.1. Syntactic Evaluation

6.1.2 EMF to ADOxx
In this subsection we evaluate and analyze the different metrics for each category defined
in the previous section for the transformation direction EMF to ADOxx. Table 6.6 shows
all the various source Ecore metamodels that are used in the experiment along with their
gathered metrics. In Table 6.7, the generated metamodels along with their metrics are
represented.

Table 6.5: Successful import metric for EMF to ADOxx transformation

Transformation
Direction

Cases No errors/
warnings

Errors/
warnings

Success
rate

EMF → ADOxx 33 32 1 96.97 %

Successful Import ratio When trying to import the generated metamodel to ADOxx,
we successfully imported 32 out of the 33 metamodels, yielding a success rate of
96,97%. One metamodel could not be imported into ADOxx, since a STRING
violation occurs on a certain attribute. In ADOxx, the maximum length of a STRING
datatype value is limited to 3699 characters. When performing the transformation,
the value of the AttributeInterRefDomain facet of the custom created attribute
composedInstances matches a concatenated string of all the composed instances
of this attribute, which conforms to the composed instances of the Ecore source
metamodel. In this case, the composed instances are that many that the resulting
string exceeds the length of 3699 characters, making it unable to import into ADOxx.
The listing Code Example 6.1 shows a snippet of the affected attribute value. In a
future iteration of the transformation procedure, we can mitigate this problem by
storing exceeding strings in an external file and reading this file dynamically into
the metamodel environment via AdoScript.

Classes before and after The size of classes for each metamodel in EMF and its
counterpart in ADOxx is equal. This finding validates the correct behavior of the
transformation, where a 1 : 1 for every class is defined. It further shows that the
transformation procedure did not omit any class or falsely created additional classes
during this process.

Abstract Classes before and after As with the classes, the amount of abstract classes
is equal in EMF and in ADOxx, showing that the ClassAbstract attribute on ADOxx
side is correctly assigned to the appropriate classes.

Multi-Inheritance Classes before and after A few of the source Ecore metamodels
have multiple inheritance pattern incorporated. On ADOxx, the expected value is
zero for all metamodels since no multi-inheritance is possible in this platform.

71

6. Evaluation

FACET <AttributeInterRefDomain>
VALUE "REFDOMAIN
OBJREF

mt:\"KML\"
c:\"Message\"
min:0

OBJREF
mt:\"KML\"
c:\"BalloonStyle\"
min:0

OBJREF
mt:\"KML\"
c:\"ViewRefreshTime\"
min:0

...

Code Example 6.1: Affected AttributeInterRefDomain value causing import to fail

Relationships before and after Relationships in EMF are always greater or equal
in size than in ADOxx, i.e. |Relemf | ≥ |Relado|. Since compositions in Ecore are
represented as EReferences (just with an additional flag set), the number of
relationships is expected to be higher in EMF. In ADOxx, the composition feature
is realized by using certain attributes and an additional AdoScript part, which this
work described in subsection 5.3.2. Since those compositions in Ecore Comemf

are not represented in ADOxx, the size of relationships in ADOxx |Relado| should
correspond to the following formula: |Relado| = |Relemf | − |Comemf |. This formula
is valid for all tuples of metamodels, yielding a correct syntactic behavior of the
transformation procedure.

Compositions before and after By default, ADOxx defines compositions by any
class that inherits from the abstract metamodel class __D_Container__. Since
the transformation procedure used a different approach for this transformation
direction, as described in subsection 5.3.2, the it should have created no com-
position on ADOxx side, i.e., it should generate no class, that inherits from the
class __D_Container__. We can validate this behavior through the values of
composition on the transformed ADOxx metrics, which are all equal to zero.

Attributes before and after The number of attributes in the transformed ADOxx
metamodels is expected to be higher than or equal to those of their corresponding
Ecore source metamodels, i.e., |Attemf | ≤ |Attado|. This observation stems from the
fact that a 1 : 1 mapping of attributes exist for this direction, but the transforma-
tion procedure also creates several other attributes in the transformation process.
For one, the three Library attributes compositeClasses, compositumClasses and
multiInheritanceClasses are included in this metric. These attributes (|Attmeta|) are
created in the transformation process and contain various information about the

72

6.1. Syntactic Evaluation

multi-inheritance and composition patterns. Additionally, for every composition
on the EMF side, a corresponding attribute named compositumClass is created on
the corresponding classes on ADOxx side, as well as an attribute validIncomin-
gRelationships for classes that are affected by multiple inheritance and incoming
relationships. We can not derive a general formula for the number of attributes on
the target platform without internal knowledge of the concrete inheritance hierarchy
since it strongly depends on the structure of the source metamodel (e.g., when a
superclass is also part of a composition, the attribute compositumClass is edited in
the superclass and removed from the subclass, which is still valid for all subclasses;
this knowledge is only derivable when analyzing the structure of the metamodel).
However, we can verify the expected behavior of having fewer attributes than in
the target metamodel for every metamodel used in the experiments.

Enumerations before and after The count of enumerations on both sides are equal,
yielding the correct behaviour of the transformation, where a 1 : 1 mapping occurs
between enumerations from ADOxx to EMF.

Inheritance depth before and after When the transformation procedure translates
multiple inheritance patterns to single inheritance patterns, the inheritance depth
may decrease in the target metamodel. The procedure can create new inheritance
paths, where classes inherit from other classes of a smaller branch while the larger
branch stops. The inheritance depth cannot be higher, though, since this would
yield the fact that the transformation procedure created additional classes in the
transformation process. Since there is a 1 : 1 mapping of the classes in this direction,
this can never happen.
Generally speaking, evaluating the correct inheritance procedure can be performed
by checking the following formula IDemf ≥ IDadoxx, where ID stands for inheri-
tance depth. We can validate this behavior for all metamodels in the experiment.

73

6. Evaluation

Table 6.6: Ecore source metamodels metrics

Metamodel Total
Clas-
ses

Ab-
stract
Clas-
ses

Multi
In-
heri-
tance
Classes

Rela-
tion-
ships

Com-
posi-
tions

Attri-
butes

Enums Inhe-
ritance
Level

bdd 8 2 0 14 5 3 0 1
bibtex_mod 14 6 4 2 2 8 1 3
bibtex 14 6 4 2 2 7 0 3
book 2 0 0 2 1 4 0 1
books 2 0 0 1 1 3 0 1
bugzilla 9 1 0 8 7 35 7 1
cpl 32 6 1 16 16 42 0 4
dot 26 8 0 30 11 44 0 4
dsl 13 5 0 13 5 14 0 4
dslmodel 14 3 0 15 7 8 0 2
fleet_management 8 3 1 3 1 8 1 2
km2 14 4 0 9 5 8 0 3
km3 15 2 0 17 6 10 0 4
kml 93 4 0 2 1 64 2 3
metrics 4 1 0 0 0 5 0 1
mmelementlist 3 1 0 1 1 1 0 1
mmtree 3 1 0 1 1 2 1 1
mysql 8 1 0 7 4 7 0 2
persons 3 1 0 0 0 1 0 1
problem 1 0 0 0 0 3 1 1
pub 1 0 0 0 0 2 0 1
rss 9 0 0 16 9 45 0 1
sample 4 2 1 0 0 4 2 1
simplerdbms 3 0 0 5 2 3 0 1
table 3 0 0 2 2 1 0 1
tcs 66 12 0 59 36 54 4 3
textualpathexp 5 1 0 3 3 2 0 1
typea 2 0 0 2 2 1 0 1
typeb 2 0 0 1 1 1 0 1
xml 5 1 0 2 1 6 0 2
min 1 0 0 0 0 1 0 1
median 6.5 1 0 2 2 5.5 0 1
max 93 12 4 59 36 64 7 4

74

6.1. Syntactic Evaluation

Table 6.7: ADOxx transformed metamodels metrics

Metamodel Total
Clas-
ses

Ab-
stract
Clas-
ses

Multi
In-
heri-
tance
Classes

Rela-
tion-
ships

Com-
posi-
tions

Attri-
butes

Enums Inhe-
ritance
Level

bdd 8 2 0 9 0 14 0 1
bibtex_mod 14 6 0 0 0 25 1 3
bibtex 14 6 0 0 0 23 0 3
book 2 0 0 1 0 9 0 1
books 2 0 0 0 0 8 0 1
bugzilla 9 1 0 1 0 47 7 1
cpl 32 6 0 0 0 74 0 4
dot 26 8 0 19 0 64 0 4
dsl 13 5 0 8 0 27 0 4
dslmodel 14 3 0 8 0 26 0 2
fleet_management 8 3 0 3 0 18 1 2
km2 14 4 0 4 0 25 0 3
km3 15 2 0 11 0 26 0 4
kml1 - - - - - - - -
metrics 4 1 0 0 0 8 0 1
mmelementlist 3 1 0 0 0 6 0 1
mmtree 3 1 0 0 0 8 1 1
mysql 8 1 0 3 0 19 0 2
persons 3 1 0 0 0 4 0 1
problem 1 0 0 0 0 6 1 1
pub 1 0 0 0 0 5 0 1
rss 9 0 0 7 0 59 0 1
sample 4 2 0 0 0 8 2 1
simplerdbms 3 0 0 3 0 9 0 1
table 3 0 0 0 0 8 0 1
tcs 66 12 0 23 0 132 4 3
textualpathexp 5 1 0 0 0 11 0 1
typea 2 0 0 0 0 6 0 1
typeb 2 0 0 0 0 6 0 1
xml 5 1 0 1 0 14 0 2
min 1 0 0 0 0 4 0 1
median 5 1 0 0 0 14 0 1
max 66 12 0 23 0 132 7 4
1 Metamodel transformation infeasible

75

6. Evaluation

6.2 Semantic Evaluation
To test the semantic correctness of the generated metamodels, we conducted a semantic
evaluation. The evaluation is split in two parts: in subsection 6.2.1, the semantic
evaluation for the transformation from ADOxx to EMF will be described and analyzed,
in subsection 6.2.2 the semantic evaluation from EMF to ADOxx.

The semantic evaluation differs from the syntactic evaluation described in section 6.1, as
we needed a manual procedure to test metamodel features. With the semantic evaluation,
we should collect results about the correct behavior of the generated metamodels. The
evaluation gathers insights about the semantic information heterogeneity, as described in
section 2.4, which plays a vital role in metamodel interoperability. Only if two metamodels
from a source and target platform behave semantically correct, then the transformation
can be described as an interoperability mechanism.

The procedure for creating the evaluation looks as follows:

1. Transform a source metamodel into a target metamodel

2. Import the target metamodel into the target platform

3. Create a model instance from the generated metamodel

4. Create different elements based on categories described below

5. Evaluate the correct behavior

The transformation procedure uses different categories to validate the correct behavior.
These categories should form a basis for a correct evaluation of semantic behavior
between the two platforms. The categories are listed in the following and described in
the paragraph below:

1. Correctly mapped classes

2. Correctly mapped relationships

3. Correctly mapped attributes (including enums)

4. Correctly mapped multiple inheritance patterns

5. Correctly mapped composition patterns

The categories of Correctly mapped classes and Correctly mapped relationships were
chosen to show that classes and relationships can be defined in the target metamodel
platform by the same semantic rules as in in the source metamodel. I.e., during the
evaluation, we created classes in the target environment and compared their types and
names, showing that they can be added to the target model instance and are correctly

76

6.2. Semantic Evaluation

mapped. Relationships are added between various classes, showing that a user can only
draw certain relationships between the two classes defined in the source metamodel. Also,
if a relationship is created in the source metamodel with an abstract class as its target,
it is checked in the target model instance that only the subclasses of this abstract class
are referenceable through that relationship.
The category of Correctly mapped attributes verifies that a user can create attributes with
the corresponding type and name in the target platform as defined in the source platform.
For ADOxx, we also checked that the attribute representation is added correctly to the
metamodel classes by checking that the popup of a certain class instance contains all
the possible attributes as defined in the source metamodel. Additionally, enums are also
checked in this step and evaluated in this category since they are a special type of attribute
strongly connected to attributes both in ADOxx and in EMF. For enums, we also checked
the correct setting of the default value when instantiating an enum instance, showing
that the transformation procedure performed the mapping correctly. Furthermore, we
checked that an attribute of enumlist of ADOxx, which yields multi-valued enums, is
correctly set on Ecore side as Enums with a higher upper bound and vice versa.
The category Correctly mapped multiple inheritance pattern is only evaluated in the
direction of ADOxx to EMF since only Ecore supports multiple inheritance. The
procedure as described in the paragraph Process Classes With Multiple Inheritance is
evaluated here. For this purpose, the evaluation checks that the non-inherited classes in
ADOxx contain all other attributes that used to be part of the multi-inheritance class in
Ecore. Also, the procedure evaluates the correct behavior of the incoming relationships,
meaning that the newly created relationships that have __D_construct__ as their
target type are only validly drawable to the same classes as defined in the Ecore source
metamodel.
Finally, the category Correctly mapped composition patterns is evaluated. While no
composition classes as defined in ADOxx are mapped as compositions in Ecore, com-
positions are defined during the transformation from ADOxx to Ecore as described
in the paragraph Add basic containments. For this direction, we, therefore, evaluated
that a user can correctly create basic containment compositions on the EMF side, i.e.,
any element can only be a child of the class RootClass and creatable through either
the composition dynamicContainments or staticContainments. For the direction from
Ecore to ADOxx, we checked those composite elements, as defined in the Ecore source
metamodel, are only creatable when an instance of the composite element exists (i.e., the
AdoScript behaves correctly and shows a popup with the different class instances that
are possibly assignable as the compositum class). Additionally, we checked the correct
behavior when deleting a compositum class, which should cause ADOxx to delete all
composite elements, as defined in the AdoScript written for this purpose.
Since the evaluation of these metrics has to be performed manually, we decided to choose
a representable subset of ten metamodels per direction. The reason is mainly that the
manual evaluation is very time-consuming, and testing all the different combinations by
hand imposes great effort on the person evaluating. As will be described in subsection 6.2.1

77

6. Evaluation

and subsection 6.2.2, the metamodels per source environment are chosen based on the
different categories as introduced and described in section 6.1. We tried to include
metamodels of different sizes per category to have many metamodels with different
characteristics. This way, the evaluation results could be generalized, stating that
the transformation behaves on a certain level on source metamodels of any size of
characteristics.

6.2.1 ADOxx to EMF
Figure 6.1 gives an overview of the distribution by tuples of metric categories for all
the metamodels of the experiments. The orange dots in the graphics resemble the
chosen metamodels for the semantic evaluation. In general it was tried to create an even
distribution that covers metamodels of small, large and medium characteristic size.

(a) Total classes and abstract class distribution (b) Relationships and Compositions distribution

(c) Inheritance depth distribution (d) Attributes and Enums distribution

Figure 6.1: Overall distribution and selected metamodels of the ADOxx data set

The distribution of classes and abstract classes is fairly even, including both the smallest,
the largest and several metamodel in between by those category sizes.

For relationships, both the metamodels with the highest and lowest amount of relation-
ships, as well as the highest and lowest amount of ADOxx compositions were chosen.

78

6.2. Semantic Evaluation

Several metamodels in between were chosen, while focusing on a greater variety of rela-
tionships count rather than composition counts, since ADOxx compositions are not part
of the transformation of this direction.

We chose metamodels of both the lowest and highest depth for inheritance depth. Several
metamodels in between were chosen as well, matching the distribution of the dataset,
i.e., choosing metamodels that have an inheritance depth of two or three.

Finally, the attributes and enums categories distribution shows that this evaluation uses
metamodels with the highest amount of attributes and enums. Several metamodels
were chosen, where the respective count is comparably low, but the occurrence, as seen
in the distribution chart, is fairly high. In general, we tried to cover a greater variety
of both attributes and enums since both of these concepts are part of this direction’s
transformation.

Table 6.8: Result of semantic evaluation for transformation from ADOxx to EMF

Class
functional-

ity

Relation-
ship

functional-
ity

Attribute
functional-

ity

Multiple
inheri-
tance

functional-
ity

Compo-
sition

functional-
ity

bibtex -
bugzilla -
cpl -
dot -
km3 -
mmelementlist -
mysql -
problem -
rss -
tcs -

As can be seen in Table 6.8, the semantic evaluation performed positively in all cases for
every category of every chosen metamodel. This finding validates the semantic correctness
of the transformation in this direction for the chosen metamodels.

While a greater amount of metamodel analysis in a semantic context would be needed
to make assumptions of semantic correctness for an arbitrary set of metamodels, the
variety with which the metamodels we chose from the dataset can make first general
assumptions about the correct behavior of this transformation direction.

79

6. Evaluation

6.2.2 EMF to ADOxx

Figure 6.2 gives an overview of the distribution of the different metamodels of the dataset,
represented as tuples by metric categories. The orange dots in the matrices represent
the chosen metamodels for this evaluation. It was again tried to cover a great variety of
metamodels for the semantic evaluation, which can be interpreted as a fair distribution
of chosen metamodels based on the overall distribution.

(a) Total classes and abstract class distribution (b) Relationships and Compositions distribution

(c) Inheritance distribution (d) Attributes and Enums distribution

Figure 6.2: Overall distribution and selected metamodels of the Ecore data set

For classes and abstract classes it was tried to include the metamodels with the lowest
and the highest of these categories. Since it is not possible to import one metamodel to
ADOxx, as described in subsection 6.1.2, this particular metamodel was not chosen for
this evaluation. This metamodel has the highest count of classes in the dataset; it was
dropped for the metamodel with the next highest class count, which also happens to be
the metamodel with the highest abstract class count. The rest of the metamodels were
chosen in order to represent a fair distribution of the remaining elements.

As for relationships and compositions, the evaluation procedure uses metamodels of
min and max values for these categories. Various metamodels in between were chosen,
creating a fair distribution of these remaining elements.

80

6.2. Semantic Evaluation

For the inheritance distribution, the evaluation focused on covering metamodels with
different inheritance depths, as this reveals the correct behavior of the transformation
algorithm handling inheritance. Another key aspect lies in choosing metamodels with
a high count of multiple inheritance classes, as this reveals the correct behavior of the
algorithm that transforms multi-inheritance classes to normal classes with additional
attributes and correct incoming relationship behavior in ADOxx.

Finally, the evaluation procedure uses metamodels with various attributes and enums.
Again, it is not possible to use the metamodel with the highest attribute count since
a user cannot import this metamodel to ADOxx, as described in subsection 6.1.2. We
chose the metamodel with the next highest count of attributes instead. Besides that, the
evaluation included metamodels with the highest enum count and the lowest attribute
and enum count. While there is not a lot of variety in enum sizes in the dataset, as can
be seen by the flat distribution of most metamodels on the Y-Axis, the focus shifted to
having a fair distribution of chosen metamodels based on their attribute count.

Table 6.9: Result of semantic evaluation for transformation from EMF to ADOxx

Class
function-

ality

Relation-
ship

function-
ality

Attribute
function-

ality

Multiple
inheri-
tance

function-
ality

Compo-
sition

function-
ality

bpfm
cutide
fleet_management
horus
kwd
learnpad
memo
pss
semfis
serm

Table 6.9 shows the results of the semantic evaluation of this transformation’s direction.
As can be seen, the evaluation is valid for all instances of the used metamodels in all
categories, validating the correct semantic behavior of these metamodel transformations
based on the implemented solution.

While this small subset is not representative enough to make conclusions for an arbitrary
set of metamodels, we can make general assumptions about the successful semantic
transformation of metamodels since the evaluation used a great variety of metamodels
with different characteristics in the experiments.

81

CHAPTER 7
Future Work

While this work concluded with the interoperability analysis on metamodel level, several
other areas of research are not part of this scientific work. However, this work could
function as a basis for further analysis and research in related areas.
The remaining metamodel features that are not part of this scientific work can be
analyzed and implemented. This research direction includes an analysis of the feasibility
of transforming the constraint language features from one platform to another but also
transforming compositions defined in ADOxx by the abstract class __D_container__
to compositions in the Ecore target metamodel. Implementing the mapping of record
classes could be another research area, for which a mapping approach was already
described in this thesis, but was not yet implemented.
For the other, researchers could conduct a transformation on model level. While this
work solely focused on metamodel transformation, the generated insights can be used on
a model transformation from ADOxx to Ecore and vice versa. Since this work shows
the feasibility of successfully transforming metamodels and the fact that models always
conform to a certain metamodel, an additional source model file could be provided
together with the metamodel file to transform both artifacts. A proposed solution is to
create a mapping table on the metamodel transformation step that maps the names of
the first-class concepts from the source platform to the target platform. This mapping
table is needed since the metamodel transformation procedure might rename first-class
concepts during the transformation. Taking a source model file and loading it with the
context of the metamodel file would enable creating a valid model file on the target
platform programmatically. For ADOxx, researchers could write a string parser, which
maps the model elements from an EMF model to an .adl file, which is a human-readable
format of a model definition and which can be imported into ADOxx [adob]. On Ecore
side, one could use the Ecore-Reflection API, which is part of the Ecore Java API [emfc].
Through this API, the different model elements could be created reflectively, enabling
model transformation also on Ecore side.

83

7. Future Work

Another research area would be to transform the concrete syntax of the metamodel and
model elements to the target platform. Both ADOxx and EMF allow the definition of
graphical elements accompanied by a certain metamodel. In ADOxx, a transformation
procedure could create graphical representations within a GraphRep attribute of a class,
which is specifiable by a distinct syntax of this ADOxx attribute. But also the definition
of a graph representation in .svg syntax would be a possible solution to create the
concrete syntax. On Ecore side, plugins like Sirius [emfd] could be used, that allow to
define concrete syntax in .svg as well. This approach would be a trivial and feasible
transformation of the concrete syntax since .svg files are enabled in both platforms by
default.

Finally, one could go further than the meta-meta model level usually present in model-
driven engineering. As was shown in this scientific work, some metamodeling concepts
differ a lot from other metamodeling concepts. E.g., in ADOxx, only single inheritance is
supported, while in EMF, multiple inheritance is possible for user-defined classes. An
in-depth research area would be to define a 4th model layer on top of the meta-meta model
layer (the meta-meta-metamodel layer), which would describe all the meta-metamodel
features like inheritance, composition, and so forth present in a metamodel environment.
The scientific work would then include the research of defining general mappings of those
features on this particular level, which could benefit model transformation for arbitrary
metamodeling platforms.

84

CHAPTER 8
Conclusio

This scientific work focused on creating an M3 level based bridge that would enable
interoperability between the two metamodeling platforms ADOxx and EMF.

It has done so by introducing the concepts of metamodeling and interoperability and
then introducing the concrete technologies of ADOxx and EMF. It further revealed the
state-of-the-art of metamodel platform interoperability, showing that several solutions are
already implemented for a variety of metamodeling platforms, yet no scientific mention
of creating interoperability between ADOxx and EMF is present. A comparison of the
two metamodeling platforms that followed revealed that both platforms share many
similarities, like their first-class concepts, but also have a lot of differences, like their
inheritance multiplicity. The next part of this work focused on describing the proposed
M3 level bridges’ concrete implementation details based on the previous steps’ comparison
results. Those bridges include a transformation procedure for ADOxx metamodels to EMF
metamodels and a procedure for transforming EMF metamodels to ADOxx metamodels.
Finally, this work contains an experiment with a distinct set of metamodels of either
platform, which included executing the transformation procedures and collecting static
data (like class counts) and semantic data (like correct behavior of composition patterns).
We investigated the results in a context of syntactic correctness and semantic equivalence.
This work showed that most metamodels can be transformed into a metamodel of the
target platform. Their static features are syntactically valid, and their behavior on
the target platform is semantically equivalent to the source platform. We also showed
that failing imports in the current iteration of the transformation procedure can be
mitigated in the future through implementing special procedures, increasing the amount
of importable metamodels into the target platform ADOxx.‚

85

8. Conclusio

At the beginning of this work, two research questions were introduced. They are mentioned
here again, followed by their answers that this thesis provided:

1. Is interoperability between the two metamodel platforms feasible?
Yes, interoperability is feasible for most metamodels. The experiments showed that
the transformation of ADOxx metamodels to EMF metamodels is always feasible.
On the other hand, this work showed that certain metamodel elements might be
too large for some data types in ADOxx. This finding poses a certain limitation to
the transformation feasibility. A proposed solution of reading the affected values
dynamically through AdoScript can mitigate this problem though, which bypasses
the limitation of data definition boundaries.
Since these transformations allow the import of target metamodels to the target envi-
ronment, interoperability of the platform is proven, according to the interoperability
definitions in section 2.4.

2. How well performs the proposed solution syntactically and semantically?

The evaluation showed that for the metamodels that could be transformed behaved
syntactically correct and semantically equivalent.
In section 6.1 the evaluation showed that the gathered metrics for the transformed
metamodels are equivalent to the expected metrics for a certain category. It also
showed that those transformed metamodels could be imported and used on either
platform without yielding any errors or warnings. This observation shows that
the transformation behaved expectedly and the transformation procedure achieved
syntactic correctness of the transformed files.
In section 6.2 the evaluation showed that the semantic behavior is equivalent in
source and target platforms for both transformations. We could verify simple
semantic features, like the class and attribute creation being equal on either
platform. For the transformation direction from Ecore to ADOxx, We could verify
that complex semantic features, like the correct behavior of compositions and
multi-inheritance classes, perform semantically equivalent as they did in the source
environment of EMF.

This work concludes with possible future research areas in chapter 7 that build upon this
thesis’s topic and can yield great benefit to the domain of Model-Driven Engineering.

The transformation procedure will be deployed openly as a web app which is navigateable
through the URL http://me.big.tuwien.ac.at/. A user can open this site on
a web browser and perform the unidirectional transformations by providing a source
metamodel of the platforms ADOxx or EMF. Figure 8.1 shows a screenshot of the so-far
developed web application.

86

http://me.big.tuwien.ac.at/

Figure 8.1: Screenshot of the deployed transformation web app

87

List of Figures

2.1 Visual representation of metamodel layers of UML 7
2.2 Sample ADOxx class hierarchy editor . 11
2.3 Sample ADOxx modelling toolkit palette and canvas 12
2.4 Excerpt of the ADOxx dynamic meta-metamodel [Bor18] 13
2.5 Attribute Facets available per attribute type [adoe] 14
2.6 Relation of ADOxx dynamic metamodel and user-defined metamodel [adog] 15
2.7 Sample EMF metamodel editor instance 16
2.8 Sample properties section of an EMF metamodel element 17
2.9 Creating and editing a sample EMF model 18
2.10 Excerpt of the Ecore meta-metamodel[BWA21] 18

5.1 Technological view on the two unidirectional transformations [BWA21] . . 34
5.2 Metamodel containment feature of target Ecore metamodel 41
5.3 Comparison of attribute editing interface of both metamodeling platforms 49
5.4 Multi-inheritance example (a) and the adapted expansion pattern (b) [BWA21] 51
5.5 UML class diagram metamodel of the illustrative scenario 56
5.6 UML class diagram metamodel for the direction ADOxx to EMF 57
5.7 Transformation scenario: From an ADOxx to an Ecore metamodel 58
5.8 Transformation scenario: From an Ecore to an ADOxx metamodel 60

6.1 Overall distribution and selected metamodels of the ADOxx data set . . . 78
6.2 Overall distribution and selected metamodels of the Ecore data set 80

8.1 Screenshot of the deployed transformation web app 87

89

List of Tables

4.1 Comparison of M3 Level features of ADOxx and Ecore [BWA21] 26

6.1 Metrics overview of the source metamodels used in the experiments . . . 64
6.2 Successful import metric for ADOxx to EMF transformation 67
6.3 ADOxx source metamodels metrics . 69
6.4 Ecore transformed metamodels metrics . 70
6.5 Successful import metric for EMF to ADOxx transformation 71
6.6 Ecore source metamodels metrics . 74
6.7 ADOxx transformed metamodels metrics 75
6.8 Result of semantic evaluation for transformation from ADOxx to EMF . . 79
6.9 Result of semantic evaluation for transformation from EMF to ADOxx . . . 81

91

List of Algorithms

5.1 Overall procedural transformation from ADOxx to EMF 36

5.2 Name transformation algorithm to create valid names in EMF 36

5.3 Overall procedural transformation from EMF to ADOxx 44

5.4 AdoScript code for handling composition [BWA21] 54

5.5 AdoScript code for handling multiple inheritance [BWA21] 55

6.1 Evaluation procedure of one analysis direction 66

93

List of Code Examples

5.1 JAXB unmarshalling of ADOxx metamodel XML file 35
5.2 ADOxx ALL file excerpt showcasing enum creation 48
5.3 Sample ADOxx attribute representation value 48
5.4 Sample Attribute InterRefDomain value of a compositum 51
5.5 Sample MODELTYPE value of an ADOxx library 53
6.1 Affected AttributeInterRefDomain value causing import to fail 72

95

Bibliography

[adoa] The adoxx metamodelling platform - welcome to adoxx.org - adoxx.org.
https://www.adoxx.org/live/home. Accessed: 2022-04-01.

[adob] Adoxx model language adl - adoxx.org. citehttps://www.adoxx.org/
live/model-language-adl. Accessed: 2022-04-01.

[adoc] Adoxx_all_api_public - gitlab. https://git.boc-group.eu/
adoxx/adoxx_all_api_public. Accessed: 2022-04-01.

[adod] All2abl converter service - adoxx.org. https://www.adoxx.org/live/
all2abl-converter-service. Accessed: 2022-04-01.

[adoe] Attribute facets - adoxx.org. https://www.adoxx.org/live/facets.
Accessed: 2022-04-01.

[adof] Class attribute and attribute - adoxx.org. https://www.adoxx.org/
live/class-attribute-and-attribute. Accessed: 2022-04-01.

[adog] Predefined abstract classes (dynamic) - adoxx.org. https://www.adoxx.
org/live/predefined-abstract-classes-dynamic-. Accessed:
2022-04-01.

[adoh] Scripting language adoscript - adoxx.org. https://www.adoxx.org/
live/scripting-language-adoscript. Accessed: 2022-04-01.

[BBK+19] Dominik Bork, Robert Andrei Buchmann, Dimitris Karagiannis, Moonkun
Lee, and Elena-Teodora Miron. An open platform for modeling method
conceptualization: The omilab digital ecosystem. Commun. Assoc. Inf.
Syst., 44:32, 2019.

[BCC+10] Hugo Brunelière, Jordi Cabot, Cauê Clasen, Frédéric Jouault, and Jean
Bézivin. Towards Model Driven Tool Interoperability: Bridging Eclipse and
Microsoft Modeling Tools. In Modelling Foundations and Applications - 6th
European Conference, ECMFA 2010, Proceedings, pages 32–47. Springer,
2010.

97

https://www.adoxx.org/live/home
cite https://www.adoxx.org/live/model-language-adl
cite https://www.adoxx.org/live/model-language-adl
https://git.boc-group.eu/adoxx/adoxx_all_api_public
https://git.boc-group.eu/adoxx/adoxx_all_api_public
https://www.adoxx.org/live/all2abl-converter-service
https://www.adoxx.org/live/all2abl-converter-service
https://www.adoxx.org/live/facets
https://www.adoxx.org/live/class-attribute-and-attribute
https://www.adoxx.org/live/class-attribute-and-attribute
https://www.adoxx.org/live/predefined-abstract-classes-dynamic-
https://www.adoxx.org/live/predefined-abstract-classes-dynamic-
https://www.adoxx.org/live/scripting-language-adoscript
https://www.adoxx.org/live/scripting-language-adoscript

[BCWB17] Marco Brambilla, Jordi Cabot, Manuel Wimmer, and Luciano Baresi.
Model-Driven Software Engineering in Practice : Second Edition. Morgan
& Claypool Publishers, 2017.

[BG14] Fabian Büttner and Martin Gogolla. On ocl-based imperative languages.
Science of Computer Programming, 92:162–178, 2014. Selected papers from
the Brazilian Symposium on Formal Methods (SBMF 2011).

[BKP20] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. A survey of
modeling language specification techniques. Inf. Syst., 87, 2020.

[Bor18] Dominik Bork. Metamodel-based analysis of domain-specific conceptual
modeling methods. In Robert Andrei Buchmann, Dimitris Karagiannis,
and Marite Kirikova, editors, The Practice of Enterprise Modeling, pages
172–187, Cham, 2018. Springer International Publishing.

[BPB21] Ilia Bider, Erik Perjons, and Dominik Bork. Towards on-the-fly cre-
ation of modeling language jargons. In Vadim Ermolayev, David Es-
teban, Heinrich C. Mayr, Mykola Nikitchenko, Sergiy Bogomolov, Gry-
goriy Zholtkevych, Vitaliy Yakovyna, and Aleksander Spivakovsky, editors,
Proceedings of the 17th International Conference on ICT in Education, Re-
search and Industrial Applications. Integration, Harmonization and Knowl-
edge Transfer. Volume I: Main Conference, PhD Symposium, and Posters,
Kherson, Ukraine, September 28 - October 2, 2021, volume 3013 of CEUR
Workshop Proceedings, pages 142–157. CEUR-WS.org, 2021.

[BWA21] Dominik Bork, Manuel Wimmer, and Konstantinos Anagnostou. Towards
interoperable metamodeling platforms: The case of bridging adoxx and
emf. 2021.

[CG12] Jordi Cabot and Martin Gogolla. Object constraint language (OCL): A
definitive guide. In Formal Methods for Model-Driven Engineering, Lecture
notes in computer science, pages 58–90. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[CGB+21] Alessandro Colantoni, Antonio Garmendia, Luca Berardinelli, Manuel
Wimmer, and Johannes Bräuer. Leveraging model-driven technologies for
JSON artefacts: The shipyard case study. In 24th International Conference
on Model Driven Engineering Languages and Systems (MODELS), pages
250–260. IEEE, 2021.

[CMR02] Yania Crespo, José Marqués, and Juan Rodríguez. On the translation of
multiple inheritance hierarchies into single inheritance hierarchies. pages
30–37, 01 2002.

98

[cs.] http://www.cs.sjsu.edu/ pearce/modules/lectures/uml2/index.htm).
http://www.cs.sjsu.edu/~pearce/modules/lectures/uml2/
index.htm. Accessed: 2022-04-01.

[DRDRIP14] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio.
Mining metrics for understanding metamodel characteristics. In Proceedings
of the 6th International Workshop on Modeling in Software Engineering -
MiSE 2014, New York, New York, USA, 2014. ACM Press.

[emfa] Atl | the eclipse foundation. https://www.eclipse.org/atl/. Ac-
cessed: 2022-04-01.

[emfb] Atl transformations | the eclipse foundation. https://www.eclipse.
org/atl/atlTransformations/. Accessed: 2022-04-01.

[emfc] Overview (emf javadoc). https://download.eclipse.org/
modeling/emf/emf/javadoc/2.4.2/overview-summary.html.
Accessed: 2022-04-01.

[emfd] Sirius | home. https://www.eclipse.org/sirius/. Accessed: 2022-
04-01.

[FRK06] Hans-Georg Fill, Timothy Redmond, and Dimitris Karagiannis. FDMM:
A Formalism for Describing ADOxx Meta Models and Models. 2006.

[Gro15] Object Management Group. Xml metadata interchange (xmi) specification.
Technical report, Object Management Group, 2015.

[jso] Convert xml to java object online - json2csharp toolkit. https://
json2csharp.com/xml-to-java. Accessed: 2022-04-01.

[KBJK03] Harald Kühn, Franz Bayer, Stefan Junginger, and Dimitris Karagiannis.
D.: „enterprise model integration. volume 2738, pages 379–392, 09 2003.

[Ker08] Heiko Kern. The Interchange of (Meta)Models between MetaEdit+ and
Eclipse EMF Using M3-Level-Based Bridges. 2008.

[Ker16] Heiko Kern. Model interoperability between meta-modeling environments
by using m3-level-based bridges. PhD thesis, Leipzig University, Germany,
2016.

[KHK11] Heiko Kern, Axel Hummel, and Stefan Kühne. Towards a comparative
analysis of meta-metamodels. In Proceedings of the compilation of the
co-located workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11,
NEAT’11, & VMIL’11, pages 7–12. ACM, 2011.

[KK07] Heiko Kern and Stefan Kühne. Model Interchange between ARIS and
Eclipse EMF. In 7th OOPSLA Workshop on Domain-Specific Modeling at
OOPSLA, volume 2007, 2007.

99

http://www.cs.sjsu.edu/~pearce/modules/lectures/uml2/index.htm
http://www.cs.sjsu.edu/~pearce/modules/lectures/uml2/index.htm
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/atlTransformations/
https://www.eclipse.org/atl/atlTransformations/
https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.2/overview-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.2/overview-summary.html
https://www.eclipse.org/sirius/
 https://json2csharp.com/xml-to-java
 https://json2csharp.com/xml-to-java

[KM06] Harald Kühn and Marion Murzek. Interoperability Issues in Metamodelling
Platforms. 2006.

[LMWK14] Phillip Langer, Tanja Mayerhofer, Manuel Wimmer, and Gerti Kappel.
On the usage of uml: On the usage of uml. In Hans-Georg Fill, Dimitris
Karagiannis, and Ulrich Reimer, editors, Modellierung 2014, pages 289–304.
GI, 2014.

[NBM+15] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya,
and Manuel Wimmer. XMLText: from XML schema to xtext. In Proc.
of the ACM SIGPLAN International Conference on Software Language
Engineering (SLE), pages 71–76. ACM, 2015.

[PRTV12] Ken Peffers, Marcus A. Rothenberger, Tuure Tuunanen, and Reza Vaezi.
Design science research evaluation. In Ken Peffers, Marcus A. Rothen-
berger, and William L. Kuechler Jr., editors, Design Science Research in
Information Systems. Advances in Theory and Practice - 7th International
Conference, DESRIST 2012, Las Vegas, NV, USA, May 14-15, 2012. Pro-
ceedings, volume 7286 of Lecture Notes in Computer Science, pages 398–410.
Springer, 2012.

[RBKJ06] Jolita Ralyte, Per Backlund, Harald Kühn, and Manfred Jeusfeld. Method
chunks for interoperability. volume 4215, pages 339–353, 11 2006.

[WK05] Manuel Wimmer and Gerhard Kramler. Bridging grammarware and mod-
elware. In Jean-Michel Bruel, editor, Satellite Events at the MoDELS 2005
Conference, pages 159–168. Springer, 2005.

100

Appendix: DevOps Manual

This DevOps manual explains the structure of the transformation program, the required
prerequisites to execute any program, and finally, an explanation of the execution
possibilities implemented in this solution.

Module introduction
The overall source code consists of different Maven modules, which shall ease the use of
the encapsulated functionality of the program for any specific use case.

The module adoxx-ecore-converter is the central module of this application. It is
the root of all the other modules that are part of this environment. A structure of the
module hierarchy is displayed in the following. An explanation of the different modules
follows further below:

• adoxx-ecore-converter

– adoxx-all-api-public

– converter-shared

– adoxx-to-ecore-converter

– ecore-to-adoxx-converter

– adoxx-evaluator

– ecore-evaluator

– executor

– adoxx-ecore-rest-controller

– adoxx-ecore-converter-frontend (not part of Maven modules)

adoxx-ecore-converter
This module is the main module of the whole development project. It consists of all the
different other modules and the dependencies that they share.

101

adoxx-all-api-public
This module contains the code of the ADOxx ALL Public API. It is included in this
repository since no public Maven repository is offered where this API is stored. The code is
cloned from the repository [adoc] and not modified, other than the adoxx-ecore-converter
module mentioned as parent.

converter-shared
This module contains interfaces that are used by a variety of modules in this project. To
avoid duplicated code on any module, we created this shared library.

adoxx-to-ecore-converter
This module contains the logic for transforming an ADOxx metamodel to an Ecore
metamodel. The class ADOxx2EcoreTransformator within this module contains the
main procedure for the transformation.

The package converter contains semantically separated classes that create metamodel
elements based on an input element. Where possible, those classes return a newly
created element (e.g. a single attribute), which is added in the main-procedure class
ADOxx2EcoreTransformator. The classes used in this package are:

• ADOxx2EcoreAttributeConverter

• ADOxx2EcoreClassConverter

• ADOxx2EcoreEnumConverter

• ADOxx2EcoreInterrefConverter

• ADOxx2EcorePackageConverter

• ADOxx2EcoreRelationshipConverter

The package util contains Util classes that are need on several other parts of the
module, or that do not semantically fit inside the converter package, as they do not
return target-metamodel elements. Those classes include:

• ADOxx2EcoreClassFinder
(find classes based on a given name inside packages)

• ADOxx2EcoreDuplicateNameResolver
(traverses through all metamodel elements and assigns new names to duplicates)

• ADOxx2EcorePrinter
(Writes to a FileOutputStream and returns the location of the newly created file)

102

• ADOxx2EcoreUtil
(contains several static util method like formatting a name to an EMF consistent
name)

The package metamodel.adoxx contains the classes that are used by JAXB when
unmarshalling an XML file and were auto generated with the tool JSONtoCSharp [jso].

ecore-to-adoxx-converter
This module contains the logic for transforming an Ecore metamodel to an ADOxx
metamodel. The class Ecore2ADOxxTransformator within this module contains the
main procedure for the transformation.
The package converter contains semantically separated classes that create metamodel
elements based on an input element. Where possible, those classes return a newly
created element (e.g., a single attribute), which is added in the main-procedure class
ADOxx2EcoreTransformator. The following list shows the classes present in this
package and provides an explanation where the meaning of a class name is not trivial:

• Ecore2ADOxxAttributeConverter

• Ecore2ADOxxClassConverter

• Ecore2ADOxxCompositionConverter
(Creates and edits attributes and meta-information strings related to compositions
on new or existing target metamodel elements)

• Ecore2ADOxxMetaInformationConverter
(Assigns the meta-information strings used for multiple inheritance and compositions
as well as the ADOScripts to the appropriate library attributes)

• Ecore2ADOxxMultiInheritanceConverter
(Assigns non-yet-assigned attributes of a multi-inheritance relationships to classes
and handles the procedure of incoming relationships on multi-inheritance classes)

• Ecore2ADOxxRelationshipConverter

The package util contains Util classes that are needed on several other parts of the
module or that do not semantically fit inside the converter package, as they are not
directly linked to creating and editing target metamodel elements. Those classes include:

• Ecore2ADOxxPrinter
(Calls the ALL2ABL web service and writes the generated ALL and ABL file to a
FileOutputStream)

• Ecore2ADOxxUtil
(Contains several static util methods like finding all incoming relationships of an
Ecore class)

103

adoxx-evaluator
This module contains the logic to create evaluation metrics for an ADOxx metamodel.
It uses an XmlAnalyzer to analyze an ADOxx XML file and returns an instance of
EvaluationResult, which is an interface defined in the module converter-shared.

ecore-evaluator
This module contains the logic to create evaluation metrics for an Ecore metamodel.
It uses an XmiAnalyzer to analyze an Ecore XMI file and returns an instance of
EvaluationResult, which is an interface defined in the module converter-shared.

executor
The module contains example main classes that a developer can use to trigger any
module’s results described above. We provided some classes to ease development and
usage. These classes are listed and described here:

• TransformDemo.java (Sample execution procedure of both the ADOxx and
EMF transformation programs with all available metamodels)

• ADOxx2EmfEvaluation.java (Sample execution procedure that evaluates ADOxx
source metamodels and EMF target metamodels and collects the results in an Excel
File)

• Emf2ADOxxEvaluation.java (Sample execution procedure that evaluates EMF
source metamodels and ADOxx target metamodels and collects the results in an
Excel File)

adoxx-ecore-rest-controller
This module contains a SpringBoot application that serves as the rest controller for the
deployed web-app. It contains the following endpoints:

• @PostMapping("/adoxx-to-emf/upload")
When navigating to this URL and providing an ADOxx metamodel file in the
request body, the endpoints transforms this file by calling the transformation
module internally and returns the generated file name upon creation.

• @GetMapping("/adoxx-to-emf/fileName")
When navigating to this URL and specifying the file name via the URL, the
endpoint returns the transformed metamodel file in the EMF xmi format (file name
ending with .ecore) that was previously generated.

104

• @PostMapping("/emf-to-adoxx/upload")
When navigating to this URL and providing an Ecore metamodel file in the request
body, the endpoints transforms this file by calling the transformation module
internally and returns the generated file name upon creation.

• @GetMapping("/emf-to-adoxx/fileName")
When navigating to this URL and specifying the file name via the URL, the
endpoint returns the transformed metamodel file in the ADOxx .abl format that
was previously generated.

adoxx-ecore-converter-frontend
This module contains the Angular application that serves as the frontend for the deployed
web-app. It contains two components, the adoxx-to-ecore component and the
ecore-to-adoxx component. They possess the UI components and the frontend logic
to interact with a specific endpoint of the module adoxx-ecore-rest-controller.

Prerequisites
The following tools are required in order to execute any of the described modules above:

Tool Version
Java = 11

Maven ≥ 3.6.0
node.js ≥ 16.0
npm ≥ 8.0

105

Execution
This section explains how to interact with the various executable of the code base.

Execution of distinct modules
To interact with distinct modules, they have to be built first. A user has to perform the
following steps:

1. Navigate to the root folder of the adoxx-ecore-converter module

2. Execute mvn clean install

3. Wait for modules to be successfully built

Executing the modules can now be performed in two ways:

Either by creating an own Maven project and including the root module or any sub
module:

<dependency>
<groupId>at.ac.tuwien</groupId>
<artifactId>adoxx-to-ecore-converter</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>

Or use one of the existing execution files located in the module executor. Their
execution can be triggered e.g., by an IDE (like IntelliJ), by navigating to the main
method and selecting the execution option.

Execution of web application
To execute the web-application locally, the following steps have to be performed:

1. Execute the command mvn clean install on the root module
adoxx-ecore-converter to build the whole application

2. Execute the controller application from an IDE or with the command
mvn spring-boot:run inside the rest controller application folder

3. Execute npm install inside the folder of the module
adoxx-ecore-converter-frontend.

4. Excecute the command ng serve to run the frontend application and then navi-
gate to http://localhost:4200

106

http://localhost:4200

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Goals
	Structure

	Foundations
	Metamodeling
	ADOxx
	EMF
	Interoperability

	Related Work
	Comparative analysis of ADOxx and EMF
	Core Modeling Concepts
	Classes
	Relationships
	Attributes
	Inheritance
	Grouping
	Constraint Language

	Metamodel transformation
	Transformation overview
	ADOxx to EMF
	EMF to ADOxx
	Scenario

	Evaluation
	Syntactic Evaluation
	Semantic Evaluation

	Future Work
	Conclusio
	List of Figures
	List of Tables
	List of Algorithms
	List of Code Examples
	Bibliography
	Appendix: DevOps Manual
	Module introduction
	Prerequisites
	Execution

