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Abstract
This paper discusses an end-to-end methodology for real-time surgical conformance checking that
uses multimodal process mining, mixed reality (MR), and large language model (LLM) prompting. Our
approach aims to support surgeons and medical teams by comparing as-is operational data—captured
through a variety of sensors including MR-based gaze tracking—with a reference surgical process model
encoded in Business Process Modeling Notation (BPMN). We illustrate how shallow and deep human-in-
the-loop feedback mechanisms can be integrated with chain-of-thought prompting to provide relevant,
context-aware, and iterative feedback during surgery. We further indicate which aspects of the surgery
can be monitored (and hence queried) by our multimodal process mining engine. By enabling precise,
actionable feedback during critical surgical procedures, our approach enhances the ability to identify
deviations, ensure adherence to best practices, and reduce human error. Ultimately, this methodology
empowers surgical teams to make data-driven adjustments, promotes better patient outcomes, and
allows hospitals to monitor surgical conformance effectively, setting a new standard for process-driven
healthcare assistance.
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1. Introduction

Modern surgical procedures are intricate and involve numerous steps, actors, instruments,
and real-time decisions. Ensuring that each step in the as-is surgery conforms to a reference
(or “desired”) model is crucial for patient safety, consistent outcomes, and compliance with
institutional guidelines. Traditional methods of process oversight often rely on paper-based
checklists or single-modality digital signals (e.g., time stamps of major milestones), which offer
limited real-time insight.
Process mining [1] addresses this gap by extracting event logs from complex systems and

reconstructing an as-is process model. Yet standard process mining may overlook the depth
of real-time information available from modern medical devices, images, sensor data, and
user interactions in an operating room [2]. The growing accessibility of mixed reality (MR)
systems and advanced wearable sensors (like gaze trackers) opens the door to multimodal
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process mining [2, 3], where we capture a richer set of signals beyond textual or numeric logs
(e.g., surgeon gaze, instrument position, physical environment changes, real-time vitals).

Meanwhile, Large Language Models (LLMs) allow us to harness conversational and chain-of-
thought prompting to incorporate human expertise dynamically. Surgeons, nurses, and other
staff can interact with the system at various depths: (1) Shallow feedback: Quick confirmations
or corrections to immediate queries (e.g., “Is the incision completed?”), and (2) Deep feedback:
More reflective input that leads to refining the underlying process model or augmenting the
system’s domain knowledge [4].

Mixed reality interfaces can further project relevant information in the surgical environment,
supporting Spatial Conceptual Modeling [5] to visualize conformance data in situ. This integra-
tion bridges the gap between human expertise and automated systems by enabling real-time
contextual feedback and adaptive process modeling. For instance, visual overlays or auditory
alerts can notify surgeons of deviations from standard procedures or highlight critical decision
points, leveraging AI-based interpretation of multimodal data [6].

2. Related Work

The integration of artificial intelligence (AI) and mixed reality (MR) in surgical environments
has emerged as a promising research area, driven by advancements in computer vision, language
models, and multimodal process mining. This section reviews the most relevant contributions
in this domain.

Recent efforts, such as Surgical-LLaVA [7], have demonstrated the potential of large language
and vision models for understanding surgical scenarios, offering a foundation for enhanced
decision support systems. Similarly, Yuan et al. [8] proposed a procedure-aware surgical video-
language pretraining approach, utilizing hierarchical knowledge augmentation to improve the
interpretability of surgical workflows. Digital twins, as described by Ding et al. [9], provide
a unifying framework for surgical data science, leveraging geometric scene understanding to
create comprehensive models of the operating room (OR). Complementing this, holistic OR
domain modeling using semantic scene graphs has been explored by Özsoy et al. [10], enabling
a detailed representation of surgical environments.

Further advancements in surgical scene graph knowledge have been achieved by Yuan
et al. [11], who incorporated scene graphs into visual question answering (VQA) systems
for surgical applications, thereby enhancing context-awareness in automated systems. The
Ophnet benchmark by Hu et al. [12] provides a large-scale video dataset for ophthalmic surgical
workflow understanding, facilitating the development of robust AI models in the domain.

Incorporating mixed reality into surgical planning and execution has also gained traction.
Bracale et al. [13] highlighted the utility of MR in preoperative planning for colorectal surgery,
showcasing its potential to improve surgical outcomes. From a conceptual perspective, Fill [5]
introduced spatial conceptual modeling, which anchors knowledge in the physical world using
augmented reality technologies, enabling innovative applications in medical and other domains.

Our prior contributions have laid the groundwork for advancing multimodal process mining
and its applications. In Multimodal Process Mining [2], we introduced an approach to enrich
traditional process mining with multimodal evidence, capturing data from diverse sources such



as sensors, images, and user interactions. Building on this, we explored how to enhance business
process event logs with multimodal evidence in [3], demonstrating the potential for deeper
insights. In [4], we addressed the challenge of tailoring multimodal data representations to
stakeholder-specific terminology for improved interpretability. Finally, in [6], we extended
the multimodal paradigm to conceptual modeling, showcasing how AI can leverage visual
and auditory cues to interpret UML diagrams. These contributions collectively highlight the
potential of multimodal approaches in augmenting traditional process and conceptual modeling
practices.

By uniting algorithmic-symbolic rigor with LLM-driven sub-symbolic flexibility and human
expertise, our approach transcends the constraints of rule-based process mining, enabling a
more dynamic and contextually rich analysis of surgical workflows.

3. Methodology Overview

We formalize the multimodal process monitoring and adaptive feedback mechanism as an
optimization problem over a hybrid state space 𝒮 consisting of structured process models,
multimodal sensor inputs, and user feedback mechanisms.

State Representation Let the state at time 𝑡 be represented as: 𝑆𝑡 = (𝑀𝑡, 𝑋𝑡, 𝑈𝑡), where
𝑀𝑡 ∈ ℳ represents the current process model state (e.g., BPMN graph representation, stored in a
Retrieval Augmented Graph [14]), 𝑋𝑡 ∈ 𝒳 denotes the vector of multimodal sensor observations
(e.g., gaze tracking, instrument logs, voice commands), and 𝑈𝑡 ∈ 𝒰 captures the human feedback
at time 𝑡, either shallow (e.g., confirmation) or deep (e.g., structural model changes).

Transition Function The state transition function 𝑇 ∶ 𝒮 × 𝒜 → 𝒮 maps the current state
and action to a new state, 𝑆𝑡+1 = 𝑇(𝑆𝑡, 𝐴𝑡) where 𝐴𝑡 represents an action taken by the system or
user, such as:

• 𝐴𝑆
𝑡 (SystemActions): Process conformance checking, real-time alerting, adaptiveworkflow

modification,
• 𝐴𝐻

𝑡 (Human Actions): Explicit feedback confirmation, model refinement, procedural
adjustments.

Objective Function The system aims to minimize a cumulative deviation function 𝐽 that
quantifies non-conformance with the desired process model while maximizing the incorpora-
tion of human feedback. This ensures continuous process adaptation and human-in-the-loop
refinement over time.

3.1. Application to a Specific Use Case: Surgery

We instantiate our proposed framework in the context of surgery, a domain characterized by
strict procedural adherence and real-time decision-making.



Process Modeling and Sensor Integration The BPMN model for procedures includes pre-
defined steps such as incision, trocar placement, laparoscope insertion, and organ manipulation.
The system continuously maps real-world observations to this structured model through:

• Vision-based Instrument Detection (𝑋 inst
𝑡 ): Identifies tool usage and compares with

expected sequences.
• Eye-tracking (𝑋 gaze

𝑡 ): Confirms if surgeons are focusing on critical areas at appropriate
steps.

• Hand Gesture Recognition (𝑋 gest
𝑡 ): Detects compliance with required movements (e.g.,

correct suturing technique).
• Voice Commands (𝑋 voice

𝑡 ): Captures surgeon-nurse communications for validation.

• Real-time Imaging (𝑋 img
𝑡 ): Analyzes anatomical landmarks for correct procedure execu-

tion.

Illustrative Scenario Consider a scenario where a surgeon employs a novel technique
requiring a secondary incision. The system detects a deviation (𝑋 img

𝑡 and 𝑋 inst
𝑡 differ from the

expected process).
Figure 1 provides a high-level schematic overview of our proposed framework adapted for

the domain of surgery. Two major phases of human-in-the-loop involvement are depicted:

Figure 1: (Top) Illustration of human feedback via (A) Shallow and (B) Deep approaches, and a
multimodal scene tracking. (Bottom) The solution’s pipeline and illustrated (simplified) conceptual
(process) model representation adjusted for conformance checking and guidance.

1. Shallow Feedback (A):
• The system continuously captures data from multiple sources (e.g., gaze tracking,
instrument usage, sensor logs).

• It compares the as-is process to the desired BPMN model.



• When a potential discrepancy or question arises, the system prompts the user
(surgeon, nurse, etc.) for feedback.

• The user provides confirmation, correction, or small clarifications. This feedback is
used to adjust or annotate the current run-time process instance.

2. Deep Feedback (B):

• In-depth reflections by human experts are used to refine the model itself or the
methods that interpret the captured data.

• For instance, if the current process model does not account for a new device or step
introduced by the surgical team, deep feedback cycles can lead to an updated BPMN
model or a reconfiguration of the data capture pipeline.

• Over time, repeated deep feedback loops result in an evolving knowledge base that
is more robust and better tailored to each specific surgery or environment.

A critical component of our setup is the Mixed Reality (MR) environment, which serves
multiple purposes:

• Precision of Multimodal Recordings: By using MR headsets, the system can track the
surgeon’s gaze in relation to specific instruments or areas of the patient’s body. Likewise,
position and orientation of surgical staff can be recorded.

• Spatial Conceptual Modeling for Feedback: We build on Spatial Conceptual Mod-
eling [5], which allows us to overlay real-time process conformance data directly into
the OR environment. For example, a soft highlight (visible in the MR headset) might
appear over the next instrument to be used, or an alert icon might appear above a piece
of equipment that must be sanitized.

3.2. Chain-of-Thought LLM Prompting

The proposed methodology employs a conversation engine powered by Large Language Models
(e.g., GPT variants) that can: (1) Parse sensor events and interpret them in the context of
the BPMN model, (2) Generate feedback prompts when conformance might be violated, (3)
Solicit clarifications and deeper insights from the surgeon or nurse (for refining the model),
and (4) Provide intermediate “food-for-thought” (chain-of-thought) to guide the surgical
team or system designers on why certain steps are suggested or flagged.

A key component of our methodology is the construction of well-curated LLM prompts that
merge domain knowledge (e.g., typical steps in a laparoscopic procedure) with real-time sensor
data (e.g., the last tool recognized by a vision sensor was a cauterizing instrument). Below is a
conceptual example of the layered prompts:

Example Prompt for Understanding Mixed Reality Inputs

System (LLM context): “The surgeon’s gaze has been fixated on the laparoscope
for 5 seconds, and the nurse passed the laparoscope 10 seconds ago. The BPMN model
indicates we are in the “Insert Laparoscope” task. Confirm if this step is complete. If
uncertain, ask for feedback from the user.”



Example Prompt for Generating Feedback

System (LLM context after receiving user input): “User indicated that they are
testing a new technique requiring a secondary incision. The current BPMN model
does not include this step. Rather than adding an optional sub-process, this should be
modeled as an alternative process path. Insert an exclusive Gateway with the existing
technique subprocess and the new technique subprocess as subsequent elements. Record
new recommended tasks accordingly. Provide a revised BPMN snippet.”

3.3. Aspects to Monitor for Multimodal Process Mining

Beyond the questions a surgeon might explicitly ask, the system continuously mines data to
update the as-is process model. Table 1 outlines various aspects of surgery that are relevant for
conformance checking, each corresponding to multimodal sensor inputs.

Table 1: Aspects to Monitor for Real-Time Surgical Conformance Checking

Aspect Sensor/Data
Source

Reason for Relevance to Conformance

Instrument
Usage

Instrument detec-
tion via computer
vision (camera) +
staff input logs

To confirm correct usage sequence, detect missing/ex-
tra usage, alert if an instrument wasn’t sterilized, etc.

Gaze Track-
ing

MR headset with
eye-tracking

To assess if the surgeon is focused on the correct re-
gion/patient area. Non-conformance might arise if the
surgeon fails to visually confirm a step (e.g., lack of
inspection).

Hand Ges-
tures

MR/IR sensors,
glove-based track-
ers

To detect if certain steps (e.g., suturing technique) are
performed in standard manner, or to confirm that a
gesture-based command has been recognized.

Patient Vitals Anesthesia ma-
chine logs, heart
rate monitor, SpO2
sensor

To ensure anesthesia compliance steps, watch for
anomalies that might require altering the process (e.g.,
emergency protocols).

Tool Count Vision-based object
detection, manual
logs from nurses

To check if the correct number of instruments/sponges
are present before closure (avoid retained surgical
items).

Environment
Sterility

UV sensor logs,
staff compliance
logs (handwashing,
glove changes)

Conformance checking for infection control steps, ver-
ifying that each area is sanitized prior to the next step.

(continued on next page)



…(table continued)

Aspect Sensor/Data
Source

Reason for Relevance to Conformance

Sur-
geon/Nurse
Position

MR device track-
ing (position/orien-
tation)

To ensure correct posture or vantage point is taken for
certain steps (e.g., for laparoscopic approach, a specific
angle might be recommended).

Incision and
Wound

Camera feed from
laparoscope or
overhead camera

To verify compliance with recommended incision size,
location, and closure technique.

Anatomical
Landmarks

Imaging data
(e.g., real-time
ultrasound, MRI
overlays)

To confirm that the correct organ or region is identified
before proceeding (e.g., right kidney instead of left).

Timeline /
Timing

Digital clock +
event logs

To confirm that each task is within an acceptable
time window (e.g., prophylactic antibiotics repeated
in time).

Commu-
nication
Logs

Voice recognition
or typed notes

To verify that critical verbal confirmations are done
(e.g., “Time Out” procedure).

Clinical Doc-
umentation

EHR (Electronic
Health Record)
system

To confirm data entry is complete and consistent with
the surgical plan (e.g., procedure codes, lab results).

Unexpected
Events

Automatic anomaly
detection (vitals,
sudden camera
movements)

To trigger re-routing of the BPMN process to an emer-
gency sub-process if necessary (e.g., severe hemor-
rhage).

Sur-
geon/Staff
Vitals

Smartwatches,
wearable health
trackers

To monitor the physical state of surgeons and staff
(e.g., heart rate, stress levels, fatigue) and proactively
suggest breaks or duty switches when signs of ex-
haustion or stress are detected, especially in surgeries
involving multiple surgeons.

4. Proposed Evaluation and Future Work

We propose a multi-faceted evaluation framework, leveraging established surgical video datasets
[15, 16, 17] to benchmark performance across several key metrics:

• Annotation Accuracy: Measure tool and event recognition accuracy against expert
annotations.

• Temporal Consistency: Evaluate the alignment between detected events and ground
truth timelines, ensuring timely alerts and correct sequencing.

• Process Conformance: Assess the system’s ability to detect deviations from standard



protocols using conformance checking metrics, such as deviation frequency and critical
event misclassifications.

• For evaluating the robustness across modalities, we will analyze performance consis-
tency across different sensor inputs to ensure reliable multimodal integration.

By applying these metrics on diverse datasets from cataract [15], laparoscopic [16], and
robotic surgery domains [17], we aim to demonstrate the system’s versatility and readiness for
real-time surgical support.

Our roadmap for future work outlines key steps to ensure continuous improvement and
user-centric development: (1) Extend evaluations to large, diverse datasets, including complex
and rare surgical procedures, (2) implement rigorous testing on annotated datasets to validate
real-time performance and scalability, and (3) engage with final users (surgeons, nurses) to
gather feedback on system performance and usability.

5. Conclusion

By integrating multimodal process mining with Mixed Reality and LLM-driven chain-of-thought
prompting, we propose a highly granular, real-time conformance checking methodology for
surgical processes. User confirmations can augment immediate decisions in the operating room,
while deeper reflection iteratively improves the process model over time.

As a result, surgeons can rely on the system to (1) provide step-by-step prompts and clari-
fications, (2) alert them when tasks are out of sequence or incomplete, (3) suggest new tasks
when a procedure deviates from established protocols, and (4) support advanced analytics
using chain-of-thought reasoning that ties sensor data to context-specific knowledge of surgical
procedures.

Despite its promising capabilities, our approach has several limitations. Inaccuracies in sensor
data (e.g., video feeds, gaze tracking) or inconsistent data quality may affect the system’s reliabil-
ity. The methodology validated on selected surgical datasets, may require significant adaptation
to perform effectively across diverse surgical procedures and environments. Achieving true
real-time performance can be challenging due to the computational complexity of multimodal
data fusion and chain-of-thought processing.

Addressing these threats and limitations through continued testing, iterative user feedback,
and technological refinements will be essential for future deployments in dynamic surgical
environments.
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