
A Reference Architecture for the Development of GLSP-based

Web Modeling Tools

Haydar Metin1,2 and Dominik Bork2*

1*EclipseSource, Schwindgasse 20 / 2-3, Vienna, 1040, Austria.
2*Business Informatics Group, TU Wien, Favoritenstrasse 9-11, Vienna, 1040, Austria.

*Corresponding author(s). E-mail(s): dominik.bork@tuwien.ac.at;
Contributing authors: hmetin@eclipsesource.com;

Abstract

Web-based modeling tools provide unprecedented opportunities for the realization of modern, pow-
erful, and usable diagram editors running in the cloud. The development of such tools, however, still
poses significant challenges for developers. The Graphical Language Server Platform (GLSP) aims
to reduce some of these challenges by providing the necessary frameworks to efficiently create web
modeling tools. However, realizing modeling tools with GLSP remains challenging and not much sup-
port for interested tool developers is provided yet. This paper discusses these challenges and lessons
learned after working with GLSP and realizing several GLSP-based modeling tools. We present expe-
riences, concepts, and a reusable reference architecture to develop and operate GLSP-based web
modeling tools. As a proof of concept, we report on the realization of a GLSP-based UML editor called
bigUML. Through bigUML, we show that our procedure and the reference architecture we developed
resulted in a scalable and flexible GLSP-based web modeling tool for the UML. The lessons learned,
the procedural approach, the reference architecture, and the critical reflection on the challenges and
opportunities of using GLSP provide valuable insights to the community and shall ease the decision
of whether or not to use GLSP for future tool development projects. With this paper, we publicly
release a reference implementation of our architecture.

Keywords: UML, Software modeling, GLSP, Modeling tool, Web modeling, LSP

1 Introduction

The development of modeling tools has a long
tradition in modeling research [13, 18, 20, 36,
47] and is acknowledged as a scientific contribu-
tion [38]. The availability of web technologies and
frameworks like the Graphical Language Server
Platform (GLSP), which are built on these tech-
nologies, enable new avenues for the modeling
community to develop and deploy custom, flexible,
and highly usable web-based modeling tools.

Moreover, frameworks like GLSP enable flex-
ibility by allowing developers to customize mod-
eling tools on all architectural layers. While this
provides more freedom and power compared to
traditional metamodeling platforms where cus-
tomizations were mostly only possible at well-
defined places, this freedom also raises the entry
barriers for new developers. However, as of now,
there is a gap in lessons learned, best practices,
and reusable architectural patterns that foster the
development of this new breed of tools. The paper
at hand aims to tackle this gap.

1

Judith Michael
Textfeld
Accepted for publication in Software and Systems Modeling (SoSyM) 
https://www.springer.com/journal/10270 



Modeling tools assist users in efficiently creat-
ing models of high quality by following standards
like UML or ER, or by supporting custom domain-
specific languages [53]. Today, model engineering
has many different tools at its disposal. Most of
these tools are mature applications that have been
actively worked on over a relatively long period
but have barely evolved in recent years [15]. Their
functionalities are often built on older technol-
ogy stacks, i.e., they are not compatible with
state-of-the-art web technologies [8, 9]. Aside from
a tool’s functionalities, a well-designed, modern,
and responsive graphical user interface is crucial
for efficient and enjoyable use [48]. However, cur-
rent tools are often labeled as not very useful [15,
41]. Tool development is, therefore, still denoted as
a crucial part of modeling research and a valuable
research contribution to the community [32, 38].

Historically, Integrated Development Environ-
ments (IDEs), similar to established modeling
tools, were developed as rich clients with built-
in functionality for all the necessary language
support. Recently, a trend toward separating the
client from the language-specific part using the
Language Server Protocol (LSP) [6] to realize
more flexible and modular architectures [4] can be
recognized. This change allows thin clients focus-
ing on responsive and modern UIs to be hosted
on the web and connected to a language server
as the backbone, which does the heavy lifting
and provides the language smarts. As more edi-
tors utilize web technologies, we now see similar
possibilities arising for modeling tools, i.e., web
modeling tools [7, 44]. However, the development
of web-based modeling tools still poses significant
challenges for developers.

The Graphical Language Server Platform
(GLSP) [10] aims to mitigate these challenges by
allowing users to develop modeling tools similar to
other LSP-based editors [43, 44]. Yet, GLSP is rel-
atively new. Documentation and a few examples
already exist but as with every new framework,
there is a lack of reported lessons learned, experi-
ences, best practices, and discussions about using
those. Consequently, researchers and developers
aiming to create new web modeling tools face the
challenge of making an informed decision about
whether or not to adopt new frameworks like
GLSP. Relevant information with respect to such
decisions is missing, e.g., what features such tech-
nology provides, which prerequisites need to be

fulfilled, what effort is attached to the develop-
ment, how the development should be conducted,
and what its limitations are. Moreover, developers
who already chose GLSP for tool development face
the challenge of navigating the existing overarch-
ing code base with several frameworks and com-
ponents to collaboratively realize the GLSP-based
modeling tools.

This paper is an extended version of our previ-
ous conference publication [30]. Several extensions
are reported in this paper, primarily, we want
to steer the reader to: i) a more comprehensive
discussion of related works (see Section 2.1); ii)
a richer elaboration on the history of the refer-
ence architecture development (see Section 3.5);
iii) major extensions to the whole reference archi-
tecture itself (see Section 4) by e.g., more details
on technical implementation with examples (see
Section 5), the addition of several diagrams to
visually illustrate the reference architecture con-
cepts and design patterns; and iv) an extended
discussion now featuring recommendations for
developers and a vision for our reference architec-
ture (see Section 6).

This paper shares our experience of realizing
several web modeling tools with GLSP and pro-
vides a reference architecture that aims to foster
tool development by providing a higher abstrac-
tion layer for modeling tool developers composed
of generic implementations of recurring function-
ality. We share our lessons learned and reflect on
the strengths and weaknesses of GLSP as well as
the prerequisites for realizing modern web model-
ing tools with GLSP. As the modeling community
is increasingly interested in the development of
web modeling tools (cf. [8, 32, 43, 44]), we believe
this paper makes an original contribution that is
of value for researchers and software engineers.
For researchers interested in establishing similar
reference architectures for other tool development
platforms, this paper holds relevant experience,
lessons learned, and practical hands-on patterns.
For developers who consider developing such a
tool or migrating an existing standalone tool (e.g.,
EMF-based) to a web modeling tool, we pub-
licly release a reference implementation of our
architecture to foster adoption and reuse [28, 31].

In the remainder of this paper, Section 2
first introduces GLSP, relevant foundations, and
related works. Afterward, we move the attention

2



to the development and deployment of GLSP-
based web modeling tools in Section 3. A refer-
ence architecture is presented in Section 4 and
its instantiation in the bigUML proof-of-concept
modeling tool is described in Section 5. We close
this paper with a comprehensive discussion of our
lessons learned, a critical reflection, and some rec-
ommendations for prospective GLSP tool devel-
opers in Section 6 and concluding remarks in
Section 7.

2 Graphical Language Server
Platform

The Graphical Language Server Platform (GLSP)
is an extensible open-source framework for build-
ing custom diagram editors based on web tech-
nologies [10]. The realized editors can be inte-
grated into plain web applications but also into
tool platforms such as Eclipse Theia1 and VS
Code2, and even in traditional Rich Client Appli-
cation platforms like Eclipse RCP3. GLSP is an
open-source project hosted at the Eclipse Foun-
dation on GitHub4. GLSP is under active devel-
opment by the community; the current major
release, version 2.2.1, was announced in July 2024.

Generally, GLSP adopts the basic protocol
structure and way of working as introduced by the
Language Server Protocol (LSP) [33, 34]. GLSP
extends LSP to account for the specific challenges
of working with graphical models (compared to
textual documents). These challenges include e.g.,
moving from a two-dimensional (document row,
character position) to a three-dimensional space
(elements occupy a geographical area and can
graphically and semantically compose child ele-
ments); moving from plain editing operations that
boil down to character edits to complex editing
operations like creating a relationship between two
nodes in a diagram, constraining the allowed con-
nections, moving elements geographically inside
another one, etc. In its current version, GLSP-
based web modeling tools are built on the follow-
ing core components (cf. Fig. 1):

1https://theia-ide.org/, last visited: 03.10.2024
2https://code.visualstudio.com/, last visited: 03.10.2024
3https://wiki.eclipse.org/Rich Client Platf orm/, last

visited: 03.10.2024
4https://github.com/eclipse-glsp, last visited: 15.09.2024

Fig. 1: GLSP Core Architecture [10]

• Server framework. Used to build particu-
lar GLSP diagram servers for e.g., UML or a
domain-specific graphical modeling language;

• Client framework. Used to build a particu-
lar GLSP graphical modeling language client
including e.g., rendering styles for the concrete
syntax and user interaction;

• Protocol. The messages that can be exchanged
between the GLSP-Clients and servers are spec-
ified in a flexible and extensible GLSP protocol
which handles graphical diagram editing opera-
tions similar to how LSP handles textual editing
operations;

• Platform integration. Reusable platform
integration components that take an imple-
mented GLSP diagram client and integrate it
seamlessly into e.g., Eclipse RCP, Atom, or
VSCode.

• Source Model. The source containing the
model e.g., a UML model.

With these components, GLSP enables the
development of web-based diagram clients,
whereas the front-end is focused on rendering
the model reacting to user interactions, all the
language smarts like language implementation,
model management, model validation, model
manipulation, etc., are encapsulated in a diagram
server. This separation of concerns, which is
already seeing great adoption and success in LSP,
enables high flexibility and interoperability [7].
Similarly to the idea behind LSP, GLSP allows
the implementation of the language smarts in a
client-agnostic way which fosters reuse and flex-
ible integration of the editor in arbitrary client
frameworks as long as they ‘speak’ the same
language, i.e., they communicate via the stan-
dardized and extensible protocol. What is left to
be done to achieve such multiple-client support

3

https://theia-ide.org/
https://code.visualstudio.com/
https://wiki.eclipse.org/Rich_Client_Platform/
https://github.com/eclipse-glsp


is to customize the user interaction and the look-
and-feel using the client’s API and the platform
integrations offered by GLSP [7].

Accordingly, the GLSP framework is fun-
damentally language-independent, containing no
inherent knowledge of the specific modeling lan-
guage. It provides a reusable foundation that
supports graphical editing operations univer-
sally across any modeling language like the cre-
ation/deletion of nodes and edges. GLSP offers
designated contact points that framework users
are required to implement. These include aspects
such as the source model and its management,
i.e., how the model is saved, edited, and other-
wise manipulated, which constitute the language-
dependent components of GLSP. These implemen-
tations are tailored to the specific requirements
of the graphical language in use, such as UML,
and provide the necessary customization to handle
unique model syntax, semantics, and validation
rules. This architecture aligns with the principles
of LSP, which abstracts language-specific com-
plexities to enhance focus on building effective
client-side applications.

Action & Action Handlers

In the context of GLSP, ‘Actions’ are structured
messages exchanged between client and server.
These are crucial for implementing the Messaging
and Command patterns within GLSP, facilitat-
ing the necessary interactions for operations such
as model updates, element creations, and save
actions. ‘ActionHandlers’ correspond to Actions
by processing these messages. Each ActionHan-
dler is specific to an Action type, interpreting
its data and executing the relevant operations
to modify the system state as requested by the
Action. For example, an ActionHandler for a Cre-
ateOperation5 will add a new element to the
model based on the details provided in the Action.
With these patterns, GLSP inherently supports
multiple undo/redo capabilities. That means that
GLSP manages operations through a command
stack for reversal or replay. This architecture
enables a clear separation of concerns, allowing
for the modular addition or modification of func-
tionalities through new Actions and corresponding

5Operations are special Actions that modify the model
source

Handlers. For more detailed information on imple-
menting Actions and ActionHandlers, the GLSP
documentation6 provides extensive resources and
examples.

Built-in Functionality

There is already a list of functionalities that
GLSP offers out of the box. For example, GLSP
supports the creation of nested nodes within dia-
grams. It also facilitates the customization of
edge routing points, allowing for precise control
over node connections. Additional functionalities
include copy-paste capabilities for model edit-
ing and experimental accessibility features such
as keyboard-only navigation, further detailed by
Sarioglu et al. [45]. At the same time, GLSP inte-
grates keyboard shortcuts for streamlined opera-
tions and experimental helper lines for alignment
and positioning. Essential operations like undo
and redo are natively supported, alongside the use
of ghost elements for previewing changes before
they are applied. For a comprehensive list of all
features, we refer to the GLSP repository on
GitHub7.

2.1 Related Work

In the following, we briefly report on related
frameworks and platforms that focus on the devel-
opment of web-based modeling tools. Note, that
we do not cover a comprehensive systematic
assessment of other approaches as this would not
fit within this paper. The aim is to shed light on
other platforms that provide similar means to sup-
port the development of web-based modeling tools
as GLSP does.

2.1.1 Related Frameworks and
Platforms

Other tools also enable the construction of graph-
ical editors by utilizing web technologies such as
SiriusWeb, CINCO Cloud, WebGME, AToMPM,
PictoWeb, and Kieler. In the following, we briefly
elaborate on our experience of exploring these
tools and the extent to which they support the
development of new web-based modeling tools.

6https://eclipse.dev/glsp/documentation/actionhandler/,
last visited 15.11.2024

7https://github.com/ecl ipse- g lsp/glsp, last visited
24.11.2024

4

https://eclipse.dev/glsp/documentation/actionhandler/
https://github.com/eclipse-glsp/glsp


SiriusWeb8 is a low-code platform to cre-
ate and deploy diagram editors on the web.
It is a further development of the long-lasting
Eclipse project Sirius9 that allowed the devel-
opment of graphical concrete syntaxes for Ecore
metamodels developed with the Eclipse Modeling
Framework. SiriusWeb focuses on providing the
modeling interface through the web while the lan-
guage implementation is not natively supported
by web technologies. SiriusWeb is an open-source
project under the Eclipse Foundation and publicly
hosted in a Github repository10 with an active
developer community. Modeling projects realized
with SiriusWeb can be easily shared with collab-
orators using the project’s URL. The platform
then supports real-time collaborative modeling.
It moreover comes with automated layout algo-
rithms to support the appropriate rendering of
large models. SiriusWeb is also ready for integra-
tion into other web applications via webhooks11.
Such webhooks allow third-party applications to
register to certain platform events, similar to the
actions in GLSP. Once a subscribed event is emit-
ted, SiriusWeb sends an HTTP POST message to
the registered URL.

AToMPM [49]12 is an open-source framework
for designing domain-specific modeling environ-
ments, performing model transformations, and
manipulating and managing models. AToMPM
runs fully in the cloud and allows online collabora-
tive modeling. The framework is hosted as a public
repository on Github13 with extensive documen-
tation for users14. AToMPM, similarly to GLSP,
also separates a client from a server. The client
provides a GUI that modelers and method engi-
neers use to create models and domain-specific
modeling languages, respectively. The framework
is highly flexible and comes with a Plugin Manager
that allows swift extension of the core function-
ality for modeling language- and functionality-
specific requirements [49]. One focus and strength

8https://www.eclipse.org/sirius/sirius-web.html, last
visited: 08.10.2024

9https://eclipse.dev/sirius/, last visited: 09.11.2024
10https://github.com/eclipse-sirius/sirius-web, last visited:

10.11.2024
11http://docs.obeostudio.com/, last visited: 09.12.2024
12https://atompm.github.io/, last visited: 09.11.2024
13https://github.com/AToMPM/atompm, last visited:

09.10.2024
14https://atompm.readthedocs.io/en/latest/, last visited:

08.10.2024

of AToMPM is the efficient definition and exe-
cution of model transformations. AToMPM is a
research framework for the development of new
domain-specific languages with additional features
like model transformation. It follows a traditional
metamodeling framework paradigm where new
modeling languages are defined by means of spe-
cializing in a very generic class diagram language
along well-defined extension paths. Integrations
into other platforms are not intuitively supported.

Web-based Generic Modeling Environment
(WebGME) [24]15 is a well-known tool in
the realm of graphical language engineering
on the web, emerging as a successor to the
original Eclipse Generic Modeling Environment
(GME) [23]. WebGME is hosted as a public
Github repository and still under development
albeit its latest release in 202116 A strength of
WebGME is that the language engineering and
language use components are tightly integrated,
enabling the modeling editor to reflect on the
effects of language (i.e., metamodel) changes on
the fly. WebGME, similarly to SiriusWeb and
AToMPM is focusing on providing a rich and
responsive, web-based user interface to a model.
Unique features of WebGME are its prototypical
inheritance, multi-paradigm modeling, extensibil-
ity, and version control [24]. The architecture of
WebGME also allows the extension of the core
tool with plugins that further enrich the function-
ality of the developed tools. WebGME supports
this extensibility by offering a REST web ser-
vices API that enables language and technology-
independent access to a model via a Model
API [24].

CINCO Cloud [3]17, further development of
the CINCO [35] application, is a powerful client-
server and language server-based architecture for
the development and deployment of modeling
tools in the cloud. CINCO Cloud can be accessed
via a public Gitlab repository18 and it is under
active development. For the realization of graph-
ical modeling editors and the rendering of the
diagrams, CINCO Cloud also uses GLSP and

15https://webgme.org/, last visited: 09.10.2024
16https://github.com/webgme/webgme, last visited:

09.10.2024
17https ://scce .g it lab. io/cinco- c loud/, last visited:

09.10.2024
18https://gitlab.com/scce/cinco- cloud, last visited:

09.10.2024

5

https://www.eclipse.org/sirius/sirius-web.html
https://eclipse.dev/sirius/
https://github.com/eclipse-sirius/sirius-web
http://docs.obeostudio.com/
https://atompm.github.io/
https://github.com/AToMPM/atompm
https://atompm.readthedocs.io/en/latest/
https://webgme.org/
https://github.com/webgme/webgme
https://scce.gitlab.io/cinco-cloud/
https://gitlab.com/scce/cinco-cloud


Sprotty, respectively. Given its roots in the Eclipse
CINCO project, developers can now configure
their language server for a new modeling language
using Xtext and Xtend and then use this language
server within CINCO Cloud. The platform comes
with a clear architecture that separates the mod-
eling language-dependent logic from the core logic
of model editors and the logic in which the client
and server communicate.

Picto Web19 is a platform, that generates
web-based views of conceptual models. Models of
different modeling languages can be imported and
are then transformed into HTML, Graphviz, and
PlantUML formats using rule-based model-to-text
transformations [55]. The focus of Picto Web is to
enable the efficient generation of responsive and
interactive model visualizations on the web. The
development of new modeling languages or full-
fledged web-based model editors is not in the scope
of the current version of Picto Web.

One recently proposed platform that is close
to GLSP is KIELER [19]. KIELER also utilizes
the LSP-extended version of Sprotty for rendering
diagrams. It moreover also uses similar communi-
cation paradigms between the client and the server
and how model updates are treated (i.e., model
edits are first applied to the course model, then an
updated model is sent to the client for rendering).
In contrast to GLSP, which follows a diagram-
first approach, KIELER emphasizes a text-first
approach, assuming a given metamodel and a
textual concrete syntax from which a diagram-
matic representation is automatically generated
and kept consistent during the modeling process.
Another feature of KIELER is that it comes with
advanced visualization and layout algorithms and
a set of default implementations for rendering
models.

In 2023, jjodel20 was introduced [42]. jjodel is
a cloud-based, reflective modeling software real-
ized with web technologies (javascript libraries
and typescript) [50]. One interesting aspect of
jjodel is its aim to support students and the
general user basis by limiting the efforts for con-
figuration, installation, and deployment that nat-
urally establishes an entry barrier for most other

19https://github.com/epsilonlabs/picto-web, last visited:
10.10.2024

20https://github.com/MDEGroup/jjodel, last visited:
14.10.2024

metamodeling platforms [42]. jjodel follows the
traditional metamodeling platform way of sup-
porting language development with a graphical
language definition editor and a default graphical
concrete syntax. The coarse-grained architecture
of jjodel [50] also follows a separation of concerns
where a Model API component encapsulates the
access to the model to a model externalization
component on the one side and to the View Layer
and Rendering components on the other. Commu-
nication between the components is, like in the
case of GLSP, handled by triggered events which
are mapped, with optional constraints, to actions.

Gentleman [22] was also recently introduced.
Gentleman is a lightweight web-based projectional
editor that allows users to create models with
simple structures and manipulate them with user-
friendly projections [22]. The projectional archi-
tecture realized in Gentleman enables users to
efficiently define projections for tailoring the ren-
dering, creation, and manipulation of models in
graphical, tabular, or textual views, or even in
interactive widgets. The architecture of Gentle-
man supports separation of concerns, by separat-
ing the Concept Component API with basic model
CRUD operations from the Projection Component
that supports the definition and management of
model projections and the Editor Component that
handles e.g., the user interaction, import/export
functionality, and that offers extension points to
the developers.

Dandelion [25] is another recently released
cloud-based language engineering workbench. It is
based on a technology stack that primarily uses
web technologies like React and vis.js on the front-
end and Node.js and Typescript on the back-end.
At the core, Dandelion integrates technologies
from the EMF work, like the Eclipse Layout Ker-
nel (ELK), for the automated layout of the mod-
els. Metamodeling in Dandelion is supported by
a graphical editor while the language engineering
itself is supported by the Droid [2] recommender,
which recommends metamodel properties to the
engineer during the metamodeling process itself.
While currently offering an approach that is inde-
pendent of GLSP, the authors stress that they are
interested in aligning to the working scheme of
GLSP [2].

6

https://github.com/epsilonlabs/picto-web
https://github.com/MDEGroup/jjodel


2.1.2 Related Experience with GLSP

Given the rise in popularity of GLSP, an increas-
ing number of academic articles report on their
respective experience of realizing web-based mod-
eling tools with GLSP. In the following, we briefly
reflect on them.

Walker et al. [51] report on their experience
in realizing a domain-specific language for the
development of distributed real-time systems. The
authors report on their success in combining an
Xtext-based textual concrete syntax with a GLSP-
based graphical concrete syntax. Their tool uses
the validation features of GLSP and the platform
integrations to VS Code as an IDE for running the
tool.

Walsh et al. [52] introduce an architecture of
hybrid language servers. The architecture com-
bines LSP for the textual language server, GLSP
for the graphical one, and a client that is capa-
ble of communicating with both servers. The
fundamental idea put forward by the authors
is that both language servers are based on the
same abstract syntax, which eases their integra-
tion. Their architecture is successfully applied in
the development of a hybrid modeling tool for
UML-RT [46].

Hölzl and Barner [17] report on their efforts
to implement the model-based engineering tool
AutoFOCUS 321. Given that tool support for
AutoFOCUS 3 was already available within the
Eclipse Rich-Client Platform, the authors report
on their efforts of migrating part of the tool’s
functionality using a web technology stack. The
new tool uses Theia1 for the front-end and back-
end components, both extended with the GLSP
components for rendering the model and pro-
cessing the model editing operations, respectively.
An additional EMF-based model server handles
validation and is connected to the GLSP-Server
for (de-)serialization of the graph model which
is required for the Sprotty-based rendering of
the model in the front-end. The authors report
the successful implementation of their tool while
they also share challenges they faced which are
related to our reference architecture. Primarily,
the authors mention two challenges: the sepa-
ration of concerns, i.e., that server and client

21https://www.fortiss.org/en/results/software/autofocu
s-3, last visited: 15.10.2024

are implemented and deployed separately, and
the dependency injection, i.e., that the injection
and, therefore, overriding of default behavior can
lead to inconsistency and increased complexity.
The authors propose the creation of comprehen-
sive code documentations that also interrelate
the server and the client. Moreover, they ask
for extended testing support to prevent injecting
invalid code.

Ali et al. [1] report on the evaluation of sev-
eral frameworks for the development of web-based
modeling tools, including GLSP. The authors con-
clude that GSLP servers satisfy most of their
requirements and, subsequently, report on the suc-
cessful implementation of a GLSP-based modeling
tool called CaMCOA Cloud. In their architecture,
they combine Eclipse GLSP with the Theia inte-
gration and a dedicated model server. While the
authors report on the success of adopting GLSP,
they also stress challenges related to the evolution
of the GLSP codebase itself, and the lack of docu-
mentation and best practices. The paper at hand
should help developers who face similar challenges
when using GLSP for the first time.

An interesting practical evaluation of GLSP is
reported by McLeod and Cox [26]. The authors
stress the code-focused nature of GLSP-based tool
development and present different alternatives for
separating the concerns of the server and the
client which are informed by a previous develop-
ment experience, realizing a graphical modeling
tool with Smalltalk. We believe some of the criti-
cism raised (like the required lines of code) can be
mitigated by adopting our reference architecture.

In an effort to compare different Low Code
Development Platforms with respect to their
extensibility, Popov et al. [40] conclude that
Langium is the best tool for language engineering
while GLSP is the best diagram editing framework
among the platforms they analyzed.

2.1.3 Synopsis

While a systematic and comprehensive compar-
ison of related frameworks and platforms for
the development of web-based modeling tools is
not within the scope of this paper, we believe
it is noteworthy to state that there are many
other approaches for the development of web-
based modeling tools available with an active
community pushing the further development of

7

https://www.fortiss.org/en/results/software/autofocus-3
https://www.fortiss.org/en/results/software/autofocus-3


these approaches. Section 2.1.1 provided an initial
overview of recent and mature platforms.

When analyzing the papers that introduce
these related approaches and exploring their
source code repositories and documentation, it
becomes apparent that there are neither reported
reference architectures nor reference implementa-
tions. Most approaches provide documentation, a
short hands-on tutorial on a simplified metamodel,
and maybe a high-level architecture of the few
core components and their interplay. A detailed
conceptual reference architecture and its technical
implementation are in great need.

Section 2.1.2 sheds light on several already
publicly documented experience reports of using
GLSP. The tools developed come from diverse
backgrounds and have different levels of complex-
ity when considering their metamodel, their tool
functions, and their tool integrations into IDEs.
From the analysis of these experiences, a twofold
synopsis can be derived. On the one hand, GLSP
has been successfully applied in diverse academic
groups for the development of web-based model-
ing tools. All authors report that they are satisfied
with the results, often emphasizing the flexibility
of GLSP and its rich client-side model render-
ing and user interaction. On the other hand,
challenges are reported which also relate to the
flexibility of GSLP (e.g., the separate development
of client and server components), the develop-
ment effort (e.g., necessitating redeployment of
components once changes have been performed,
the end-to-end testing of the tool), and the lack
of documentation, best practices, and reference
implementations.

The literature underpins that GLSP offers a
flexible framework designed to integrate seam-
lessly with modern development environments.
GLSP focuses on providing a robust back-end for
diagram editors which can be easily connected
to various front-ends, promoting a highly modu-
lar and flexible approach. The feasibility of the
approach taken by GLSP is also visible in the
implemented solutions industrially22 and in the
open-source community23 having different busi-
ness domains.

22https://blogs.eclipse.org/post/paul-buck/theia-adopter
-story-logicloud-modern-engineering-platform-industrial-aut
omation, last visited: 13.10.2024

23https://github.com/imixs/open-bpmn, last visited:
13.10.2024

With the publication of this paper, we hope
to start a reflection and comparison process that
might trigger the development of a generic ref-
erence architecture for web-based modeling tools
to which several platform and tool vendors could
relate their own architecture. As a manageable
first step, we propose a concrete reference archi-
tecture for the development of GLSP-based web
modeling tools in the following.

3 Developing GLSP-based
Web Modeling Tools

GLSP provides an extensible client-server frame-
work to develop web modeling tools24. This
extensible framework offers developers different
implementation options. Currently, the following
options for the implementation can be used [7]:

1. GLSP-Server. It is possible to implement the
server with Java or TypeScript with NodeJS.

2. Source Model. The means to save the source
models can also be chosen. GLSP allows access-
ing the models in different formats or even
remotely. The framework provides base mod-
ules for common choices like EMF, EMF.cloud,
or saving the GModel (i.e., graphical elements)
directly.

3. Tool Platform. GLSP allows developers to
employ any web-based client, and use the edi-
tor in a web app or as a standalone application.
Client integrations exist for easier usage for
platforms such as Eclipse Theia, VS Code, and
Eclipse RCP.

These options allow for different combinations.
Fortunately, GLSP offers flexible getting-started
templates for quickly setting up the development
environment for common combinations25. Never-
theless, developers are not constrained to these
combinations but can create their solutions with-
out using the provided templates just by using
the framework directly. Notably, these options
and the freedom provided by GLSP require the
developers to determine the modeling tool’s scope
and usage/integration scenarios before starting
the development.

24https://www.eclipse.org/glsp/documentation, last
visited: 15.11.2024

25https://eclipse.dev/glsp/documentation/gettingstarted/,
last visited: 04.12.2024

8

https://blogs.eclipse.org/post/paul-buck/theia-adopter-story-logicloud-modern-engineering-platform-industrial-automation
https://blogs.eclipse.org/post/paul-buck/theia-adopter-story-logicloud-modern-engineering-platform-industrial-automation
https://blogs.eclipse.org/post/paul-buck/theia-adopter-story-logicloud-modern-engineering-platform-industrial-automation
https://github.com/imixs/open-bpmn
https://www.eclipse.org/glsp/documentation
https://eclipse.dev/glsp/documentation/gettingstarted/


Defining
Tool Scope

Defining
Technology Stack Planning

Ex
te

nd
in

g
So

ur
ce

 M
od

el

Implementation

R
ev

ie
w

Integration

Preliminary
Phase

Development
Phase

Integration
Phase

Deployment
Phase

Deployment

Tool Server Source

Fig. 2: Development and operation process for GLSP-based web modeling tools.

In the following, we will focus on those open
questions developers need to answer and pro-
vide a GLSP development and operation process
(illustrated in Fig. 2) to structure the realization
of GLSP-based web modeling tools. The process
consists of four phases. The Preliminary phase
focuses on the tasks necessary before developing
the modeling tool. Important questions related to
the scope and the technology stack of the model-
ing tool need to be answered here. Afterward, the
Development phase follows. Here, the modeling
tool is iteratively realized. After reaching a stable
version, integrations into the targeted (optional)
tool platforms are required, which is realized in the
Integration phase. Finally, the Deployment phase
is concerned with deploying the modeling tool.
The phases will be explained in greater detail in
the following.

3.1 Preliminary Phase

The preliminary phase sets the scope and the
technology stack for the modeling tool project.
Consequently, its decisions should be stable over
time as changes to these decisions likely have
far-reaching effects on all subsequent phases.

3.1.1 Defining Tool Scope

Before deciding on the technology stack and start-
ing to develop, knowing which goal the tool should
fulfill is crucial. GLSP is language-agnostic and
only provides the foundation to abstract from the
protocol and the interactions. Consequently, the
developers need to decide the language-specific
parts, like which elements (e.g., nodes, edges) the
diagram consists of or how to interact with the
elements. Moreover, GLSP provides only the basic
features (e.g., CRUD operations, tool palette).

Still, the extensibility of GLSP allows for provid-
ing custom features (e.g., a property palette, a
minimap, or a diagram outline). Therefore, the
resources required to implement those custom fea-
tures must also be considered. Additionally, tools
can support single or multiple diagram types. A
modeling tool that only interacts with a single dia-
gram type requires a different approach than one
that supports various diagram types.

3.1.2 Defining Technology Stack

The technology stack must be determined depend-
ing on the developers’ experience and the tool’s
scope for the GLSP-Client and GLSP-Server.

• Client. The GLSP-Client is developed with
TypeScript and can be extended or modified
depending on the tool’s scope. Necessary knowl-
edge of SVG to render the diagram elements
is required. Knowledge about browsers or tool
platforms (e.g., VS Code, Eclipse Theia) is
helpful for more complex custom features.

• Server. The server can be implemented in
Java or TypeScript. Custom support for other
languages would be possible due to the open
protocol. It can be beneficial to have the full
stack in the same language (e.g., TypeScript)
as the TypeScript version of the GLSP-Server
is aligned with the Java version.

The GLSP-Client and GLSP-Server can be
reused for all of the tool platforms, which enables
cross-platform interoperability for the same
diagram-specific features. Only the platform-
specific features (e.g., UI elements like menus)
must be implemented for each platform sepa-
rately. Aside from the programming language and
tool platforms, how the source model should be

9



managed is essential. As the EMF.cloud has inte-
grations for GLSP, it would be possible to reuse
all of the Ecore functionality for the GLSP-based
web modeling tool. However, GLSP also supports
other formats for the source model like XML and
JSON.

3.2 Development Phase

This phase focuses on the realization of the
modeling tool. Here, new features are iteratively
developed and tested. Integrations to the differ-
ent tool platforms are separate from this phase
because GLSP works outside of tool platform-
specific features the same way for all platforms.
Generally, two ways to realize new features can be
distinguished: feature-oriented and architecture-
oriented.

• In feature-oriented development, the goal
is to develop a single feature through all compo-
nents of the GLSP architecture before starting
another feature. Each feature is implemented
from the source model to the GLSP-Client or
the other way around. This approach allows the
incremental and independent implementation of
new features by different developers. However,
the developers need experience and need to be
aware of all coding guidelines in all components
for this approach to work properly.

• In architecture-oriented development,
multiple features are developed for a single
component of the GLSP architecture. This
approach is better suited for an organization
with multiple teams. Different teams can be
responsible for different components and pro-
vide the necessary functionality. This approach
allows better isolation between the components
and the teams but requires more organizational
overhead as specific teams are responsible for
everything on a specific component.

Both approaches have advantages and dis-
advantages. It depends on the experience and
organizational structure of the project at hand
to select the best suitable option or a combi-
nation of them. Feature-oriented development is
more suited for smaller teams and for less com-
plex modeling tools, i.e., tools supporting small
metamodels of less than ∼ 30 elements and offer-
ing none or only selected additional functionality

on top of basic modeling support like CRUD oper-
ations for all metamodel elements. In contrast,
architecture-oriented development better aligns
with more complex modeling tools, i.e., tools sup-
porting large metamodels and offering a lot of
advanced features like model transformation, code
generation, AI assistants, etc. The latter is also
significant if, besides GLSP, different other ser-
vices are used in the architecture. We see strong
parallels to the development of larger software
systems, where development teams naturally sep-
arate into, e.g., specialized teams for front-end
and back-end development. The GLSP architec-
ture allows a similar separation of concerns within
the tool development team. Independently of the
chosen approach, the following steps should be
followed.

3.2.1 Planning

After declaring the tool’s scope and the technol-
ogy stack, the tool should be iteratively extended.
Every iteration should have clear goals and fea-
tures that should be introduced or extended. The
planning also includes definitions of how the tasks
should be reviewed and tested. Moreover, depend-
ing on the tasks, the client and/or the server parts
could be affected. For this reason, a bottom-up
approach is recommended. The source model is
available through all the components in the back-
end, and it is essential to update it first to access
it correctly. Afterward, depending on the tasks,
the GLSP-Server and the GLSP-Client must be
updated.

3.2.2 Extending the Source Model

Adding new nodes or edges to the editor requires
updating the source model. If the source model
management is outsourced, for example, to a
model server, then necessary changes to those
services are needed.

3.2.3 Implementation

This phase focuses on providing the function-
ality. The developers will implement the fea-
tures either in a feature-oriented or architecture-
oriented approach in the different components.
Regardless of the approach, the expected result is
the functionality implemented for all components
of the GLSP architecture.

10



3.2.4 Review

Every iteration ends with the review step. An iter-
ation can affect multiple components. Thus, the
changes should be adequately tested as defined
in the planning step. Testing in GLSP can
be performed at various layers, including unit
testing, integration testing, and end-to-end test-
ing. For comprehensive end-to-end testing, GLSP
offers a specialized framework known as GLSP-
Playwright26. This framework facilitates the writ-
ing of test cases for graphical elements by mini-
mizing the need for boilerplate code. While devel-
opers are free to utilize any testing framework
that suits their needs, GLSP-Playwright pro-
vides tailored support that streamlines the testing
process specifically for GLSP applications. Addi-
tional details and best practices for using GLSP-
Playwright can be found in the documentation
and are extensively discussed in [27].

3.3 Integration Phase

The GLSP-Client works cross-platform. Any web-
based platform can utilize it. However, if tool
platform-specific features (e.g., I/O, Context
Menu) will be used, then the GLSP-Client cannot
use those independently. In that case, additional
integrations are necessary to connect the GLSP-
Client with those. Those integrations are per
tool platform. Thus, a custom integration will be
required for every aimed platform. Consequently,
utilizing tool platform-specific features requires
additional work.

It is also possible to move the integration phase
into the development phase. However, not all mod-
eling tools support different tool platforms. The
tools also only sometimes use platform-specific
features. For this reason, this phase is optional for
most features and is, as a consequence, separated
from the core editor development phase.

3.4 Deployment Phase

After reaching a stable version, the modeling
tool can be released. Different steps are nec-
essary depending on the scope and supported
tool platforms. For feasibility, we assume that
the repository uses a continuous integration (CI)

26https://github.com/eclipse-glsp/glsp-playwright, last
visited 15.11.2024

/ continuous delivery (CD) system to support
DevOps. We further assume that the CI is trig-
gered after a merge and that all the components
are built, tested, and used by the CD system to
deploy it. Depending on the organization, different
environments (e.g., registry, production, staging)
can exist as a deployment target. Due to the flex-
ibility of GLSP, there exist multiple deployment
options [7]. Every part of the architecture can be
deployed independently. The servers can also be
deployed in containers (e.g., Docker) on different
machines. In the following, we list some of the
common GLSP deployment options [7, 39]:

• Integrated Server. The GLSP-Client and the
GLSP-Server are deployed together on the same
machine.

• Separated Server. The GLSP-Client and the
GLSP-Server are deployed and run on different
machines.

• Multiple Servers. In the case of multiple dif-
ferent servers, they can be hosted on different
machines.

• No Server. It is possible that the GLSP-Client
has no necessity for a GLSP-Server and the
GLSP-Client has all the necessary knowledge.

There is no best option. The servers’ deploy-
ment depends on the developers and the tool’s
scope and needs to be individually decided. The
following list describes the most common deploy-
ment scenarios, which can also be combined:

• Registry Scenario. Framework developers
can release the sources and builds of their mod-
eling tool to a registry (e.g., NPM, Maven),
to make it publicly accessible. This approach
allows other developers to reuse the released
code in their modeling tools.

• Standalone Scenario. In this case, a web
application should utilize the GLSP-Client part
of the modeling tool. The GLSP-Client can be
released to any internal or online registry (e.g.,
NPM) and can be loaded from there like any
other library in the web application. The server
can be hosted like any other server instance
(e.g., container, locally).

• Eclipse Theia Scenario. The GLSP integra-
tion for Theia is used, and the Eclipse Theia
instance is afterward hosted. In this case, utiliz-
ing a container (e.g., Docker) is recommended.
The previously built integration can be started

11

https://github.com/eclipse-glsp/glsp-playwright


with the other servers in the container and
accessed from the browser. This approach has
the benefit that it is possible to create new clean
instances for every user dynamically, which is
especially useful for staging and testing environ-
ments.

• VS Code Scenario. The VS Code integra-
tion cannot be used or hosted directly after
building it. It needs to be first packaged into a
.vsix file. Afterward, it can be installed on any
VS Code instance locally or uploaded to the
marketplace. Moreover, packaging the servers
together with the extension and starting them
when the extension starts is recommended.

3.5 Framework Development
History

The journey of our framework for GLSP, partic-
ularly focusing on the development of bigUML,
demonstrates a clear trajectory of growth, mat-
uration, and refinement over several years.
Throughout this journey, the framework was
exposed to feedback from more than 50 soft-
ware developers (Master students at TU Wien
who already work as software developers in the
industry on a part-time basis). Considering the
European Credit Transfer System (ECTS) of the
course, the student efforts amount to at least 6,250
hours of working with our framework. Admittedly,
the ECTS are a rough estimate. However, it is one
means to quantify the extent to which our frame-
work was exposed to developers using it, and,
thereby, evaluating it.

We used and thereby evaluated our framework
on a twofold basis: First, we used it in an elected
Master-level course on Advanced Model Engineer-
ing where students heavily worked on extending
GLSP and the bigUML modeling tool. Second,
we supervised nine finished master theses and six
finished bachelor theses, adding up to an ECTS
effort of 7,575 hours or approx. 50 person months
that pushed the boundaries of GLSP and our
framework to realize advanced features, e.g., for
the visualization of models [5, 8], for improving the
accessibility of GLSP-based modeling tools [45],
and for developing means to support collaborative
modeling [16].

• 2021: Initial Development Stages. During
the initial years, bigUML was developed along-
side the early stages of GLSP and a basic
model server. These years were crucial for lay-
ing the foundational elements of what bigUML
was intended to become. The architecture was
still developing, and, as such, it was a period
of intense learning and adaptation, respond-
ing to the primary needs of handling complex
diagrams within a web-based environment.

• 2022: Major Milestones and Architec-
tural Refinement. The year 2022 was marked
by noteworthy advancements. GLSP version
1.0.0 was released at the end of June 2022,
bringing with it a more stable architecture
that was better suited to support a variety of
modeling requirements. In response, bigUML
underwent a major rewrite to not only better
accommodate multiple types of diagrams but
also to align more closely with the evolving
capabilities of GLSP. This year also saw the
beginning of a fundamental shift in bigUML’s
architecture to a more streamlined and flexible
design, incorporating the initial versions of the
concepts discussed in this paper.

• 2023-2024: Towards a Generic Frame-
work. From 2022 to today, the developmental
focus shifted towards abstracting the general
components of bigUML into a more generic
framework. This evolution was aimed at broad-
ening the applicability of the framework beyond
just UML to potentially include other types of
modeling paradigms. This step represented a
maturation of bigUML from a specific tool into
a more versatile framework capable of support-
ing a wide array of modeling needs. At the same
time, GLSP 2.0.0 was also released, which was
incorporated into bigUML without any issues.

• 2024: Independence from Eclipse IDE.
In 2024, a significant transition was made by
switching the build system of bigUML to Gra-
dle. This change enabled the development of
the application to be independent of the Eclipse
IDE, aligning with one of the most requested
features by our student developers. As a result,
developers can now use VSCode or any other
preferred IDE to develop.

Each year, the feedback gained from the stu-
dents in the Advanced Model Engineering course
and in the course of their thesis projects played

12



a pivotal role in shaping the architecture. This
feedback not only guided the iterative improve-
ments but also led to a gradual reduction in
the recommendations for further improvements as
the architecture matured. The consistent enhance-
ment of the framework over these years reflects
a responsive and adaptive development process,
where practical user feedback directly influences
the trajectory and effectiveness of the framework
enhancements.

Based on the insights gained over the years,
we will now introduce the reference architecture
with a focus on its underlying concepts and the
lessons we have learned during its development
and extensive use for bigUML.

4 Reference Architecture

The GLSP platform provides the flexibility to
design the tool’s architecture as the developers
wish. GLSP uses Dependency Injection with slim
abstractions and direct access to the underlying
technologies to allow developers the same power
as the GLSP authors. Yet, ignoring some patterns
could negatively affect code maintainability, sta-
bility, and scalability. Consequently, to overcome
those problems, the reference architecture which is
derived from our experience of developing several
GLSP and Sprotty27-based modeling tools [14, 29]
as well as the extensive collaboration and knowl-
edge exchange with EclipseSource28 utilizes the
following patterns:

• Separation of Concerns (SoC). The GLSP
platform comprises multiple components such
as the GLSP-Client and GLSP-Server (cf.
Fig. 1), and the complexity increases with the
addition of services like a model server and
ECore. To effectively manage this complexity,
the architecture is divided into distinct compo-
nents, each addressing specific concerns. Con-
cerns range from general, such as “the model
server manages the source models”, to spe-
cific, like “model mappers create the graphical

27Eclipse Sprotty is an open source project enabling the
creation of powerful diagramming tools and graphical visual-
izations available at https://sprotty.org/

28EclipseSource (https://eclipsesource.com/) is specialized
in the industrial development of GLSP-based modeling tools
and one of the driving forces behind the further development
of GLSP.

models”. SoC is applied not only at the archi-
tectural level but also within the code itself,
where functionality is encapsulated into dis-
crete units. This structural approach enhances
modularity, simplifies the codebase, facilitates
maintenance, and improves reusability. More-
over, it supports independent iteration of mod-
ules, allowing teams to focus on specific areas
without impacting others.

• Single Source of Truth (SSoT). The model
should only be modifiable and readable from
a single place to prevent invalid modifica-
tions that could corrupt the source model or
result in services (i.e., services that require the
model) operating with outdated data. Employ-
ing a model server can significantly enhance
this aspect by decoupling the source models
from GLSP, thus allowing multiple services to
connect to the same model server for model
updates. However, it is important to acknowl-
edge that a model server introduces addi-
tional overhead regarding system complexity
and resource requirements such as maintenance,
which needs to be managed carefully to main-
tain system efficiency. For small applications
or teams, this overhead could be an obstacle.
Besides a model server, organizing modification-
related code into distinct code packages or
modules can also reinforce the system’s integrity
by isolating functional responsibilities.

• Single Responsibility Principle (SRP).
Every component should only focus on one sin-
gle responsibility because testing and maintain-
ing a component with multiple responsibilities is
cumbersome and prone to error. This principle
can be applied to different architectural lev-
els, from the implementation level to the server
operation or to services.

Building on these foundational principles, we
have developed and released a framework29 [28]
that enhances the GLSP-Server, tailored for com-
munity reuse. This framework encapsulates all
the best practices and architectural patterns dis-
cussed in this paper and already includes support
for the advanced features detailed in the subse-
quent sections. By offering this framework, we aim

29https://github.com/glsp-extensions/bigGLSP-framework

13

https://sprotty.org/
https://eclipsesource.com/
https://github.com/glsp-extensions/bigGLSP-framework


to streamline the development process for GLSP-
based modeling tools, making these powerful capa-
bilities readily accessible to developers. In the
following sections, we will go deeper into the the-
oretical parts and provide examples in Section 5
based on the framework we have developed.

4.1 Concepts

In this section, we introduce the fundamental
concepts that underpin our architecture, focus-
ing on the mechanisms that facilitate modularity
and flexibility. A central element in this refer-
ence architecture is Dependency Injection, which
is pivotal for enabling developers to modularize
and loosely couple their code, thereby enhancing
the separation of concerns [12]. Dependency Injec-
tion is employed extensively across all facets of the
GLSP platform, serving as a foundational concept
that supports the overall system design.

Building upon the flexibility afforded by
Dependency Injection, we further categorize the
implementation features into distinct modules to
improve loose coupling: core features, tool fea-
tures, and diagram features. This categorization
allows for clearer interaction between different
components of the architecture, facilitating easier
maintenance and scalability.

4.1.1 Modules and Interactions

In the architecture, features are categorized based
on their functionalities and interaction with the
underlying server framework (e.g., GLSP, Mod-
elserver, and others). This structuring not only
organizes the features into logical units but
also outlines clear interaction patterns among
them, enhancing the modularity and extensi-
bility of the system as illustrated in Fig. 3.
Building on the discussion about GLSP (see
Section 2), our framework splits functionality
into language-independent Core and Tool fea-
tures that handle general modeling capabilities,
and language-dependent Diagram features that
manage language-specific operations. This clear
division makes modularity more explicit, allowing
precise control over language-specific interactions
while supporting broad tool functionalities.

Fig. 3 can be read as follows: diagram mod-
ules make use of the APIs provided by the tool
modules and the core module. In contrast, tool
modules can interact with other tool modules and

the core module by leveraging their respective
APIs to implement extended functionalities. The
core module, however, remains isolated in terms of
dependencies, only interfacing with the underlying
foundation framework (e.g., GLSP, Modelserver)
without relying on any tool or diagram modules.
The only exception to this rule is when the core
module registers or installs (i.e., binds) the other
modules. This is a necessity due to how Depen-
dency Injection works, as the core module is the
only one that can exist independently. The other
modules must be referenced to become available
in the Dependency Injection container. The sub-
sequent figures will reuse the respective colors to
maintain comprehensibility. Diagram modules will
be represented in orange, tool modules in green,
and the core module in blue. The arrows indicating
interactions will consistently originate from these
modules, following the same color scheme.

Server-Framework GLSP, Modelserver, ...

Fe
at

ur
es

Core Module
API

C
or

e

Tool Module
API

Tool Module
API

To
ol

Diagram Module
API

Diagram Module
API

D
ia

g
am

API

Fig. 3: Features and their Modules

The Core feature directly interacts with the
underlying server framework (e.g., GLSP-Server,
Modelserver) and provides essential server func-
tionalities without incorporating any language-
specific information. The primary role of the core
feature is to act as the glue code between the
underlying server framework and other modules
(e.g., tool, diagram), facilitating the loading of
these modules and managing the application. This
centralized approach enables developers to effi-
ciently respond to changes in the underlying server
framework.

Tool features introduce tool specific function-
alities. They implement custom behaviors by uti-
lizing interfaces exposed by core features, adhering
to the principles of Dependency Injection. Tool
features are designed to provide specific func-
tionalities not inherently supported by the GLSP

14



platform, such as custom user interfaces (e.g.,
outline view, property palette, minimap), copy-
paste capabilities, auto-complete functions, or
specific import/export functionalities (e.g., Plan-
tUML). Additionally, tool features expose their
own API, allowing other tool and diagram fea-
tures to enhance or modify behaviors based on the
defined contracts.

Diagram features specialize in providing
language-specific functionalities and directly
accessing the source model. They rely on core
and selective tool features to implement CRUD
(Create, Read, Update, Delete) operations nec-
essary for other features to interact with the
source model. Diagram features ensure that mod-
ifications to the source model are controlled and
coordinated, preventing direct modifications that
could lead to inconsistencies or errors.

4.1.2 Manifests & Contributions

The architecture needs to define clear structural
boundaries between features based on the pre-
viously defined categorization to ensure effective
separation of concerns. Technically, each feature
module isolates specific functionality and interacts
with other modules via Manifests and Contribu-
tions through Dependency Injection.

• Manifests. Every feature module has a Mani-
fest that defines all contributions a feature mod-
ule aims to make. Manifests serve as the glue
code that connects Contributions to their imple-
mentations. This is achieved by using the oper-
ations (i.e., methods) exposed in the Contribu-
tion to register the implementation within the
Dependency Injection container. Additionally,
Manifests can install other Manifests, enhancing
the modularity and reusability of code by allow-
ing complex dependencies and functionalities to
be structured hierarchically.

• Contributions. Core features and tool features
can provide Contributions. These Contributions
are used within a feature to delegate execution
logic to other features. For instance, delegating
GLSP-create operations or providing content
for the property palette from diagram modules.
The core feature employs Contributions to per-
mit other features to extend or override the
default functionality of the underlying server
framework (e.g., GLSP platform). Conversely,
tool features utilize these core Contributions to

Module Internal - API

use

expose

External - API

Class

Contribution

Interface

Manifest

bind

Module

To
ol

Diagram Module

contribute

contribute

contribute

Module

Contribution

Interface

Internal - API

External - API

Class

expose

use

use

Manifest

b
in

d

C
or

e

Server-Framework API

Fig. 4: Manifests and Contributions Overview

enhance specific GLSP platform functionalities
or to develop new capabilities. As tool features
are language-agnostic, they also offer Contribu-
tions that diagram features can implement, thus
enabling access to source models from the tool
features. Contributions foster a system where
different features are loosely coupled, commu-
nicating exclusively through well-defined inter-
faces/APIs. Technically, Contributions provide
operations that allow other modules to reg-
ister their implementations for exposed inter-
faces/APIs, adhering to the Dependency Injec-
tion pattern.

Together, Manifests and Contributions facil-
itate the loose coupling of feature modules (cf.
Fig. 4). Manifests define the contributions they
wish to implement, and by doing so, they fulfill
the requirements set out by Contributions. Thus,
modules that provide contribution points can be
confident that their needs will be met if utilized.
This methodology allows the application to load
separate, maintainable, extensible, and modular
functionalities.

15



Section 5.1.1 illustrates the use of Manifests
and Contributions in the development of the
bigUML modeling tool.

Limitations

The Manifest and Contribution architecture,
while promoting modularity and loose coupling
through inversion of control, also has limitations.
A key drawback is its reliance on third-party
frameworks for Dependency Injection, which can
vary in support and configuration complexity.
Depending on the programming language, devel-
opers can use Guice30 or InversifyJS31. This
reliance on frameworks and Dependency Injection
can increase development time, steepen learning
curves, and introduce potential errors (e.g., invalid
configurations), particularly for teams with lim-
ited experience in Dependency Injection. These
challenges highlight the need for careful frame-
work selection to balance ease of use, flexibility,
and architectural goals.

4.1.3 Source Model Representation
Separation

A source model refers to the underlying data struc-
ture that a diagram visually represents, such as
UML or ER diagrams. Each source model can
be viewed through different diagram representa-
tions, which are the specific visual interpretations
or views presented to the user. For example, in
a UML source model, the diagram representa-
tion could be a Class diagram, showing classes
and their relationships, or a Sequence diagram,
focusing on the flow of messages.

The interactions permitted within these rep-
resentations can vary. A node element in a Com-
munication diagram might show fewer details,
while the same node in a Sequence diagram
might provide complete information on how and in
what order the elements interact with each other,
reflecting its usage in the representation’s context.
Furthermore, certain representations may be set
to a read-only mode, imposing further restrictions
on what interactions are permitted. To effectively
manage these variations, feature modules must
always be aware of the currently active diagram

30https://github.com/google/guice, last visited 15.09.2024
31https://github.com/inversify/InversifyJS, last visited

15.09.2024

representation of the source model. This knowl-
edge is crucial for enforcing interaction constraints
specific to each representation.

Section 5.1.2 illustrates the use of the source
model representation separation during the devel-
opment of the bigUML modeling tool.

GLSP API

Disk Source Model (UML, ER)

Module Internal - API

Module External - API

RequestCreateHandler

Create 
Contribution

Registry

CreateHandler

BaseCreateHandler

RepresentationProvider

use use

use

expose
implement

C
or

e

contribute

use bind

access

D
ia

g
ra

m

Module

CreateClass 
Handler

Internal - API
Manifest

Representation

bind

has

extends

Fig. 5: Representation Separation and Flow Sim-
ilarity using the Class Creation as an Example

4.1.4 Flow Similarity

In many cases, the flow for operating on differ-
ent elements in a source model by a modeling
tool remains largely identical up until the point of
modification. The elements might be semantically
distinct, but the process leading up to modify-
ing the source model is similar. Typically, the
user initiates an operation, which is processed by
the GLSP-Server; subsequently, the source mod-
els are updated either by the GLSP-Server or
a model server. This similarity in the workflow
allows for the implementation of generic function-
alities that vary only in the specifics of the model
modifications.

16

https://github.com/google/guice
https://github.com/inversify/InversifyJS


To streamline the implementation of new oper-
ations such as node and relation creation, develop-
ers can leverage programming concepts like inher-
itance or composition. These patterns reduce the
effort required by enabling code reuse and provid-
ing a structured way to handle common behaviors
across different model elements (cf. Fig. 5). In
this case, the BaseCreateHandler implements all
the generic parts, and the CreateClassHandler can
solely focus on the semantics. Moreover, operating
at a meta-level—defining operations in a generic
manner rather than individually for each diagram
element—can decrease the development overhead.
For instance, deletion operations are typically uni-
form across most elements; implementing these
at a higher genericity level rather than for each
element individually can reduce complexity and
maintenance burden. For example, the core mod-
ule could implement a generic class that can
handle all delete operations without requiring any
bindings through the diagram modules. Still, indi-
vidual diagram elements could rebind/replace the
generic implementation if customized solutions are
necessary for specific elements.

Adopting a hybrid approach that combines
both design patterns and meta-level operations
can enhance code stability and reduce the work-
load involved in interacting with elements. Such
strategies not only help maintain cleaner, more
maintainable, and extensible code but also facili-
tate easier troubleshooting and updates since the
interactions across different parts of the system
follow a predictable and uniform pattern.

Section 5.1.3 illustrates the use of the flow
similarity concept during the development of the
bigUML modeling tool.

Limitations

While generic workflows, inheritance, and meta-
level operations reduce development effort for
modeling tools, they have limitations. Generic
approaches may not fully address specific require-
ments of unique model elements, necessitating
custom solutions that disrupt consistency. Over-
reliance on inheritance can lead to tightly cou-
pled, hard-to-manage systems, making changes
complex and impacting scalability. While simpli-
fying common operations, meta-level abstractions
can obscure specific element behaviors, compli-
cating debugging and understanding of the code.

Additionally, generalized operations may intro-
duce performance inefficiencies due to insufficient
optimization for specific elements. Consequently,
balancing generic strategies with tailored imple-
mentations is crucial to maintaining flexibility and
performance.

4.2 Integrated Architectural
Concept

Fig. 6 illustrates an integrated conceptual view
of our reference architecture, integrating the pre-
viously introduced conceptual components and
architectural patterns. At the foundational level of
this reference architecture, we have the core mod-
ule, which wraps GLSP-specific functionalities.
This core feature is crucial as it simplifies access
to various GLSP components and establishes a
base for the application’s broader functionality.
It defines essential base classes and interfaces
that are utilized throughout the application and
implements default handlers or customizes GLSP-
specific operations to suit unique requirements.

• Source Model Representation Services.
Within the core module, services are imple-
mented to determine and communicate the con-
text of the active source model. This ensures
that the application remains context-aware.
Contributions and other files can make use of
those services through Dependency Injection.

• Delegation of GLSP Requests. The core
module also handles the delegation of requests
triggered in the context of the GLSP platform to
appropriate source model representations. This
is pivotal in managing how different user inter-
actions are processed depending on the active
diagram or source model context.

• Contribution Points Exposure. It exposes
various contribution points designed to respect
and adapt to the active source model repre-
sentation. This allows for a flexible extension
and customization of the GLSP functionalities,
enabling developers to tailor the tool’s behav-
ior to specific needs, contexts, or diagrams.
At the same time, it also allows the provision
of default implementations for specific GLSP
functionalities with, if necessary, diagram-level
customizations.

• Meta Level Operations. Furthermore, the
core module facilitates meta-level operations

17



GLSP API

Disk Source Model (UML, ER)

Module Internal - API

Module External - API

RequestCreateHandler
use use

use

use

expose

Core 
ActionHandler

Create 
Contribution

Registry

CreateHandler

BaseCreateHandler

RepresentationProvider

use

expose
implement

C
or

e

contribute

ActionHandler

Contribution

RequestDelete 
Handler

GenericMeta 
Delete

ActionHandler

bind

access

extends

Module Internal - API

use

expose

External - API

PropertyContribution

Property 
Provider

Request 
Property 
Action

Property 
Palette 
Handlerbind

contribute

Property 
Palette 
Manifest

To
ol

D
ia

g
ra

m
Module

ClassProperty 
Provider

CreateClass 
Handler

Internal - API
Manifest

Representation

bind

has

use

Fig. 6: Integrated Conceptual View on our Reference Architecture (the figure shows illustrative examples
of Manifests, Contributions, Actions, and Handlers)

applicable across all diagram elements, such as
deletion, reconnecting, or other specific manipu-
lations. These mechanisms are critical for main-
taining a consistent and robust manipulation
capability across the tool, regardless of the
element or the context in which it is used.

Moving up from the core features, the architec-
ture incorporates tool features, which are isolated
modules designed to implement specific function-
alities not inherently provided by the GLSP plat-
form. Examples of such tool features include a
property palette, an outline view, a minimap, or a
code generator, which enhance the user interface
and interaction capabilities of the modeling tool.
These tool features make extensive use of the con-
tribution points defined by the core module. By
binding their implementations to these predefined
points, tool features can effectively handle specific
requests and interactions within the framework.

This approach ensures that the tool features are
both modular and replaceable. Furthermore, tool
features are not limited to utilizing existing con-
tribution points; they also have the capability
to define their own. By exposing new contribu-
tion points, tool features can offer functionalities
that other modules, including diagram modules,
can leverage. This enhances the extensibility and
scalability of the tool.

Diagram modules play a crucial role in both
the representation and manipulation of source
models. These modules are tasked with two pri-
mary functions: modifying source models and
mapping these source model elements to the spe-
cific graphical models required by the GLSP plat-
form. Firstly, the diagram modules are responsible
for implementing any necessary modifications to
the source models. This includes creating, updat-
ing, or deleting elements based on user inter-
actions or programmatic requirements. Secondly,

18



Host 
Application

GLSP 
Client

GLSP- 
Server

LLM

Assistant

Generator

Model-

Server

Se
rv
er

C
lie
nt

Fig. 7: Application Architecture

these modules map the managed source model ele-
ments to their corresponding graphical representa-
tions. This mapping is essential for visualizing the
elements within the GLSP environment, allowing
users to interact with a graphical interface that
accurately represents the underlying data struc-
ture. Consequently, the diagram modules ensure
that each element of the source model is appropri-
ately represented in the graphical model.

4.3 Application Architecture

The application architecture of the GLSP frame-
work and the broader vision for our refer-
ence architecture allows for the incorporation of
already existing solutions (cf. Fig. 7). The arrows
in the figure represent the direction in which
communication is usually done. For example, the
host application triggers communication with the
respective server instances. In contrast, the com-
munication between the GLSP-Client and server is
bi-directional, allowing both to exchange messages
and respond to changes dynamically.

1. Client Deployments As previously men-
tioned, the primary user interface is deployable
across multiple host applications such as Theia,
VSCode, and web applications. We chose
VSCode for our platform due to its widespread
use and the simplicity of installing extensions.
Additionally, VSCode extensions can also be
installed in Theia, which supports our needs

without requiring the additional functionali-
ties that Theia offers32. At the same time,
VSCode supports seamless background initi-
ation of additional servers. However, running
the application on the user’s machine intro-
duces security risks since sensitive data like
tokens cannot be protected, and the diversity
in user environments might cause compatibility
issues. To address these issues, it is possible to
serve server components on controlled servers
while the client remains on the user’s machine.
This hybrid approach balances security and
dependency management but requires careful
evaluation of the inherent trade-offs.

2. Client-Server Interaction Within the host
application’s context (e.g., Theia, VSCode),
the GLSP-Client renders and facilitates inter-
actions with diagrams, typically interacting
mostly with the GLSP-Server. However, it is
important not to view this interaction in iso-
lation. We should see the GLSP platform as
a backbone that enhances our diagramming
capabilities. Nevertheless, we should not for-
get that we can use additional services besides
GLSP, as GLSP can be integrated seamlessly
with additional servers or other technologies
like Sprotty27 or Langium33. The flexibility
of the GLSP-Client allows the host applica-
tion, whether Theia or VSCode, to utilize these
servers, thereby enriching the functionality and
extending the capabilities of the overall system.

3. Integration of Additional Services Build-
ing on the previous point, we can enhance
the core functionality of the modeling tool by
integrating additional services beyond GLSP.
For example, incorporating an LLM-Assistant
server enables the use of large language mod-
els (LLMs) for data processing and interac-
tions, enhancing the modeling tool’s capabili-
ties. Additionally, we can extend the system to
include essential features like code generators,
which are necessary for comprehensive model-
ing tools but are not inherently supported by
the GLSP platform.

4. Overall Architecture Model While each
component of the system fundamentally oper-
ates on a client-server model, the overarching

32https://theia-ide.org/docs/user install vscode extension
s, last visited 15.09.2024

33https://langium.org/, last visited: 04.10.2024

19

https://theia-ide.org/docs/user_install_vscode_extensions
https://theia-ide.org/docs/user_install_vscode_extensions
https://langium.org/


structure can be described as a star architec-
ture. This model centralizes the GLSP platform
and the application host at the core, with the
ability to connect various clients and additional
service servers. This configuration not only
simplifies management and scaling but also
allows for the flexible integration or removal of
services and servers as required by the deploy-
ment environment or specific project needs (see
Fig. 7).

5 Proof-of-Concept: The
bigUML tool

By following the development and operation pro-
cess described in Fig. 2 and the reference architec-
ture in Section 4, a GLSP-based UML modeling
tool called bigUML [29] was developed34. Ini-
tially started as a comprehensive tool for UML
diagramming, bigUML has evolved, with its more
generic components now abstracted into a sepa-
rate reference architecture. This shift has allowed
bigUML to specialize further and focus solely on
the diagram-specific aspects of UML.

Software engineers, architects, business users,
and more utilize UML regularly. The UML specifi-
cation comprises multiple diagrams, each present-
ing unique challenges in terms of tool support. A
particular challenge is the need to visually render
the same source model element differently across
various UML diagram representations, in addition
to varying constraints on relationships between
nodes depending on the diagram.

Given these specific challenges and the com-
munity’s experience in how difficult it is to provide
rich modeling support for UML [11, 21, 37], we
believe the UML case is an excellent candidate to
thoroughly test the strengths and weaknesses of
the GLSP platform on the one side, and our pro-
posed development and operation process, as well
as our reference architecture, on the other. In the
following, we will discuss the use of our reference
architecture during the realization of bigUML.

34https://marketplace.visualstudio.com/items?itemName=
BIGModelingTools.umldiagram

5.1 Realization

We followed the feature-driven development
approach to implement bigUML. In every iter-
ation, one feature was implemented throughout
the architecture. This approach allowed us to see
faster results, detect limits of the current archi-
tecture, and rework it accordingly to exploit the
improved architecture for the next features. As
UML consists of multiple diagram types and rep-
resentations, it was crucial to have a scalable,
maintainable, and extensible architecture. Con-
sequently, we used the introduced concepts and
instantiated the reference architecture.

After extracting our framework for GLSP, the
focus during these iterations was primarily on the
diagram modules. These modules were responsible
for implementing the modifications to the source
model and for mapping from the source model to
the graphical model. To enhance modularity and
reusability, each individual diagram element was
encapsulated within its own module and installed
by the diagram modules. Within these mod-
ules, all operations related to that element—such
as creation, deletion, and updates—were imple-
mented. This modular approach not only simpli-
fied maintenance and scaling but also allowed for
more straightforward enhancements and refine-
ments to each element’s functionality as needed.

5.1.1 Manifest & Contributions

To demonstrate the modularity and extensibility
of our framework, it is important to understand
the roles of Manifests and Contributions within
the GLSP platform. Manifests act as configuration
points within the Dependency Injection frame-
work, specifying which bindings should be used.
Contributions, on the other hand, are mechanisms
that allow other modules to provide additional
functionality, thereby facilitating the customiza-
tion. For a more thorough introduction to these
concepts, please see Section 4.1. Table 1 shows
examples of available manifests in bigUML.

Each tool and diagram feature within the
GLSP ecosystem typically utilizes different con-
tributions based on their specific functionalities.
Tool features generally extend the base function-
alities of GLSP, providing additional features and,
as a result, often contribute new actions (e.g.,
ActionContribution). These actions might include
anything from new ways to interact with models

20

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram


Table 1: Manifests excerpt

Manifest Name Feature Contributions Used (e.g.) Description

Autocomplete Tool ActionContribution Exposes custom actions to the
application.

Outline Tool ActionContribution Exposes custom actions to the
application.

PropertyPalette Tool ActionContribution Exposes custom actions to the
application.

EnumerationElement Diagram CreateOperationContribution,
DirectEditingContribution,
PropertyPaletteContribution

Defines the necessary implementa-
tions for working with enumera-
tions.

AssociationElement Diagram CreateOperationContribution,
ReconnectEdgeContribution,
PropertyPaletteContribution

Defines the necessary implementa-
tions for working with associations.

ClassDiagram Diagram ToolPaletteContribution,
OutlineContribution

Customizes the tool palette and
outline view according to the class
diagram.

Table 2: Contributions excerpt

Contribution Name Provided By Used By Description

Action Core Tool Allows to define custom Actions and Action
Handlers.

CreateOperation Core Diagram Allows the contribution of custom create opera-
tions.

DeleteOperation Core Diagram Allows the contribution of custom delete opera-
tions.

DiagramConfiguration Core Diagram Allows diagram modules to configure their node
/ edge element.

DirectEditing Core Diagram Allows the customization of label editing.

Popup Core Diagram Allows the customization of the hover/popup
functionality.

ReconnectEdge Core Diagram Allows the customization of the behavior for
reconnecting edges.

ToolPalette Core Diagram Allows diagram modules to contribute custom
tool palettes.

Autocomplete Tool Tool / Diagram Allows the customization of the autocomplete
feature.

Outline Tool Diagram Allows the customization of the outline feature.

PlantUML Tool Diagram Allows the customization of the import and
export PlantUML feature.

PropertyPalette Tool Diagram Allows the customization of the property palette
feature.

21



to user interface enhancements. Therefore, mainly
core contributions are used.

On the other hand, diagram features focus
more on the semantic representation of the mod-
els and typically make use of contributions that
are more aligned with the creation, accessing,
and manipulation of diagram elements, such as
CreateOperationContribution or PropertyPalette-
Contribution. That means the diagram features
will provide the functionality the core and tool
modules require concerning the specific diagram
elements. Table 2 provides an excerpt of the
Contributions realized in bigUML.

It is important to note that while the core Con-
tributions like ActionContribution and CreateOp-
erationContribution can be seen across various
tools due to their generic nature, while Con-
tributions such as ReconnectEdgeContribution,
OutlineContribution, PlantUMLContribution, and
PropertyPaletteContribution might vary depend-
ing on the specific requirements and context of the
diagram they are intended to support.

We will now demonstrate these concepts
through a practical example based on the Prop-
erty Palette tool feature (see Fig. 8). The Property
Palette is an essential component that provides
a user interface for editing properties of selected
elements within a diagram.

• Tool - PropertyPaletteManifest. The Man-
ifest utilizes the contribution points exposed
in the core module to bind custom handlers
for specific actions within the property palette.
This process involves leveraging existing func-
tionalities of the GLSP platform to enhance the
customizability of the property palette.

• Tool - Property(Palette)Contribution. In
this class, we define methods that allow other
modules to provide implementations, such as
the next item in this list.

• Tool - PropertyProvider. This interface
allows individual diagram elements to specify
the properties they wish to display in the prop-
erty palette. By implementing this interface,
diagram elements contribute to the dynamic
composition of the property palette, with the
list of PropertyProviders being used to populate
the palette accordingly.

• Diagram - ClassManifest. The Manifest for
class diagram elements outlines the contribu-
tions to the property palette by providing the

D
ia

g
ra

m Module
ClassProperty 
Provider

Internal - API

Class 
Manifest bind

Module Internal - API

use

expose

External - API

PropertyContribution

Property 
Provider

Request 
Property 
Action

Property 
Palette 
Handlerbind

Property 
Palette 
Manifest

To
ol

contribute

contribute implement

Module

ActionHandler 
Contribution

ActionHandler

Internal - API

External - API

Core 
ActionHandler

use

use

expose

Manifest
b

in
d

C
or

e

Server-Framework API

Fig. 8: Property Palette Manifest & Contribution
Example

necessary implementation for the previously
defined interface.

• Diagram - ClassPropertyProvider. This
provider implements the defined interface and
specifies which properties of the class diagram
elements should be visible in the property
palette.

This example not only demonstrates the mod-
ularity and flexibility of our reference architecture
but also showcases the effective use of Dependency
Injection in the GLSP platform. A fundamental
principle of GLSP is empowering developers to
customize components as if they were the original
authors. Following this principle, we introduced an
abstraction layer above GLSP that aims to further
simplify the tool development process.

22



In technical terms, as previously mentioned,
Manifests serve as containers within a Depen-
dency Injection framework, and Contributions are
mechanisms for binding functionality to specific
target points. The specific implementation largely
depends on the Dependency Injection frame-
work in use. GLSP employs Google Guice for its
Java framework; consequently, bigUML is also
required to use it. For guidance on effectively uti-
lizing Google Guice, we refer interested readers to
its documentation35. In the case of bigUML, Con-
tributions are classes that take an implementation
and bind it within the framework’s Dependency
Injection system. The sole purpose of this process
is to facilitate a more maintainable approach for
integrating functionality, thereby simplifying and
streamlining the binding process.

5.1.2 Source Model Representation

The core module of our reference architecture is
crucial for managing the context of user sessions,
particularly in identifying the active diagram rep-
resentation. Technically, it provides services that
detect which diagram representation is active to
provide contextual information. Each contribu-
tion can now include a registry that catalogs
implementation details, using the diagram repre-
sentation as a key (see Fig. 5). This setup allows
for the dynamic querying and retrieval of relevant
contributions based on the active diagram.

Likewise, diagram modules are designed to
offer specific functionalities related to their rep-
resentations, activated only when their respective
diagrams are in use. For example, contributions
pertinent to a Sequence diagram are loaded only
when that diagram is being viewed. The core and
tool modules selectively load these appropriate
contributions from the registries depending on the
active diagram representation. This selective load-
ing ensures that the functionalities are not only
segregated by context but are also appropriately
activated.

By maintaining a registry that links contri-
butions to diagram representations, the system
can swiftly adapt to user needs, providing rele-
vant tools and functionalities dynamically. It must
be highlighted that the GLSP platform also sup-
ports loading dependency modules based on the

35https://github.com/google/guice, 10.12.2024

active diagram, similar to the description pro-
vided; in this case, the client must initiate this
process. To ensure our solution is future-proof and
independently changeable, we have developed a
mechanism that allows on-the-fly loading of con-
tributions without requiring the client to provide
information about the active diagram.

5.1.3 Flow Similarity

When implementing an editor with the GLSP
platform, developers must handle specific actions
like create and delete (of nodes and relations).
The GLSP platform provides the necessary meta-
information, such as identifying which elements
need to be created or deleted, but does not pre-
scribe how to implement these handlers. Instead
of creating a handler that can handle all ele-
ments, we chose a different approach. Drawing
on the strategies outlined in the “Source Model
Representation” section, our action handler for
the create request can identify the active repre-
sentation and appropriately delegate the request
to the corresponding diagram module by utiliz-
ing the respective registries (see Fig. 5). The
handle in the specific diagram module is then
responsible for modifying the source models. In
the diagram module, we apply programming pat-
terns like inheritance and composition to structure
our operations efficiently. This design allows us to
define a custom API between the GLSP action
handler and the source model modifications, using
contributions to streamline the process.

5.2 Application

bigUML is influenced by Eclipse Papyrus [21]
and incorporates modern technologies to improve
usability and user experience. As of version
0.5.0, bigUML supports a variety of UML dia-
grams, including Activity, Class, Communica-
tion, Deployment, Information Flow, Package,
Sequence, State Machine, and Use Case diagrams.
However, it is important to note that some of
these diagrams are still under development. Key
functionalities such as the Property Palette and
Outline view have been extracted to the reference
architecture and are available for use without fur-
ther modifications. This approach simplifies the
development process and ensures the availabil-
ity of these features across different GLSP-based
modeling tools. We openly released bigUML as

23

https://github.com/google/guice


Fig. 9: bigUML VS Code Extension (available via: https://marketplace.visualstudio.com/items?itemN
ame=BIGModelingTools.umldiagram)

an extension to the VS Code marketplace34. As of
December 10, 2024, bigUML has more than 2.600
downloads with approximately ten new downloads
daily.

6 Discussion

We now discuss our experience in develop-
ing several GLSP-based modeling tools, includ-
ing bigUML. The discussion covers the effort
involved, the lessons learned, a critical reflection,
and finally some recommendations for potential
future GLSP developers. We conclude the discus-
sion with a vision for our reference architecture.

6.1 Development Effort

Now, we will discuss the effort required to work
with GLSP. There are different getting-started
templates provided. They only differ in the used
technologies like Java or Node and the usage
of a model server and the tool platform. Those
templates enable a fully running instance that
can be customized according to the developer’s
preferences and goals. Accordingly, the necessary
project structure, dependencies, and execution
are already addressed. With those templates, the
developers can focus on implementing their editor
based on the existing structure. The time spent
and, consequently, the effort required can be split

into the area that will be extended. The developers
will mainly focus on the following tasks:

• Extending the source model. Defining the
source models directly in GLSP or outsourc-
ing the model is also possible. The templates
already provide ways to save the models as
JSON or to use an EMF-based approach. That
means it is possible to define the models from
scratch, reuse some existing Ecore models, or
use a different server to manage the data. The
selected approach determines the initial effort
needed. Afterward, extending the source mod-
els and introducing the means to modify them
can be done without any issues.

• Defining the graphical model. To visually
display source model elements, they need to be
mapped to corresponding elements in the graph-
ical model. The graphical model serves as a
description that can be easily transmitted and
understood by the client. The level of effort
needed for this mapping depends on the com-
plexity of the graphical element. Representing
a basic node is simpler compared to an element
with multiple parent-child connections.

• Customizing the rendering. The client ren-
ders the respective graphical models using
SVGs and CSS. For this reason, implement-
ing the correct design can be time-consuming.

24

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram


GLSP already provides basic graphical ele-
ments, for example, labels and nodes; regard-
less, more unique representations require cus-
tomized implementation from the developers.

GLSP only provides a small set of user-facing
editor tool features (e.g., tool palette). It is possi-
ble to customize those features, but implementing
new editor features from scratch is something
potential tool developers need to be aware of.
GLSP has been designed to be fully customizable
and extensible. Introducing new features can be
done on the client and the server side with the
help of the low-level means offered by GLSP. The
GLSP-Client allows to add new user interfaces
(i.e., views). Unfortunately, no commonly known
front-end framework (e.g., React, Lit) is used for
this part yet. As a result, plain JavaScript (par-
ticularly TypeScript) functionality is employed to
manage user interactions and build user interfaces.
Still, it is possible to generically use such front-
end frameworks to ease the development, but it
requires initial work from the developers. Hence,
it is crucial to acknowledge the importance of
implementing customized tool functionality and
the associated effort it entails.

Lastly, the discussion of how the refer-
ence architecture aligns with the aforementioned
points. GLSP offers the essential features required
for constructing editors. Yet, it grants developers
the flexibility to design the architecture accord-
ing to their specific needs and requirements. It
is possible to develop a functional diagram edi-
tor without adhering to a specific schema, but
as the complexity increases, maintaining the code
becomes more challenging. The reference archi-
tecture addresses this by initially separating the
tool features, diagrams, and the core functional-
ity of the editor. While this separation introduces
additional overhead, such as defining manifests
and contribution points, it also provides clear
definitions of how the various modules interact
through well-defined interfaces. By adopting this
approach, the responsibilities of different mod-
ules are clearly defined, allowing for independent
extension and customization. This leads to a code-
base that is both extensible and maintainable,
which ultimately should outweigh the initial effort
required.

Now we will provide metrics concerning the
required effort to extend the source model or fea-
tures with the reference architecture. We are using
Java for the GLSP-Server and model server. It
needs to be noted that some programming lan-
guages distort the required Lines of Code metric
due to the overhead (e.g., headers, imports, for-
matting). For this reason, we will provide two
different Lines of Code metrics. The File Lines of
Code (FLoC) provides the number of lines in a
file. The Effective Lines of Code (ELoC) describes
the lines that need to be updated to provide sim-
ilar functionality, e.g., creating a different node
or edge. Further, we will split the study also into
two categories. The first category focuses on the
necessary preparations needed to be done once.
The second category analyses the required work
to extend the functionality with new source model
elements.

6.1.1 Preparations

Supporting the reference architecture to delegate
functionality to other feature modules requires, on
average, four new files, which must be done once.
The four files are as follows. First, the class with
the implementation logic that wants to delegate
a part of the functionality is required. Afterward,
the part of the functionality we want to delegate
needs to be defined as a (Java-) interface. A Con-
tribution class must also be defined to allow gluing
in the module Manifests with the implementation
and optionally a registry that allows categoriz-
ing the provided contributions (see Fig. 6). Those
preparations need to be done only once. Then any
number of feature modules can be supported for
this specific use case (i.e., functionality).

For implementing the feature module, only
two files are necessary. First, defining the class
that implements the delegated (Java-) interface
and provides part of the required functionality is
required. Afterward, it can be contributed in the
Manifest of the feature module to the required
place using the previously defined Contribution
class.

6.1.2 Extending the Source Model

We will analyze the required Lines of Code and
files to extend the source model and use it in the
modeling tool. We assume that the source element
is already available (e.g., ECore, model, or class)

25



and that the source model provides a method to
add the new element. Further, we assume that the
necessary modules (i.e., respective Contributions)
are already available and correctly used. Only pro-
viding the functionality to create and render the
element is missing. For this reason, we will only
analyze the new files created to support a new
diagram element server-side.

Table 3 compares the UML elements Enumer-
ation with Interface concerning the lines of code
required. The UML elements Enumeration and
Interface are similar in rendering and configura-
tion. Yet, multiple files are required, but the LoC
is small. In the FLoC, the headers and imports
are also included; thus, the LoC that the devel-
opers are required to write is even smaller. The
ELoC also includes lines where the class name or
variable type has changed. Hence, for writing, the
LoC would also be smaller. Each *ElementMani-
fest outlines necessary contributions such as node
creation, choice of GModelMapper for graphical
mapping, and property display in the property
palette. *Configuration details source model infor-
mation for the GLSP framework. *OperationHan-
dler uses the command pattern to manage node
creation in the source model, focusing exclusively
on this process. *GModelMapper translates the
source model into a graphical format that GLSP
can interpret. G*Builder requires the most lines
of code as it dictates the graphical representation
of elements. The most ELoC lies in the GEnu-
merationBuilder and GInterfaceBuilder as those
classes need to describe how the source model
should be rendered. This example illustrates that
our architecture enables the efficient extension of
a modeling tool with further metamodel elements
by requiring only a few lines of additional code.

6.2 Lessons Learned

The bigUML modeling tool has already gone
through multiple iterations and architectural
changes to accomplish the requirements better.
Initially, the most significant problems were the
Separation of Concerns, the Single Responsibility
Principle, and the Source Model Representation
Separation. They were not respected. This caused
different unexpected behavior while using the
modeling tool. Consequently, it was necessary to
re-design the whole architecture. Clear architec-
ture patterns and introducing coding guidelines

Table 3: Comparison LoC required between sup-
porting Enumerations and Interfaces in the UML
source model.

File FLoC ELoC

EnumerationElementManifest 43 10

EnumerationConfiguration 49 4-6

EnumerationOperationHandler 49 6

EnumerationGModelMapper 39 2

GEnumerationBuilder 62 18-20

InterfaceElementManifest 45 10-11

InterfaceConfiguration 50 4-7

InterfaceOperationHandler 48 6

InterfaceGModelMapper 38 2

GInterfaceBuilder 63 17-20

made extending the modeling tool faster and
easier and reduced unexpected behavior.

The lessons learned from using initial ver-
sions of bigUML also in university Master courses
and Master theses projects helped us further to
improve the genericity and extensibility of the
architecture. While the initial architecture was
feature-wise working mostly stable, the feedback
gained from the students—who mostly already
have several years of industrial software engineer-
ing experience—and monitoring their progress
showed the flaws with respect to clarity. This
is why we abstracted and introduced the archi-
tectural concepts into our reference architecture.
Using this new architecture clearly showed huge
improvements in the effectiveness and quality of
the student GLSP development projects.

Another aspect we learned is that the differ-
ent technologies and the deployment also have side
effects with respect to the runtime requirements
for running the GLSP-based modeling tools. In
cases where the GLSP-Server or the model server
is realized with Java, a JRE dependency materi-
alizes to run the tool. This also applies to the VS
Code-based integration of the tool. As one cannot
expect a JRE in a specific version to be installed
on the client, this imposes some minimal require-
ments on the runtime environment which should
be taken into account in the preliminary phase
of the development and operation process. With
the release of the purely TypeScript-based GLSP-
server, this issue, and the respective JRE runtime
requirement, is already mitigated.

26



Eventually, it needs to be stated that GLSP
is still under active development by the commu-
nity. This is good and bad at the same time.
When using earlier versions of GLSP, we faced
several bugs and instability issues. The feedback
from our students and other developers helped
to increase the maturity and stability of GLSP.
When developing a GLSP-based modeling tool
one should always monitor the development of
the base frameworks and make sure to develop
the language-specific components in a way that
base framework updates can be easily integrated.
This is another reason why we developed our
architectural concepts.

Model Server

Initially, in the development of our bigUML mod-
eling tool, we implemented the model server to
separate concerns effectively. This decision aimed
to improve flexibility and maintain a clear sepa-
ration between the GLSP-Server and the source
model management. The model server we used,
was the EMF.cloud model server36, facilitating
the Eclipse Modeling Framework (EMF). By this
arrangement, the model server was solely respon-
sible for modifying the model files, while external
services had only read access. The source mod-
els were based on the EMF implementation of the
UML metamodel. This setup allowed the GLSP-
Server to access the UML metamodel and the
respective notation to focus only on managing
the graphical elements, thereby controlling user
interactions more effectively.

However, over time, we observed that main-
taining a separate model server required substan-
tial resources. The complexity and the resources
involved in managing a dedicated model server
became a significant burden. Additionally, this
approach introduced multiple layers of abstrac-
tion, complicating the system architecture more
than anticipated.

Given these challenges, we decided to reinte-
grate the model management functionalities back
into the GLSP-Server. This shift aimed to stream-
line operations by reducing the overhead associ-
ated with a separate model server and eliminating
unnecessary layers of abstraction. By consolidat-
ing the management of source models back into

36https://github.com/eclipse-emfcloud/emfcloud-modelse
rver

the GLSP-Server and implementing separation of
concerns at the code level rather than at the appli-
cation level, we have simplified the architecture.
This code-level separation allows for more gran-
ular control and modular maintenance without
sacrificing the system’s effectiveness and flexi-
bility, making the architecture hopefully more
manageable and resource-efficient—in the case of
bigUML it did that.

6.3 Critical Reflection

Having multiple programming languages in the
technology stack makes it also necessary to know
about DevOps for those. Depending on the expe-
rience, that knowledge can vary. Thus, having the
same programming language (e.g., TypeScript) for
the client and server can help the development and
deployment experience. Also, not all programming
languages work efficiently with the Contribution
and Manifests system. The system allows flexi-
bility but introduces some overhead if used with
Java, but not so much with TypeScript.

Consequently, the decisions on the technol-
ogy stack need to carefully balance the experience
of the development team. Moreover, experts in,
e.g., Java could focus on the model server and
the GLSP-Server while TypeScript experts could
focus on, e.g., the GLSP-Client. Obviously, still,
the technology does not only add flexibility and
richness in creating modern web modeling tools
with advanced user interaction and model repre-
sentation functionality [8, 9] (a gallery of examples
is provided online37) it also introduces challenges
for the development team. This is in contrast to
e.g., pure EMF-based modeling tool development
where one can solely utilize Java.

From our point of view, the flexibility of
the GLSP platform and the modern, feature-
rich, cross-platform web modeling tools that one
can develop with it clearly outperform the chal-
lenges discussed at the outset. Our experience is
that modelers intuitively enjoy working with a
GLSP-based editor, given its appealing look and
feel and its UI responsiveness. The responsive-
ness of these new breeds of modeling tools is a
huge improvement when compared to traditional
modeling tools like those developed purely with

37https://www.eclipse.org/glsp/gallery/

27

https://github.com/eclipse-emfcloud/emfcloud-modelserver
https://github.com/eclipse-emfcloud/emfcloud-modelserver
https://www.eclipse.org/glsp/gallery/


traditional, non-web-based, metamodeling plat-
forms. We hope such web-based modeling tools,
including those developed with GLSP, will help
elevate modeling tools to the level users are used
to working within other web applications.

6.4 Recommendations

The GLSP platform fundamentally changes the
development of modeling tools by bringing them
into the web. GLSP is powerful and flexible, but
knowing the modeling tool’s scope is crucial before
deciding which technologies should be used. GLSP
runs on the browser and browser-like applica-
tions (e.g., Electron) which constrains its use.
Currently, it has no direct support for using it
natively on a platform (e.g., Android, iOS, Win-
dows). However, this constraint can be overcome
easily as most platforms already provide web views
or panels where the GLSP-Client can run, like
in the case of the Eclipse IDE integration. We
thus recommend really paying attention to the
Preliminary phase of our development and opera-
tion process (see Fig. 2). Aside from the browser
constraint, GLSP works for modeling tools of
varying complexity and is also actively customized
for industrial solutions28. Yet, depending on the
tool’s complexity, the architecture needs to be
minded to scale efficiently. The overhead of using
a model server benefits the architecture in the
long term, but for modeling tools that will never
use additional services, using it can cause more
drawbacks.

Implementing our comprehensive architecture
might be considered overblown for modeling tools
that require only basic functionalities. In such
cases, employing plain GLSP could be a more suit-
able option. Additionally, our solution is designed
to support multiple diagram types, an aspect that
may not be necessary for simpler applications.
Moreover, the extracted framework still requires
further iterations to fully mature. In the future,
our focus will be on refining this framework to
reduce the effort required for setting up new
projects, aiming to streamline the development
process and enhance usability for a broader range
of applications.

Finally, we recommend GLSP for tool practi-
tioners who want to prototype their first modeling
tools. GLSP’s streamlined setup and web-based
architecture make it an ideal choice for rapidly

developing and testing initial concepts without
the complexities of a more elaborate framework.
For those starting out in tool development, or
for projects where simplicity and quick deploy-
ment are key, the GLSP platform provides the
necessary functionality to get started with mini-
mal overhead. This enables developers to focus on
core features and usability without being bogged
down by the more intricate aspects of advanced
architectural setups. For more intricate solutions,
planning the architecture is of vital importance,
and using our initial generic framework for the
GLSP platform aims to fill that gap.

6.5 Vision

GLSP, as a language server, is specifically designed
to support the functionality of working with dia-
grams. It manages source models and the neces-
sary interactions for diagrammatic representation,
adhering to its goal of enabling diagram oper-
ations. This specialization makes GLSP highly
effective and efficient within its scope, primarily
focusing on diagrams.

In the evolution of our reference architecture,
we initially abstracted the GLSP-Server to lever-
age its robust capabilities. Moving forward, our
plan involves expanding this solution to incorpo-
rate the client side, aiming to establish a common
foundation with GLSP as the base. However, our
vision extends beyond supporting diagram editors.
We aspire to develop a comprehensive reference
architecture for a variety of modeling tools. While
diagrams remain a crucial component addressed
by GLSP, our reference architecture seeks to
encompass a broader range of modeling function-
alities, such as code generation, versioning, model
validation, and hybrid (e.g., textual and graph-
ical) editing capabilities. While GLSP does not
inherently provide hybrid editing capabilities, its
flexible design allows for such implementations.
Developers are responsible for creating the UI and
API and integrating them to manage edits across
different model representations.

This shift marks the main distinction between
GLSP and our vision. We want to cater to diverse
modeling requirements, incorporating built-in
solutions for various challenges. It is important to
note that this transition towards a more general-
ized modeling framework is relatively recent, and

28



achieving a fully satisfactory solution will require
time and continued development.

Imagining a potential future, it seems clear
that GLSP will continue to serve as both the back-
bone and the heart of our reference architecture.
Our aim is to incrementally develop a compre-
hensive framework that not only relies on GLSP
as its foundation but also enriches the tool with
more generic functionalities. The goal is to develop
a versatile framework to be applied across var-
ious modeling tools spanning different business
domains.

Until now, our main focus has been on gener-
alizing the GLSP-Server part to extract common
functionalities. Moving forward, we also plan to
extend this generalization to the client compo-
nents of GLSP. By developing more adaptable and
universally applicable client-side elements, we aim
to ensure that our framework can support a wide
range of user interfaces and interaction models
(cf. [5] for a taxonomy of advanced representation
and interaction features in conceptual modeling).

Our vision extends to creating a framework
equipped with a standard API that supports
the seamless integration of additional services on
the client and server sides. The standard API is
intended to facilitate the development of indepen-
dent components that can be easily installed or
removed, such as allowing visual diffs to be shown
to the user. This modularity will allow users to
simply install new packages and utilize the isolated
functionality without the need to modify existing
code, functioning much like an extension system.
By adopting this approach, we hope to provide
a scalable and adaptable solution that meets the
evolving needs of users and empowers innovation
in modeling tool technology.

6.6 Limitations

This research also comes with limitations. The
most important ones shall be discussed in rela-
tion to the taxonomy proposed in [54]. First and
foremost, we need to limit the generalizability of
our results. We have developed several modeling
tools with GLSP but the number is still below
10. Moreover, we can report on the extensive
experience of many student developers we closely
supervised while working with GLSP in general
and our reference architecture and implementa-
tion in particular. Still, we cannot generalize our

lessons learned with constraints to other software
developers and to other modeling languages.

Secondly, there can be a bias based on the
selection of modeling tools (and their underlying
modeling languages and supported features) we
currently have implemented. We believe using the
example of UML is a good choice because UML
is well known and, at the same time, it is a very
complex modeling language. However, of course,
each modeling language comes with its particular-
ities and specific requirements. GLSP, as well as
our reference framework, require further instantia-
tions in the future to mitigate that potential bias.
With the publication of this paper and the public
release of the reference architecture [28], we look
forward to seeing a good adoption by the com-
munity and expect feedback that will help further
improve the reference architecture.

A final threat to validity relates to the fact
that the authors of this article were also involved
in supervising the students, designing the refer-
ence architecture, and developing the reference
implementation. We believe this threat is, to some
extent, mitigated by our strong collaboration with
EclipseSource, who played a very active role in
that process and were able to validate the use-
fulness of our results. The fact that ideas and
concepts developed in the course of the refer-
ence architecture are now integrated into the
general GLSP repository underpins the knowledge
exchange and the value of our research.

7 Conclusion

The development of modeling tools has a long tra-
dition in modeling research. Still, it is considered
a current issue [32] and acknowledged as a valu-
able scientific contribution [38]. The availability of
web technologies and frameworks like the Graphi-
cal Language Server Platform (GLSP), which are
built on them, enables new avenues for the mod-
eling community to develop and deploy custom,
flexible, and highly usable web-based modeling
tools.

However, the development of such web-based
modeling tools still poses significant challenges for
developers. In this paper, we reported our experi-
ence in developing web modeling tools with GLSP.
We propose a development and operation process,
a set of architectural principles, and a reference
architecture for GLSP-based web modeling tools.

29



As a proof of concept, we reported on our endeav-
ors toward realizing a GLSP-based UML editor
called bigUML [31]. bigUML is released as a
VS Code extension38. We showed that GLSP is
a powerful framework that provides a founda-
tion developers can use to implement modern web
modeling tools.

We believe this paper is of interest to all
researchers and software engineers interested in
the development of modern web modeling tools.
Our critical reflection and lessons learned should
help developers make an informed decision about
whether or not to use GLSP. Moreover, the devel-
opment and operation process, as well as the
reference architecture, should facilitate knowledge
transfer and enable others to benefit from our
lessons learned during their tool development. To
foster the reuse of our reference framework, we
publicly release a reference implementation, which
is available here: https://github.com/glsp-extensi
ons/bigGLSP-framework [28].

In the future, we hope to see more successful
GLSP tool developments to form a repository of
GLSP tools. The community could clearly learn
from each other and the technology stack of GLSP
also allows a much easier integration of generic
solutions that were provided by others.

Acknowledgments

Part of this research was funded through the
FFG Innovationsscheck entitled ‘Automatisiertes
End-to-End-Testen von Cloud-basierten Model-
lierungswerkzeugen’ (No. 903552). We further
thank EclipseSource Vienna for the close collab-
oration regarding GLSP-based tool development
in general and the development of the bigUML
tool in particular. Finally, we want to thank all
students who contributed to the development of
bigUML and provided us with their feedback.

References

[1] Ali Qua, Kolovos DS, Garćıa-Domı́nguez A,
et al (2024) Advancing domain-specific high-
integrity model-based tools: Insights and
future pathways. In: Egyed A, Wimmer
M, Chechik M, et al (eds) Proceedings of

38https://marketplace.visualstudio.com/items?itemName=
BIGModelingTools.umldiagram

the ACM/IEEE 27th International Confer-
ence on Model Driven Engineering Languages
and Systems, MODELS 2024, Linz, Austria,
September 22-27, 2024. ACM, pp 104–113,
https://doi.org/10.1145/3640310.3674094

[2] Almonte L, Guerra E, Cantador I, et al
(2022) Building recommenders for modelling
languages with droid. In: 37th IEEE/ACM
International Conference on Automated Soft-
ware Engineering, ASE 2022, Rochester, MI,
USA, October 10-14, 2022. ACM, pp 155:1–
155:4, https://doi.org/10.1145/3551349.3559
521

[3] Bainczyk A, Busch D, Krumrey M, et al
(2022) Cinco cloud: A holistic approach
for web-based language-driven engineering.
In: Margaria T, Steffen B (eds) Leveraging
Applications of Formal Methods, Verifica-
tion and Validation. Software Engineering -
11th International Symposium, ISoLA 2022,
Rhodes, Greece, October 22-30, 2022, Pro-
ceedings, Part II, Lecture Notes in Computer
Science, vol 13702. Springer, pp 407–425, ht
tps://doi.org/10.1007/978-3-031-19756-7 23

[4] Belafia R, Jeanjean P, Barais O, et al (2021)
From monolithic to microservice architecture:
The case of extensible and domain-specific
ides. In: ACM/IEEE International Confer-
ence on Model Driven Engineering Languages
and Systems Companion, MODELS 2021
Companion, Fukuoka, Japan, October 10-15,
2021. IEEE, pp 454–463, https://doi.org/10
.1109/MODELS-C53483.2021.00070

[5] Bork D, Carlo GD (2023) An extended tax-
onomy of advanced information visualization
and interaction in conceptual modeling. Data
Knowl Eng 147:102209. https://doi.org/10.1
016/J.DATAK.2023.102209

[6] Bork D, Langer P (2023) Language server
protocol: An introduction to the protocol, its
use, and adoption for web modeling tools.
Enterp Model Inf Syst Archit Int J Concept
Model 18:9:1–16. https://doi.org/10.18417
/EMISA.18.9

[7] Bork D, Langer P, Ortmayr T (2023) A
vision for flexible glsp-based web modeling

30

https://github.com/glsp-extensions/bigGLSP-framework
https://github.com/glsp-extensions/bigGLSP-framework
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://doi.org/10.1145/3640310.3674094
https://doi.org/10.1145/3551349.3559521
https://doi.org/10.1145/3551349.3559521
https://doi.org/10.1007/978-3-031-19756-7_23
https://doi.org/10.1007/978-3-031-19756-7_23
https://doi.org/10.1109/MODELS-C53483.2021.00070
https://doi.org/10.1109/MODELS-C53483.2021.00070
https://doi.org/10.1016/J.DATAK.2023.102209
https://doi.org/10.1016/J.DATAK.2023.102209
https://doi.org/10.18417/EMISA.18.9
https://doi.org/10.18417/EMISA.18.9


tools. In: Almeida JPA, Kaczmarek-Heß M,
Koschmider A, et al (eds) The Practice of
Enterprise Modeling - 16th IFIP Working
Conference, PoEM 2023, Vienna, Austria,
November 28 - December 1, 2023, Proceed-
ings, Lecture Notes in Business Information
Processing, vol 497. Springer, pp 109–124, ht
tps://doi.org/10.1007/978-3-031-48583-1 7

[8] Carlo GD, Langer P, Bork D (2022)
Advanced visualization and interaction in
GLSP-based web modeling: realizing seman-
tic zoom and off-screen elements. In:
Wasowski A, Paige RF, Haugen Ø (eds) 25th
International Conference on Model Driven
Engineering Languages and Systems. ACM,
pp 221–231, https://doi.org/10.1145/355035
5.3552412

[9] Carlo GD, Langer P, Bork D (2022) Rethink-
ing model representation - A taxonomy of
advanced information visualization in con-
ceptual modeling. In: 41st International Con-
ference on Conceptual Modeling. Springer, pp
35–51, https://doi.org/10.1007/978-3-031-1
7995-2 3

[10] Eclipse Foundation (2024) Eclipse graphical
language server platform. https://github.c
om/eclipse-glsp/glsp, accessed: 13.05.2024

[11] Eichelberger H, Eldogan Y, Schmid K (2009)
A comprehensive survey of UML compli-
ance in current modelling tools. In: Ligges-
meyer P, Engels G, Münch J, et al (eds)
Software Engineering 2009: Fachtagung des
GI-Fachbereichs Softwaretechnik, LNI, vol P-
143. GI, pp 39–50, URL https://dl.gi.de/20.
500.12116/23336

[12] Fowler M (2008) Inversion of control con-
tainers and the dependency injection pattern.
http://www.martinfowler.com/articles/inje
ction.html

[13] Frank U, Strecker S, Fettke P, et al (2014)
The research field ”modeling business infor-
mation systems” - current challenges and
elements of a future research agenda. Bus Inf
Syst Eng 6(1):39–43. https://doi.org/10.100
7/S12599-013-0301-5

[14] Glaser P, Bork D (2021) The biger tool -
hybrid textual and graphical modeling of
entity relationships in VS code. In: 25th
International Enterprise Distributed Object
Computing Workshop, EDOC Workshop
2021, Gold Coast, Australia, October 25-29,
2021. IEEE, pp 337–340, https://doi.org/10
.1109/EDOCW52865.2021.00066

[15] Gulden J, Reijers HA (2015) Toward
advanced visualization techniques for con-
ceptual modeling. In: Grabis J, Sandkuhl
K (eds) Proceedings of the CAiSE 2015
Forum, CEUR Workshop Proceedings, vol
1367. CEUR-WS.org, pp 33–40, URL https:
//ceur-ws.org/Vol-1367/paper-05.pdf

[16] Hegedüs M (2023) Real-time Collaborative
Modeling with Eclipse GLSP. URL https:
//repositum.tuwien.at/handle/20.500.1270
8/192848, Master thesis at TU Wien

[17] Hölzl F, Barner S (2023) Implementing a
model-based engineering tool as web applica-
tion. CoRR abs/2302.14091. https://doi.org/
10.48550/ARXIV.2302.14091, 2302.14091

[18] Jarke M, Gallersdörfer R, Jeusfeld MA, et al
(1995) Conceptbase - A deductive object base
for meta data management. J Intell Inf Syst
4(2):167–192. https://doi.org/10.1007/BF00
961873

[19] Kasperowski M, Rentz N, Domrös S, et al
(2024) KIELER: A text-first framework for
automatic diagramming of complex systems.
In: Lemanski J, Johansen MW, Manalo E,
et al (eds) Diagrammatic Representation and
Inference - 14th International Conference,
Diagrams 2024. Springer, pp 402–418, https:
//doi.org/10.1007/978-3-031-71291-3 33

[20] Kelly S, Lyytinen K, Rossi M (1996)
Metaedit+: A fully configurable multi-user
and multi-tool CASE and CAME environ-
ment. In: Constantopoulos P, Mylopoulos
J, Vassiliou Y (eds) Advances Information
System Engineering, 8th International Con-
ference, CAiSE’96, Heraklion, Crete, Greece,
May 20-24, 1996, Proceedings, Lecture Notes
in Computer Science, vol 1080. Springer, pp
1–21, https://doi.org/10.1007/3-540-61292-0

31

https://doi.org/10.1007/978-3-031-48583-1_7
https://doi.org/10.1007/978-3-031-48583-1_7
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.1007/978-3-031-17995-2_3
https://doi.org/10.1007/978-3-031-17995-2_3
https://github.com/eclipse-glsp/glsp
https://github.com/eclipse-glsp/glsp
https://dl.gi.de/20.500.12116/23336
https://dl.gi.de/20.500.12116/23336
http://www. martinfowler. com/articles/injection. html
http://www. martinfowler. com/articles/injection. html
https://doi.org/10.1007/S12599-013-0301-5
https://doi.org/10.1007/S12599-013-0301-5
https://doi.org/10.1109/EDOCW52865.2021.00066
https://doi.org/10.1109/EDOCW52865.2021.00066
https://ceur-ws.org/Vol-1367/paper-05.pdf
https://ceur-ws.org/Vol-1367/paper-05.pdf
https://repositum.tuwien.at/handle/20.500.12708/192848
https://repositum.tuwien.at/handle/20.500.12708/192848
https://repositum.tuwien.at/handle/20.500.12708/192848
https://doi.org/10.48550/ARXIV.2302.14091
https://doi.org/10.48550/ARXIV.2302.14091
https://arxiv.org/abs/2302.14091
https://doi.org/10.1007/BF00961873
https://doi.org/10.1007/BF00961873
https://doi.org/10.1007/978-3-031-71291-3_33
https://doi.org/10.1007/978-3-031-71291-3_33
https://doi.org/10.1007/3-540-61292-0_1


1

[21] Lanusse A, Tanguy Y, Espinoza H, et al
(2009) Papyrus UML: an open source toolset
for MDA. In: 5th European Conference on
Model-Driven Architecture Foundations and
Applications, pp 1–4

[22] Louis-Edouard L, Syriani E (2024) Model-
ing with gentleman: a web-based projectional
editor. Software and Systems Modeling https:
//doi.org/10.1007/s10270-024-01219-4

[23] Manders E, Biswas G, Mahadevan N,
et al (2006) Component-oriented model-
ing of hybrid dynamic systems using the
generic modeling environment. In: Machado
RJ, Fernandes JM, Riebisch M, et al
(eds) Proceedings of the Joint Meeting
of The Fourth Workshop on Model-Based
Development of Computrer-Based Systems
and The Third International Workshop on
Model-based Methodologies for Pervasive and
Embedded Software, MBD/MOMPES 2006,
Potsdam, Germany, March 30, 2006, Pro-
ceedings. IEEE Computer Society, pp 159–
168, https://doi.org/10.1109/MBD-MOM
PES.2006.6

[24] Maróti M, Kecskés T, Kereskényi R, et al
(2014) Next generation (meta)modeling:
Web- and cloud-based collaborative
tool infrastructure. In: Balasubrama-
nian D, Jacquet C, Gorp PV, et al
(eds) Proceedings of the 8th Workshop
on Multi-Paradigm Modeling co-located
with the 17th International Conference
on Model Driven Engineering Lan-
guages and Systems, MPM@MODELS
2014, Valencia, Spain, September 30,
2014, CEUR Workshop Proceedings, vol
1237. CEUR-WS.org, pp 41–60, URL
https://ceur-ws.org/Vol-1237/paper5.pdf

[25] Mart́ınez-Lasaca F, Dı́ez P, Guerra E, et al
(2023) Dandelion: A scalable, cloud-based
graphical language workbench for indus-
trial low-code development. J Comput Lang
76:101217. https://doi.org/10.1016/J.COLA
.2023.101217

[26] McLeod G, Cox G (2024) Gloss - a graphical
language server on the smalltalk platform. ht
tps://www.inspired.org/s/IWST-GLSP-in-S
malltalk-Paper.pdf, last visited: 15.10.2024

[27] Metin H (2023) Testing of glsp-based web
modeling tools. Master’s thesis, Technische
Universität Wien, https://doi.org/10.34726
/hss.2023.106767

[28] Metin H (2024) glsp-extensions/bigGLSP-
framework: SoSyM 24. https://doi.org/10.5
281/zenodo.14316697

[29] Metin H, Bork D (2023) Introducing
BIGUML: A flexible open-source glsp-based
web modeling tool for UML. In: ACM/IEEE
International Conference on Model Driven
Engineering Languages and Systems, MOD-
ELS 2023 Companion. IEEE, pp 40–44, http
s://doi.org/10.1109/MODELS-C59198.2023
.00016

[30] Metin H, Bork D (2023) On develop-
ing and operating glsp-based web modeling
tools: Lessons learned from BIGUML. In:
26th ACM/IEEE International Conference
on Model Driven Engineering Languages and
Systems, MODELS 2023. IEEE, pp 129–139,
https://doi.org/10.1109/MODELS58315.20
23.00031

[31] Metin H, Weiß J, Bork D (2024) borkdo-
minik/bigUML: SoSyM 24. https://doi.org/
10.5281/zenodo.14316667

[32] Michael J, Bork D, Wimmer M, et al (2024)
Quo vadis modeling? Softw Syst Model
23(1):7–28. https://doi.org/10.1007/S10270
-023-01128-Y

[33] Microsoft (2024) Language Server Protocol
Implementations. https://microsoft.github.i
o/language-server-protocol/implementors/s
ervers/, accessed: 13.04.2024

[34] Microsoft (2024) Language Server Protocol
Specification. https://microsoft.github.io/la
nguage-server-protocol/specif ications/speci
fication-current/, accessed: 13.04.2024

32

https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1007/s10270-024-01219-4
https://doi.org/10.1007/s10270-024-01219-4
https://doi.org/10.1109/MBD-MOMPES.2006.6
https://doi.org/10.1109/MBD-MOMPES.2006.6
https://ceur-ws.org/Vol-1237/paper5.pdf
https://doi.org/10.1016/J.COLA.2023.101217
https://doi.org/10.1016/J.COLA.2023.101217
https://www.inspired.org/s/IWST-GLSP-in-Smalltalk-Paper.pdf
https://www.inspired.org/s/IWST-GLSP-in-Smalltalk-Paper.pdf
https://www.inspired.org/s/IWST-GLSP-in-Smalltalk-Paper.pdf
https://doi.org/10.34726/hss.2023.106767
https://doi.org/10.34726/hss.2023.106767
https://doi.org/10.5281/zenodo.14316697
https://doi.org/10.5281/zenodo.14316697
https://doi.org/10.1109/MODELS-C59198.2023.00016
https://doi.org/10.1109/MODELS-C59198.2023.00016
https://doi.org/10.1109/MODELS-C59198.2023.00016
https://doi.org/10.1109/MODELS58315.2023.00031
https://doi.org/10.1109/MODELS58315.2023.00031
https://doi.org/10.5281/zenodo.14316667
https://doi.org/10.5281/zenodo.14316667
https://doi.org/10.1007/S10270-023-01128-Y
https://doi.org/10.1007/S10270-023-01128-Y
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/


[35] Naujokat S, Lybecait M, Kopetzki D, et al
(2018) CINCO: a simplicity-driven approach
to full generation of domain-specific graphi-
cal modeling tools. Int J Softw Tools Technol
Transf 20(3):327–354. https://doi.org/10.100
7/S10009-017-0453-6

[36] Ossher H, van der Hoek A, Storey MD,
et al (2010) Flexible modeling tools (Flexi-
Tools2010). In: Taylor RN, Gall HC, Medvi-
dovic N (eds) 32nd ACM/IEEE Int. Conf. on
Software Engineering - Volume 2, pp 441–442,
https://doi.org/10.1145/1810295.1810419

[37] Ozkaya M (2019) Are the UML modelling
tools powerful enough for practitioners? A
literature review. IET Softw 13(5):338–354.
https://doi.org/10.1049/iet-sen.2018.5409

[38] Paige RF, Cabot J (2024) What makes a
good modeling research contribution? Soft-
ware and Systems Modeling pp 1–5. https:
//doi.org/10.1007/s10270-024-01177-x

[39] Philip Langer (2024) Diagram editors with
GLSP: Why flexibility is key. https://www.
youtube.com/watch?v=mSTXgUZCBVE,
accessed: 14.04.2024

[40] Popov G, Lu J, Vishnyakov V (2024) Toward
extensible low-code development platforms.
In: Shaikh A, Alghamdi A, Tan Q, et al
(eds) Advances in Emerging Information and
Communication Technology. Springer Nature
Switzerland, pp 487–497, https://doi.org/10
.1007/978-3-031-53237-5 29

[41] Pourali P, Atlee JM (2018) An empirical
investigation to understand the difficulties
and challenges of software modellers when
using modelling tools. In: Wasowski A, Paige
RF, Haugen Ø (eds) 21th ACM/IEEE Inter-
national Conference on Model Driven Engi-
neering Languages and Systems. ACM, pp
224–234, https://doi.org/10.1145/3239372.
3239400

[42] Rocco JD, Ruscio DD, Salle AD, et al
(2023) jjodel - A reflective cloud-based mod-
eling framework. In: ACM/IEEE Interna-
tional Conference on Model Driven Engineer-
ing Languages and Systems, MODELS 2023

Companion, Väster̊as, Sweden, October 1-6,
2023. IEEE, pp 55–59, https://doi.org/10
.1109/MODELS-C59198.2023.00019, URL
https://doi.org/10.1109/MODELS-C59198.
2023.00019

[43] Rodŕıguez-Echeverŕıa R, Izquierdo JLC,
Wimmer M, et al (2018) An LSP infras-
tructure to build EMF language servers for
web-deployable model editors. In: Hebig R,
Berger T (eds) Proceedings of MODELS 2018
Workshops, CEUR Workshop Proceedings,
vol 2245. CEUR-WS.org, pp 326–335, URL
https://ceur-ws.org/Vol-2245/mdetools pap
er 3.pdf

[44] Rodŕıguez-Echeverŕıa R, Izquierdo JLC,
Wimmer M, et al (2018) Towards a language
server protocol infrastructure for graphical
modeling. In: 21th ACM/IEEE International
Conference on Model Driven Engineering
Languages and Systems. ACM, pp 370–380,
https://doi.org/10.1145/3239372.3239383

[45] Sarioglu A, Metin H, Bork D (2023) How
inclusive is conceptual modeling? A sys-
tematic review of literature and tools for
disability-aware conceptual modeling. In:
Almeida JPA, Borbinha J, Guizzardi G, et al
(eds) Conceptual Modeling - 42nd Interna-
tional Conference, ER 2023, Lisbon, Portu-
gal, November 6-9, 2023, Proceedings, Lec-
ture Notes in Computer Science, vol 14320.
Springer, pp 65–83, https://doi.org/10.1007/
978-3-031-47262-6 4

[46] Selic B (2002) The real-time UML standard:
Definition and application. In: 2002 Design,
Automation and Test in Europe Conference
and Exposition (DATE 2002), 4-8 March
2002, Paris, France. IEEE Computer Society,
pp 770–772, https://doi.org/10.1109/DATE
.2002.998385

[47] Steinberg D, Budinsky F, Merks E, et al
(2008) EMF: eclipse modeling framework.
Pearson Education

[48] Stone D, Jarrett C, Woodroffe M, et al (2005)
User interface design and evaluation. Elsevier

33

https://doi.org/10.1007/S10009-017-0453-6
https://doi.org/10.1007/S10009-017-0453-6
https://doi.org/10.1145/1810295.1810419
https://doi.org/10.1049/iet-sen.2018.5409
https://doi.org/10.1007/s10270-024-01177-x
https://doi.org/10.1007/s10270-024-01177-x
https://www.youtube.com/watch?v=mSTXgUZCBVE
https://www.youtube.com/watch?v=mSTXgUZCBVE
https://doi.org/10.1007/978-3-031-53237-5_29
https://doi.org/10.1007/978-3-031-53237-5_29
https://doi.org/10.1145/3239372.3239400
https://doi.org/10.1145/3239372.3239400
https://doi.org/10.1109/MODELS-C59198.2023.00019
https://doi.org/10.1109/MODELS-C59198.2023.00019
https://doi.org/10.1109/MODELS-C59198.2023.00019
https://doi.org/10.1109/MODELS-C59198.2023.00019
https://ceur-ws.org/Vol-2245/mdetools_paper_3.pdf
https://ceur-ws.org/Vol-2245/mdetools_paper_3.pdf
https://doi.org/10.1145/3239372.3239383
https://doi.org/10.1007/978-3-031-47262-6_4
https://doi.org/10.1007/978-3-031-47262-6_4
https://doi.org/10.1109/DATE.2002.998385
https://doi.org/10.1109/DATE.2002.998385


[49] Syriani E, Vangheluwe H, Mannadiar R, et al
(2013) Atompm: A web-based modeling envi-
ronment. In: Liu Y, Zschaler S, Baudry B,
et al (eds) Joint Proceedings of MODELS’13
Invited Talks, Demonstration Session, Poster
Session, and ACM Student Research Com-
petition co-located with the 16th Interna-
tional Conference on Model Driven Engi-
neering Languages and Systems (MODELS
2013), Miami, USA, September 29 - October
4, 2013, CEUR Workshop Proceedings, vol
1115. CEUR-WS.org, pp 21–25, URL https:
//ceur-ws.org/Vol-1115/demo4.pdf

[50] Vincenzo DD, Rocco JD, Ruscio DD,
et al (2021) Enhancing syntax expres-
siveness in domain-specific modelling. In:
ACM/IEEE International Conference on
Model Driven Engineering Languages and
Systems Companion, MODELS 2021 Com-
panion, Fukuoka, Japan, October 10-15,
2021. IEEE, pp 586–594, https://doi.org/10
.1109/MODELS-C53483.2021.00089

[51] Walker M, Fischer M, Neubauer M, et al
(2024) Towards a domain specific language
for the development of distributed real-time
systems. In: Bauernhansl T, Verl A, Liewald
M, et al (eds) Production at the Leading Edge
of Technology. Springer Nature Switzerland,
pp 268–279, https://doi.org/10.1007/978-3-0
31-47394-4 27

[52] Walsh L, Dingel J, Jahed K (2022) A general
architecture for client-agnostic hybrid model
editors as a service. In: Kühn T, Sousa V
(eds) Proceedings of the 25th International
Conference on Model Driven Engineering
Languages and Systems: Companion Pro-
ceedings, MODELS 2022. ACM, pp 749–754,
https://doi.org/10.1145/3550356.3563131

[53] Wasowski A, Berger T (2023) Domain-
Specific Languages - Effective Modeling,
Automation, and Reuse. Springer, https://
doi.org/10.1007/978-3-031-23669-3, URL
https://doi.org/10.1007/978-3-031-23669-3

[54] Wohlin C, Runeson P, Höst M, et al (2024)
Experimentation in Software Engineering,
Second Edition. Springer, https://doi.org/10

.1007/978-3-662-69306-3

[55] Yohannis AR, Kolovos DS, Garćıa-
Domı́nguez A (2024) Exploring complex
models with picto web. Sci Comput Program
232:103037. https://doi.org/10.1016/J.SCIC
O.2023.103037

34

https://ceur-ws.org/Vol-1115/demo4.pdf
https://ceur-ws.org/Vol-1115/demo4.pdf
https://doi.org/10.1109/MODELS-C53483.2021.00089
https://doi.org/10.1109/MODELS-C53483.2021.00089
https://doi.org/10.1007/978-3-031-47394-4_27
https://doi.org/10.1007/978-3-031-47394-4_27
https://doi.org/10.1145/3550356.3563131
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1016/J.SCICO.2023.103037
https://doi.org/10.1016/J.SCICO.2023.103037

	Introduction
	Graphical Language Server Platform
	Action & Action Handlers
	Built-in Functionality

	Related Work
	Related Frameworks and Platforms
	Related Experience with GLSP
	Synopsis


	Developing GLSP-based Web Modeling Tools
	Preliminary Phase
	Defining Tool Scope
	Defining Technology Stack

	Development Phase
	Planning
	Extending the Source Model
	Implementation
	Review

	Integration Phase
	Deployment Phase
	Framework Development History

	Reference Architecture
	Concepts
	Modules and Interactions
	Manifests & Contributions
	Limitations

	Source Model Representation Separation
	Flow Similarity
	Limitations


	Integrated Architectural Concept
	Application Architecture

	Proof-of-Concept: The bigUML tool
	Realization
	Manifest & Contributions
	Source Model Representation
	Flow Similarity

	Application

	Discussion
	Development Effort
	Preparations
	Extending the Source Model

	Lessons Learned
	Model Server

	Critical Reflection
	Recommendations
	Vision
	Limitations

	Conclusion



