Accepted for publication in Software and Systems Modeling (SoSyM)
https://www.springer.com/journal/10270

Model-driven Engineering of SAP Core Data Services -
The BIGER2CDS Modeling Tool

Gallus Huber! and Dominik Bork!"

1*Business Informatics Group, TU Wien, Favoritenstrasse 9-11, Vienna, 1040, Austria.

*Corresponding author(s). E-mail(s): dominik.bork@tuwien.ac.at;
Contributing authors: gallus.huber@outlook.com;

Abstract

This paper introduces BIGER2CDS, a novel model-driven engineering approach and tool support for
SAP Core Data Services (CDS). BIGER2CDS addresses the need for a higher abstraction level in CDS
development, enabling blended, i.e., textual and graphical modeling of CDS Views through a domain-
specific modeling language. Based on web technologies and the Language Server Protocol (LSP),
we realized a modeling tool for SAP CDS. Our tool supports the hybrid modeling of CDS and the
import of existing SAP CDS view entities for analysis and development support. This model-driven
approach aims to enable domain experts to develop CDS views, mitigating the need for extensive
programming skills. We report on the development of the ER2CDS domain-specific language (DSL)
and the implementation of the corresponding BIGER2CDS modeling tool. Finally, BIGER2CDS is
evaluated in the form of a controlled experiment and a case study with domain experts and CDS
developers. The results show a high usability score for our tool and a willingness by domain experts
and CDS developers to use it. The tool can be freely downloaded from the VS Code marketplace:
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds.

Keywords: Model-driven engineering, SAP Core Data Services, Domain-specific language, CDS, Modeling

tool, LSP, Langium, Sprotty

1 Introduction

Compared to code, models allow different stake-
holders to get a technical understanding of an
application without prior programming knowl-
edge. Furthermore, models are crucial for manag-
ing the complexity of applications [20]. Combined
with model-to-text transformations, a model-
driven engineering (MDE) process allows the
creation of all different kinds of applications [17].

Especially in the context of business infor-
matics, business experts drive the development
process. Allowing them to create applications
independently by applying an MDE process would

provide a significant business impact. On the one
hand, business experts can quickly create domain-
specific applications without extensive prepara-
tion, and, on the other hand, a reduced complexity
for developers is achieved as they can focus on the
development of the remaining applications. Fur-
thermore, maintaining applications with a graph-
ical user interface leads to a better understanding
and fewer errors [10, 11].

One of the most used enterprise informa-
tion systems is the Enterprise Resource Planning
(ERP) solution by SAP SE (SAP) [48]. At the
core of SAP’s ERP solution is its data struc-
ture, which forms the basis for domain- and

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds
dominik
Textfeld
Accepted for publication in Software and Systems Modeling (SoSyM)
https://www.springer.com/journal/10270

customer-specific customizations. Developers can
create database views of that data structure
with enhanced access functions, so-called Core
Data Services (CDS) [31]. Furthermore, front-
end applications for existing CDS Views can be
generated [30]. However, CDS are currently devel-
oped in a textual editor, requiring heavy skills
in SQL and additional CDS-specific syntax [31].
It is, therefore, impossible for users without a
programming background to create CDS them-
selves. Currently, the CDS development process is
twofold. First, the business experts state the needs
and the data that should be retrieved informally
using natural language. Then, developers imple-
ment the CDS accordingly. One of the significant
problems with this approach is the lack of a shared
understanding of the problem domain amongst
these stakeholders. This leads to long development
times and unsatisfactory results.

This work aims to bridge that gap between
business experts and developers by creating a
new model-driven engineering approach and a tool
based on the Language Server Protocol (LSP) [3,
21]. The approach shall exploit an extended vari-
ant of Entity-Relationship (ER) diagrams [9],
which allows users to transform ER models into
CDS. Furthermore, the goal is to assess the busi-
ness value of such a low-code framework on a real-
world application. The tool’s evaluation focuses
on the tool’s usability compared to the current
text-based development approach. BIGER2CDS
should contribute to embracing MDE processes
in the SAP ecosystem. The overall objective of
this research is to provide a tool that allows busi-
ness experts and developers to create CDS more
effectively.

To achieve this objective, we first need a hybrid
tool that enables modeling of ER diagrams in a
textual and graphical manner similar to the one
proposed in [14]. This can be achieved by extend-
ing the ER modeling language [9] to cover all
aspects of CDS and integrating the tool into the
SAP ecosystem. Concretely, CDS supports spe-
cific features, e.g., associations, join relationships
executed on demand, which should be represented
in the modeling tool as first-class concepts. For
the efficient utilization of our tool, it needs to be
able to automatically represent the data model
of the connected SAP ERP solution and allow
users to select existing entities while creating
their CDS views. In particular, the SAP system’s

database schema, consisting of tables and the cor-
responding columns, should be represented in the
tool to ensure ease of use and the correctness
of the created models. Eventually, the resulting
BIGER2CDS tool should come with a model-to-
text-transformation that transforms the created
ER2CDS models into corresponding textual CDS
view specifications that can be used to realize CDS
views within SAP. The correctness and quality of
the generated code are crucial for user acceptance.

This paper is structured as follows. Section 2
provides all necessary background information
that this paper will build upon. Section 3 dis-
cusses related works. Section 4 then elaborates on
requirements for BIGER2CDS. In Section 5, the
main concepts for BIGER2CDS are introduced
and their implementation is reported. The results
of the empirical evaluation of BIGER2CDS are
reported in Section 6. A thorough discussion of
the implications and limitations of this research is
given in Section 7 before this paper is concluded
in Section 8.

2 Background

2.1 SAP HANA

SAP SE was founded in 1972 by five former IBM
employees and specialized in developing programs
for materials management, financial accounting,
and auditing [24]. SAP SE is regarded as one of
the inventors of standard software [24] and, in
2024, will be one of the largest software com-
panies, with a turnover of 31.2 billion euros
in 2023 [41]. In 2015, SAP Business Suite 4
SAP HANA, or S/4HANA for short, was intro-
duced. The switch to the new software genera-
tion includes the mandatory introduction of the
HANA database, an in-memory database devel-
oped by SAP SE [46]. Similarly to its predecessor,
S/4HANA is a standardized enterprise resource
planning (ERP) system that allows for customiza-
tion and extension [42]. Furthermore, it is pos-
sible to develop custom applications using the
integrated technologies, e.g., Core Data Services,
which is natively supported by SAP HANA [44].

This paper uses SAP HANA indirectly by cre-
ating a novel modeling language for CDS and
exposing the data model of an existing S/4HANA
system for the ER2CDS modeler to support the
efficient creation of valid CDS.

2.2 Core Data Services

A virtual data model (VDM) can provide a
semantically rich, reusable, and stable data model
while abstracting technical details, thereby reduc-
ing complexity and providing a business-oriented
view of the underlying database [44]. In the SAP
S/4HANA, the VDM is implemented using Core
Data Services (CDS) [29]. CDS supports a data-
centric approach, delegating computations to the
database layer [29]. In detail, CDS consists of
the following languages, enabling users to cre-
ate these semantically enriched data models [44]:
Data Definition Language (DDL) used to
create domain-specific data models, CDS enti-
ties; Query Language (QL) used to read data
from defined models; Data Control Language
(DCL) used to control access to the data model;
and Data Manipulation Language (DML)
used to write data. Furthermore, the CDS DDL
allows for building hierarchies, which serve as a
building block of the SAP VDM [40]. The VDM
can be divided into three layers (see Fig. 1) [43]:

e Consumption view layer:

— Consumption views: Placed on top of
reuse views and built for a particular pur-
pose and specific requirements. Database
access is only provided indirectly through
the reuse view layer.

® Reuse view layer:

— Basic interface views: The only views
that directly access the database and are
therefore placed on top of the database.

— Composite interface views: Placed on
top of basic interface views, they can
have associations with other composite
views.

— Restricted reuse views: Similar to
basic and composite interface views, but
not intended for reuse.

® Database Layer: VDM is built on top of

these database tables.

Technically, CDS DDL enhances SQL
DDL [19] by further supporting entities with
structured and custom-defined types, associations
for joins with simple path expression, calculated
fields that can be predefined in the data model,
and annotations to enrich the data model with
metadata [40]. In the remainder of this section,
we introduce the CDS DDL, particularly CDS
entities and CDS view entities.

Consumption View Layer

Consumption Views

Reuse View Layer

Composite Interface Views Composite Restricted Reuse Views

Basic Interface Views Basic Restricted Reuse Views

Database Tables

Fig. 1: Layers of the Virtual Data Model [43].

One can use the syntax presented in Listing 1
[39] to define a CDS view entity in CDS DDL.
The DEFINE VIEW ENTITY keywords are used
to specify a new CDS view entity, followed by the
name of the view entity. The CDS view entity is
eventually implemented by the select_statement, of
which the syntax will be described afterward.

1 [@entity_annotl]

2 P

3 [@view_entity_annotl]
4

5

[DEFINE] [ROOT] VIEW ENTITY
view_entity
6 AS select_statement [;]...

Listing 1: CDS view entity syntax.

As part of a CDS view entity, the select state-
ment used to query a data source follows the
syntax shown in Listing 2 [35]. The query begins
with the SELECT keyword and is performed on
the data sources defined in data_source, which can
be database tables, CDS view entities, CDS table
functions, CDS hierarchies, or the obsolete CDS
DDIC-based views [35]. associationl and asso-
ciation2 further define CDS associations for the
current SELECT statement. In the select_list, the
components of the view entity are listed. Compo-
nents of the data_source and the defined associ-
ations can be accessed via path expressions [35].
Further, the clauses in line 4 allow for defining
conditions, groupings, or set operators [35].

SELECT [DISTINCT] FROM data_source
[associationl association2 ...]
{select_list}
[clauses]

=W N =

Listing 2: CDS select syntax.

The syntax of the data_source is presented in
Listing 3 [37]. It is used to define the data source
directly using the entity name or via a SQL path
expression. Also, it is possible to define joins (inner
join, left outer join, right outer join), to combine
multiple data sources [37].

1 ... entity | path_expr [AS alias] |
join |
Listing 3: CDS data source syntax.

CDS associations define relationships between
CDS entities [36]. It can include fields of the asso-
ciation target in the current CDS view entity or
expose these fields for reuse in other CDS enti-
ties. In contrast to a classical join relationship,
these associations are transformed internally to
join expressions with the association source as the
left-hand side and the association target as the
right-hand side, but only on demand. In detail,
the join is instantiated if, e.g., a field of the
association target is used in the element_list of
the CDS view entity. Furthermore, it allows for
reusing these relationships. A particular type of
CDS association is the composition, which consists
of a to-child association and a to-parent associ-
ation. The composition association can state an
existential relationship between parent and child.

1 ... ASSOCIATION [cardinality] [TO]
target [AS _assoc]

2 ON cds_cond [WITH DEFAULT FILTER

cds_cond |

3

4 ... COMPOSITION [cardinality] [OF]
target [AS _compos]

5

6 ... ASSOCIATION TO PARENT target [AS
_assoc |

7 ON $projection.cds_cond

Listing 4: CDS association syntax.

The syntax of CDS associations is presented in
Listing 4 [32-34]. The first two lines present the
syntax of a simple association. In line 4, the syntax
for a composition to-child association is shown.
The ON condition can be automatically derived
from the mandatory to-parent association of the
composition child, and it is therefore not neces-
sary to define it manually. Finally, lines 6 and 7
present the syntax for an to-parent association. It

is important to note that the to-parent associa-
tion needs to be defined first, and only afterward
a to-child association can be introduced.

The select_list is defined as a separated list
of elements that can furthermore consist of an
optional KEY keyword, defining a key element of
the current CDS view entity, the field itself, and
an optional alias, which can be defined with the
AS keyword, followed by the alias. Listing 5 shows
the syntax of the select_list in line 1, followed by
the syntax of a specific element in lines 3 to 9 [38].

1 elementl , element2 ,

2

3 {[@element_annotl]

4 [@element_annot2]

5

6 [KEY] { field [AS alias] } |

7 { expose_assoc [AS
alias] }

8

9 }

Listing 5: CDS select list syntax.

The clauses of the CDS DDL closely follow the
standard SQL DDL, and we will, therefore, not
further detail their usage.

2.3 Core Data Service Example

In Listing 6, a CDS view entity with the
name DEMO_SALES_-CDS_-SO_I_VE is defined.
The view defines DEMO_SALES_SO_1 as the
data_source and defines an association to the
DEMO_SALES_CDS_MATERIAL_VE view to
enrich a sales order item with material infor-
mation. The field material from this association
target is used in the element_list in line 18.
This CDS view entity also defines a to-parent
association to the DEMO_SALES_-CDS_SO_VE
in line 9 to line 11, which is then exposed
in line 19. In other words, we define an exis-
tential relationship from the sales order item
to a sales order. Also, a to-child association is
defined in line 12 to line 13 to the view entity
DEMO_SALES_CDS_SO_I_.SL_VE, which is again
exposed in the element_list of the current view in
line 20. This can be interpreted as each sales order
item having one or more schedule lines; the infor-
mation about schedule lines is contained in the
composition child.

1 @AccessControl.authorizationCheck : #ANOT REQUIRED

2 @QEndUserText.label: 'CDS example 2’

3 define view entity DEMO_SALES_CDS_SO_I_VE

4 as select from

5 demo_sales_so_i

6 association [0..1] to DEMO_SALES.CDS MATERIAL_VE
7 as _Material

8 on $projection.material = _Material.material
9 association to parent DEMO_SALES_CDS_SO_VE

10 as _SalesOrder

11 on $projection.parent_key = _SalesOrder.so_key
12 composition [0..%] of DEMO_SALES_CDS_SO_I.SL_VE
13 as _ScheduleLine

14 {

15 key so_item_key ,

16 parent_key ,

17 posnr ,

18 _Material . material as mat,

19 _SalesOrder ,

20 _ScheduleLine

21 }

Listing 6: CDS view entity example.

2.4 Langium-based Language
Servers

One of the most crucial building blocks of web-
based modeling is the Language Server Protocol
(LSP) [3, 21]. LSP was created to standardize a
language-neutral communication between a lan-
guage server and specific development tools to
enable the reuse of the language server for mul-
tiple development tools [22]. The language server
and the development tool run in different pro-
cesses and communicate over JSON-RPC, which
makes this architecture highly flexible and enables
diverse deployment opportunities [5, 28].

A language server can be defined as a server
that provides language-specific smarts like code
completion. The language server communicates
with a language client via a standardized and
extensible protocol, that is, the LSP. Furthermore,
the LSP allows the definition of custom messages,
which will be used in this paper to extend the stan-
dard protocol to support hybrid modeling—i.e.,
synchronous textual and graphical modeling—of
SAD Core Data Services.

Langium! is an open source framework “with

first-class support for the Language Server Pro-
tocol, written in Typescript and running in
Node.js.” [52] Langium provides the possibility to
create domain-specific languages together with an
out-of-the-box Typescript-based language server
that can be easily integrated into VS Code as an
extension or other web applications and can be
arbitrarily customized to meet the language cre-
ators’ needs. With its pre-built implementations,
Langium simplifies language tasks such as parsing,
Abstract Syntax Tree (AST) generation, valida-
tion, scoping, cross-referencing, and more. The
effectiveness of creating Langium-based modeling
tools has been shown in several recent works [6,
13, 25-27].

The most important element of a Langium
project is the grammar file that describes the
abstract syntax of the language for which the lan-
guage server should be created. Lexing defines
the first step of the parsing process, in which the
input string is transformed into a stream of tokens,
each matching a terminal rule [51]. Langium sup-
ports defining these rules using the Extended
Backus-Naur Form (EBNF) Expressions and Reg-
ular Expressions [51]. These tokens are atomic and

Lhttps://langium.org/, last accessed: 30.07.2024

https://langium.org/

have to return a primitive Typescript type such
as string, number, boolean, bigint, or Date [51].
Due to the lexer trying to match each character in
the input string to a terminal rule, one can define
hidden terminal rules, which are ignored during
processing [51].

Person:
"person’ name=ID;
entry Model:
(persons+=Person | greetings+=
Greeting) *;

1
2
3
4
5

Listing 7: Langium grammar parser rules.

In the next processing step, the parser cre-
ates the AST using defined sequences of tokens
[51]. These valid sequences of tokens are defined
using parser rules, which are written using EBNF
[51]. A simple parser rule is shown in lines 1 and
2 of Listing 7. This rule will create an object of
type Person with an attribute name that matches
the terminal rule ID. It is important to note that
person’ is a keyword of the defined language and
interpreted as an inline terminal rule [51].

Furthermore, the langium grammar allows to
define an entry rule, as shown in lines 4 and 5 of
Listing 7, which serves as the starting point for
the parser [51]. For this example, the parser will
try to parse objects of type Person or Greeting
and add them to the persons and greetings array.
Moreover, the grammar allows using cardinalities,
such as ? for zero or one, * for zero or many, and
+ for one or many, as well as alternatives using
the | operator in these parser rules [51].

In addition, Langium supports defining cross-
referencing directly in the grammar [51]. In List-
ing 8, an example is given for such a cross-
reference. The Greeting parser rule expects the
keyword ’Hello’ followed by a string, which is
equivalent to the name of an existing Person
object and eventually followed by the keyword ’/”.

1 Person:
2 "person’ name=ID;
3 Greeting:
4

"Hello’ person=[Person:ID] ’!’;

Listing 8: Langium grammar cross-referencing.

By definition, the following example in List-
ing 9 will be parsed successfully:

1 person Bob
2 Hello Bob !

Listing 9: Example for a valid cross-reference.

While the example in Listing 10 will produce
an error, since there is no Person object with the
name 'Laura’ defined, even though ’Laura’ is a
valid token of type ID.

1 person Bob
2 Hello Laura !

Listing 10: Example for an invalid cross-
reference.

Another feature of Langium is the scoping
mechanism [50]. Scoping eases the process of link-
ing, which is used to resolve references between
elements within the language [50]. One only needs
to define the scoping behavior of the defined lan-
guage, and the linking process will be done by the
framework [50].

In order to get a deeper understanding of how
the framework works, the document life cycle is
presented below. The LangiumDocument serves
as the central data structure of the framework
with the primary purpose of holding the AST [49].
However, the LangiumDocument has to be built
further after the input is parsed, which happens
depending on the state of the LangiumDocument
[49]. The possible states are listed below, with the
first one being the initial state after the parsing
process and the last one used to mark documents
as invalid after a source text modification [49]:

1. Parsed AST has been created from the input
string.

2. IndexedContent IndexManager has pro-
cessed the AST nodes.

3. ComputedScopes ScopeComputation has
created the local scopes.

4. Linked Cross-references were resolved by the
Linker.

5. IndexedReferences
indexed the references.

6. Validated DocumentValidator has validated
the document.

7. Changed Document has been modified.

The build stages of a LangiumDocument,
depending on the state of the document, are
furthermore illustrated in Fig. 2.

Finally, Langium has first-class support for
LSP [50]. This allows us to easily create a language

IndexManager has

LangiumDocumentFactory
Creation of Lan'giumDncuments Indexing of symbols

Parsed IndexManager

IndexedContent

Computing scopes

ScopeComputation

ComputedScopes

DocumentBuilder

Linking Indexing of cross-references Validation

Linker IndexManager DocumentValidator

Linked IndexedReferences Validated

Fig. 2: Build stages of a LangiumDocument [49].

server that can then be used by multiple develop-
ment tools [50]. The framework supports multiple
features of LSP out of the box but also allows the
extension or implementation of custom capabili-
ties of the language server. An exhaustive list of
features supported by the Langium grammar can
be found in [51].

3 Related Works

Many modeling tools for data modeling exist,
including tools that support Entity Relationship
modeling. One recently introduced ER modeling
tool is BIGER [15, 16]. The tool allows hybrid
modeling of ER in a textual or graphical manner
within VS Code?. The implementation is based
on LSP with a client-server architecture. For the
client side, Sprotty® is used for the graphical
interface, while VS Code provides the textual
interface. BIGER introduced a domain-specific
language implemented in Xtext? that also serves
as the basis for the Java-based language server.
Currently, BIGER only supports conventional data
modeling with ER and code generation for SQL
databases. There is no means of creating and
representing SAP CDS views; neither is support
provided to connect the tool with an existing SAP
S/4HANA database schema.

ABAP Development Tools (ADT) for Eclipse
is the recommended development tool for CDS.
ADT offers an editor for the DDL, SDL, and DCL.
The DDL editor supports the CDS DDL syntax
and offers code completion, validation, and other
features that are tightly integrated with the SAP
environment. However, the textual editor does not

Zhttps://marketplace.visualstudio.com/items?itemName=
BIGModelingTools.erdiagram, last accessed: 10.07.2025

Shttps://sprotty.org/, last accessed: 10.07.2025

4https://eclipse.dev/Xtext/, last accessed: 11.07.2025

support a model-driven engineering process, and
users are forced to implement CDS entities at the
textual level. This establishes a high entry bar-
rier for domain experts, rendering it unfeasible
for them to understand and maintain the CDS
directly and without the support of developers.
Fig. 7 illustrates the usage of ADT within the
Eclipse IDE. It becomes clear that domain experts
are not ready to use such a notation.

Several VS Code extensions for CDS develop-
ment exist. On the one hand, the ABAP CDS
Language Support® provides syntax support for
CDS in VS Code. However, it does not offer
advanced functionality, e.g., validation and auto-
completion. Furthermore, the extension is not
maintained anymore, and therefore, it lacks the
latest CDS updates. On the other hand, SAP CDS
Language Support® and core data services graph-
ical modeler for VS Code” provide full language
support, as well as graphical modeling support,
but for SAP Cloud Application Programming
(CAP), therefore not supporting SAP S/4HANA
CDS.

Synopsis. The overview of related work shows
that, as of now, there exists no open source solu-
tion that enables textual and graphical modeling
of CDS. Existing solutions are either not fully
compliant with the latest CDS version, lack graph-
ical modeling support, or lack advanced devel-
oper support like validation and auto-completion.
Consequently, we see a need for a fully opera-
tional hybrid CDS modeling editor that tightly
integrates with a locally running SAP system.

Shttps://marketplace.visualstudio.com/items?itemName=
hudakf.cds

Shttps://marketplace.visualstudio.com/items?itemName=
SAPSE.vscode-cds

7https://markctplacc.visualstudio.com/itoms?itcmNamc:
SAPSE.vscode-wing-cds-editor-vsc

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
https://sprotty.org/
https://eclipse.dev/Xtext/
https://marketplace.visualstudio.com/items?itemName=hudakf.cds
https://marketplace.visualstudio.com/items?itemName=hudakf.cds
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-cds
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-cds
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-wing-cds-editor-vsc
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-wing-cds-editor-vsc

4 Requirements Elicitation

Based on our experience with existing tools and
informal discussions with experts and practition-
ers, BIGER2CDS is designed to serve as the
primary tool for the model-driven engineering of
CDS. The tool shall support graphical and textual
(i.e., hybrid) modeling of a domain-specific mod-
eling language designed specifically for the con-
struction of CDS (Req-1). The tool shall further
enable the transformation of created models into
CDS view entities using a model-to-text transfor-
mation (Req-2). To further ensure high usability,
BIGER2CDS should allow users to connect to
existing SAP S/4HANA systems (Reqg-3).
BIGER2CDS is intended to be used within
VS Code and Business Application Studio (BAS),
a browser-based development environment in the
professional SAP environment (Req-4). No fur-
ther dependencies should be required to run
BIGER2CDS (Req-5). Therefore, a pure exten-
sion of the existing ER modeling tool BIGER is not
feasible as it requires a Java runtime environment.
The ER2CDS modeling language must sup-
port the following CDS concepts (Req-6): Root
element definition, Entity definition, Attribute def-
inition, Relationship definition, and Join clause
definition. BIGER2CDS’s textual and graphical
representation of models should support all func-
tionality to create and modify ER2CDS mod-
els (Req-7). Furthermore, BIGER2CDS should
enable truly hybrid modeling by offering back-
ground mechanisms that keep the graphical
and textual representations permanently synchro-
nized. To ensure high-quality models, an extended
validation shall be implemented (Req-8). The
validation has to ensure the correctness of the
model according to the defined grammar and,
if connected to an SAP S/4HANA system, the
correctness of the entities and attributes used.
A model-to-text transformation shall be imple-
mented to create a CDS view entity for an
ER2CDS model. Furthermore, to import exist-
ing CDS view entities, a parser that extracts the
entity’s information from an SAP S/4HANA sys-
tem’s database must be implemented. Finally, to
ensure usability, BIGER2CDS should also imple-
ment features that are widely common in textual
and graphical modeling. These features include
syntax support, renaming, layout support, and
auto-completion/value help (Req-9).

5 Realization of bigER2CDS

In the following, we report on the conceptual
design of the BIGER2CDS tool. We detail the
realization of the textual and graphical concrete
syntax, the model editing support, the integra-
tion with SAP S/4HANA, and eventually show
the realized BIGER2CDS tool.

5.1 Architecture

Fig. 3 illustrates a high-level view of the solu-
tion architecture. On the one hand, VS Code and
the extension host, which includes the ER2CDS
language client, as well as the webview used
for diagramming, and, on the other hand, the
ER2CDS language server. The language server
and the client run in separate processes and com-
municate via LSP actions. In general, the language
client orchestrates all communication with the
language server. This includes the Sprotty integra-
tion, which sends and receives messages through
the language client.

The VS Code extension serves as the entry
point of BIGER2CDS. It is responsible for instan-
tiating the language client and hosting the web-
view. Furthermore, the language and grammar
for the textual editor, as well as VS Code
native commands are defined within the exten-
sion. The creation of the language client is
implemented straightforwardly using the wvscode-
languageclient npm module that allows VSCode
extensions to easily integrate LSP-based lan-
guage servers®. BIGER2CDS wuses the proxy
pattern to handle and forward commands to
the language server. This allows the exten-
sion of the payload with information stored
within the extension. One use case is to han-
dle secrets, e.g., SAP user credentials, within the
vscode. ExtensionContext.secrets.store and provide
them to the language server when needed.

The BIGER2CDS webservice itself is imple-
mented as a CDS view entity. It exposes entity
sets for the modeling and import function and is
used by the language server to request additional
information about the system-specific data model,
like the set of entities and attributes present in the
connected SAP system.

8https://www.npmjs.com/packa»ge/vscode— languageclient

https://www.npmjs.com/package/vscode-languageclient

VS Code

Extension Host

Language Client

Sprotty Actions
VS Code API

Webview

Language Server

] Protocol [

Language Server

ER2CDS Webservice

| SAP S/4HANA

Fig. 3: Architecture of BIGER2CDS with all three main components.

The Langium-based ER2CDS language server
implements custom extensions to the standard
protocol to, e.g., handle commands sent by the VS
Code extension, generate the ER2CDS diagram,
validate the ER2CDS model, and synchronize the
textual and the graphical model representations.

Furthermore, the language server implements
two key functionalities, the generateCDS for
generating a CDS view entity from a given
ER2CDS model and importCDS for importing
existing CDS view entities. The generateCDS
feature first extracts the model of the Langium
document, then validates it, generates the CDS
view entity source code using the model-to-text
transformation, and finally serializes the code into
the file system. The importCDS feature first
requests the CDS view entity information from
the webservice, then transforms the response into
a valid ER2CDS model, serializes this model into
its textual representation, and, finally, writes the
ER2CDS source into the file system which triggers
the generation of the Langium model.

The webview is implemented using Sprotty.
The views themselves are implemented using
Scalable Vector Graphics (SVG). Each view class
implements a render method for displaying the
element. Furthermore, for the ER2CDS webview
we define a custom FER2CDSDiagramServer,
handling the communication to the language
server, a custom FR2CDSDiagramWidget
to add custom logic on initialization and
ER2CDSKeyTool, ER2CDSMouseTool and

ER2CDSScroliMouseListener for custom behav-
ior on wuser input. ER2CDS also implements
central services, which can be used throughout the
module. Specifically, to notify different modules
about model changes from the language server, we
implemented a custom ER2CDSCommandStack,
as well as DiagramEditorService, as the cen-
tral model service. These central services,
especially the DiagramFEditorService, are avail-
able throughout the module using dependency
injection.

5.2 ER2CDS Syntax

Fig. 4 visualizes the abstract syntax of the
ER2CDS grammar using plantUML. The abstract
syntax represents edges as object types follow-
ing the abstract syntax specification technique
introduced in [4]. A valid ER2CDS model is
composed of an FR2CDS object, which com-
poses FEntities and Relationships, and a Rela-
tionshipEntity. An entity in ER2CDS is com-
posed of Associations, EntityWhereClauses, and
Attributes. Relationships in ER2CDS compose a
RelationshipJoinClause which itself composes two
Attributes. Finally, an Attribute has a DataType.

Next, we will briefly explain the concepts
present in the abstract syntax of ER2CDS.
ER2CDS: Das ist die Root Entity des Models. Die
sollte nur einfach vorhanden sein. Entity Repre-
sents a table/view/CDS on which the new CDS
is based. One can specify whether the table is
relevant for the generated CDS and also aliases

associations

m @Attn'buteType @ RelationshipType
= association
no-expose Y association-to-parent
no-out s
composition
®ComparisonType
®Cardina|ityType =
==
1 <
0..N >
<=
>=

0.*

©ER2CDS © RelationshipEntity
‘ o target: Entity
gluaneg o cardinality: CardinalityType

© Relationship

o type: EntityType
o name: ID
o alias: ID

o type: RelationshipType

o name: ID

o source: RelationshipEntity
o target: RelationshipEntity

whereClauses

o joinOrder: JoinOrderType

joinClauses

@Association

© EntityWhereClause

© RelationshipjoinClause

o name: ID
o alias: ID

o attribute: Attribute
o comparison: ComparisonType
o fixValue: FixValueType

o firstAttribute: Attribute
o comparison: ComparisonType
o secondAttribute: Attribute

attributes

attribute firstAttribute /secondAttribute

0. 1

(© Attribute

o type: AttributeType
o name: ID
o alias: ID

0.1

datatype

1]

(© pataType
o type: ID

Fig. 4: Abstract syntax of ER2CDS as UML class diagram

for referencing the entity. Entity WhereClause
An additional condition can be specified for each
entity. In the generated view, the individual
conditions are summarized as a single WHERE
clause. Relationship Holds a reference to the
source/target (RelationshipEntity). Also contains
the type and the conditions (RelationshipJoin-
Clause) of the relationship. RelationshipEntity
This concept contains a reference to the entity
plus the cardinality of the relationship, which is
being used in the Langium grammar. Relation-
shipJoinClause Contains the two attributes and
the comparison operator for joining. Association
Associations can be used in CDS to express rela-
tionships to other tables. Unlike “normal” JOIN
relationships, associations are only evaluated at
runtime depending on whether a field in the asso-
ciation was requested or not. The JOIN is only
executed on the table if necessary, as the views

10

are not persisted and represent a virtual data
model. These associations can also be “exposed”,
i.e., one can access the relationships and use
fields from them. Attribute Attribute definition.
DataType Datatype definition.

In the following, we will describe how we real-
ized the textual (Section 5.2.1) and the graphical
concrete syntax (Section 5.2.2) of ER2CDS.

5.2.1 Textual Concrete Syntax

Listing 11 presents the core of the ER2CDS DSL
Langium grammar specification (the complete
grammar specification is provided in Appendix A).
A wvalid model starts with the keyword er2cds
followed by the name of the model, zero-to-many
entities, and zero-to-many relationships.
Entities can have attributes which conform to
a datatype. Each relationship connects a source
and a target entity.

© 00 3O Ut W~

grammar ER2CDS
entry ER2CDS:
"er2cds’ name=ID
(entities+=Entity | relationships+=Relationship) x;
Entity:
(type=EntityType)? ’entity name=ID ’{’
(7alias’ alias=ID)?
(attributes+=Attribute)=x
("expose’ (associations+=Association)x)?
("where’ (whereClauses+=EntityWhereClause)*)?

Att}ril;ute:

(type=AttributeType)? name=ID (’:’ datatype=DataType)? (’as’ alias=ID)?;
Association:

name=ID (’as’ alias=ID)7?;
EntityWhereClause:

(attribute=[Attribute:ID] comparison=ComparisonType fixValue=FixValueType);
Relationship:

(type=RelationshipType)? ’relationship’ name=ID ’{’
((source=RelationshipEntity)? ((’ >’ target=RelationshipEntity))?)?
(7join’ ’order’ joinOrder=JoinOrderType)?
(joinClauses+=RelationshipJoinClause)

Rel;tionshipEntity:
target=[Entity:ID] ([’
cardinality=CardinalityType
2.
RelatioflshipJoinClause:
(firstAttribute=[Attribute:ID] comparison=ComparisonType secondAttribute=|
Attribute:ID]) ;

].E.n.tityType returns EntityType:
NO_EXPOSE

)

A't'tributeType returns AttributeType:
KEY | NOOUT ;

I'{'ellationshipType returns RelationshipType:
ASSOCIATION | ASSOCIATION.TOPARENT | COMPOSITION ;

C.a.rdinalityType returns CardinalityType:
ONE | ZEROMANY ;

I;j.i;(\/alueType returns FixValueType:
CHAR | INT | ONE
Cb'mparisonType returns ComparisonType:
EQUAL | NOT_EQUAL | LOWERTHAN | GREATER.THAN | LOWEREQUAL | GREATEREQUAL

)

Listing 11: ER2CDS DSL grammar implemented using the Langium grammar.

In Listing 12, we present an example contain- no-out keywords® and the use of an alias and
ing an entity Employee and Department, which
are related through the manages relationship. Fur-

thermore, it illustrates the usage of the key and 9no-out attributes are present in the model, e.g., to specify
join conditions but do not form part of the generated CDS
view entities.

11

0~ O UL ix W N

I e el e e el e
S O 00O Ul WNHHO©

er2cds EmployeeManagesDepartment

entity Employee {
key PERNR : NUMC
FNAME : CHAR as FirstName
INAME : CHAR as LastName
DEPARTMENTID : NUMC

}

entity Department {
no—out DEPARTMENTID : NUMC
NAME : CHAR as DepartmentName
LOC : CHAR as Location

}

relationship manages {
Employee [1] —> Department [1]
join order 1
DEPARTMENT ID = DEPARTMENT ID

}

Listing 12: An example for the usage of the textual
ER2CDS DSL, the graphical example is shown in
Fig. 5

cardinalities. Additionally, the manages relation-
ship is defined as the first relationship, using the
join order keyword.

5.2.2 Graphical Concrete Syntax

The graphical concrete syntax of ER2CDS is
based on the Chen-Notation of entity relation-
ship diagrams [9]. Entities are represented by
their name in the component’s header separated
by a line from their attributes. Furthermore, key
attributes are underlined, and no-out attributes
are displayed and crossed out. The graphical syn-
tax in combination with the tool palette and the
property palette, presented in more detail in the
next section support the same modeling features
as the textual concrete syntax.

The example presented in Fig. 5 illustrates the
equivalent graphical representation of the model
textually represented by Listing 12. The model
features an entity named FEmployee, with the
field PERNR as key. The attributes FNAME and
LNAME show the use of an alias. In contrast,
DEPARTMENT_ID of the Department entity is
defined as a no-out attribute and will therefore not
be presented in the element_list of the generated
CDS view entity. Relationships are represented

12

Employee

Department

PERNR:NUMC
FNAME:CGHARFirstName

DEPARTMENTB:NUMC
NAME:CHARDepartmentName
LOC:CHARLocation

LNAME:CHARLastName
DEPARTMENT_ID:NUMC

Fig. 5: lllustrative example of the graphical con-
crete syntax of the BIGER2CDS tool consistent
with the textual example shown in Listing 12.

by their names only. An undirected edge illus-
trates the associations between elements. Since
we require a source and a target entity to form
the only valid relationship, we further restrict
relationships to binary relationships. A relation-
ship can also define cardinalities for the source
and the target entity. These are represented as
a label above the corresponding edge. An exam-
ple of a relationship is presented in Fig. 5, for
this Employee acts as the source entity, which
is related to Department via the manages rela-
tionship. The cardinalities are represented as the
labels above the relationship. In this case, both
are one and can be interpreted as exactly one
employee managing one department.

5.3 Model Graphical Editing

We will now focus on graphical modeling interac-
tions since the textual modeling uses the native
functionality of VS Code text editing. To imple-
ment the CRUD model editing operations, the
BIGER2CDS tool exposes two main interaction
components, the tool palette and the property
palette. The tool palette allows the user to select
and use tools for general modeling, like selection,
deletion, or validation, as well as tools used to cre-
ate different elements of the model. The property
palette is responsible for modifying the attributes
of existing elements and showing the current state
of the selected model element.

To support hybrid graphical and textual mod-
eling, we have to extend LSP. More specifi-
cally, additional LSP actions for graphical mod-
eling must be defined. For the textual part,
BIGER2CDS is based on the standard LSP
actions. Table 1 describes the custom actions
defined by BIGER2CDS.

To synchronize the textual and the graphical
model representation, we must define a leading

Table 1: Custom LSP actions defined by BIGER2CDS for graphical modeling.

Action Name
[Parameter list]

Description

CreateElement
[elementType : string]

Used to create a specific element type. The elementType parameter con-
tains the information on which kind of element should be created.

CreateEdge
[sourceElementld : string,
target ElementId : string)

Used to create an edge from the source element, identified by sourceEle-
mentld, and the target element, identified by the targetElementld. One of
the elements has to be an entity, and the other one is a relationship.

CreateAttribute
[elementld : string]

Creates an attribute for an entity, defined by the elementld. This action
can only be successfully executed if the elementld corresponds to an entity.

CreateJoinClause
[elementld : string]

Creates a join clause on a relationship, which is identified by elementld.
The action can be successfully executed if and only if elementld identifies
a relationship.

UpdateElementProperty
[sourceElementld : string,
propertyld : string,

value : string]

Used to update a property of an element, corresponding to the elemen-
tld. The property is identified by the propertyld. Furthermore, the value
parameter defines the new value of the property.

DeleteElement
[elementlds : stringl]]

Deletes all elements identified by elementlds. It allows to delete multiple
elements at the same time.

Request AutoComplete
[elementId : string,

type : string,

search : string]

Allows to retrieve value suggestions from the backend. The elementld
identifies the selected element. The type defines the type of the autocom-
plete request. In more detail, two types of auto-complete requests are
defined. First, to retrieve suggestions for entity names, where the selection
is restricted by the search value. Secondly, it is used to retrieve attribute
suggestions for a specific entity. The request is, therefore, restricted to the
attributes of the specific entity, as well as the search value. The server
responds with a Set AutoCompleteAction.

Set AutoComplete
[elementId : string,

values : AutoCompleteV aluel]]

Sent in response to RequestAutoComplete. The elementld identifies the
element to which it corresponds. The values are defined as an array of
AutoComplete Value, a type that contains a label.

RequestPopupConfirmModel

[elementId : string,
bounds : Bounds]

Sent to request a popup from the server. Used to confirm the creation of an
entity from the external data source, identified by elementld. The bounds
correspond to a default LSP type, defining the location of the popup. The
server responds with a SetPopupModelAction predefined in LSP.

CreateElementExternal
[elementId : string]

Is sent after the manual popup confirmation, as a result of RequestPop-
upConfirmModelAction, to load an entity from the external data source.

RequestMarkers

Sent to validate the model. The server responds with a SetMarkersAction.

SetMarkers
[markers : Marker]]]

Sent as a response to the RequestMarkersAction. It triggers a validation of
the model and contains the validation result in the form of markers. These
are defined with a elementld to identify the element, kind, defining the
severity (info, warning, error), and a description, a textual explanation.

13

system that holds the only truth in case of incon-
sistency. We chose the Langium internal model to
act as the single source of truth. Therefore, all
updates should be committed to this model. We
distinguish between two cases: i) updates through
the textual representation and i¢) updates through
the graphical representation. While the first case
is well supported by Langium natively, the lat-
ter case relies on the custom-defined LSP actions
for the BIGER2CDS elements’ CRUD operators,
model validation, and auto-complete.

All custom LSP actions with their respective
usage are presented in Table 1. The language
server handles the create, update, and delete
actions by modifying the current Langium model.
It then serializes the model to the file system. The
subsequent save triggers the framework to start
the same process as modifying the textual rep-
resentation (see the Langium document lifecycle
illustrated in Fig. 2). Using this process allows us
to rely heavily on the framework. We only need to
implement the serialization of the Langium model
to a textual representation.

5.4 Integration with SAP S/4HANA

An SAP S/4HANA system can be connected to
BIGER2CDS. The system needs to expose a cus-
tom webservice that can be used to access the
data model. This service is implemented as a CDS
view entity, which is then exposed as a webservice
using the SAP S/4HANA infrastructure. First, we
can use the external data model to enable user
value-helps. More specifically, the value-helps are
presented for input fields, particularly the name
of an entity or an attribute (see presented sug-
gestions in the property palette of BIGER2CDS
in Fig. 6). For example, when modeling a CDS
view entity, all existing and valid data sources
or associations are retrieved from the connected
SAP S/4HANA system and used as possible entity
names, as these are the only valid names in this
context.

Another use case for connecting to an SAP
S/4HANA system is for model validation. Access
to an external data model allows the validation
of the entities and attributes against it. The
ER2CDS webservice exposes five entity sets for
the modeling and import function and is used by
the language server to request additional informa-
tion about the system-specific data model:

14

e Entities: Existing entities of the data model.

e Attributes: Attributes of entities in the data
model.

® ImportSelectList: Exposes the
DDCDS_SELECTLIST table enriched with
the datatype of the fields.

® ImportCondition: Exposes the
DDCDS_CONDITION table enriched with
the datatype of the fields.

® ImportAssocDef: Exposes the
DDCDS_ASSOC_DEF table with all defined
associations.

® ImportFromClause: Exposes the
DDCDS_FROMCLAUSE table with infor-
mation about which properties the CDS uses
in the from clause.

These entity sets are offered by the SAP sys-
tem and exposed through the custom webservice
to provide additional information to BIGER2CDS
when generating an ER2CDS model from a con-
nected SAP database. Implementing the web-
service as a CDS view entity, functionality for
filtering, searching, or pagination is handled auto-
matically by the SAP S/4HANA system. The
authentication is based on the standard user man-
agement of SAP. The username and password can
be maintained within ER2CDS and are used to
authenticate the client.

5.4.1 ER2CDS Model-to-Text
Transformation

The model-to-text transformation is one of the
central features of BIGER2CDS. It allows the
transformation of an ER2CDS model into a valid
CDS view entity. We will use a template-based
approach to generate the textual output. The gen-
eration of a CDS view entity can be divided into
five steps, which are directly derived from the
syntax of CDS.

1. Generation of header annotations: Each
CDS view entity can define optional annota-
tions applied to the entire view. This includes
authorizations, metadata, and even end-user
labels.

2. Generation of header: The name of the
ER2CDS model serves as the name of the
generated CDS view entity.

3. Generation of from clause: We analyze
the model for relationships with no defined
association type. Since the join order is

Table 2: Mapping of cardinalities to the respective join/association type.

Source Cardinality ‘ Target Cardinality ‘ Join Type ‘ Association Type
1 ‘ 1 ‘ Inner Join ‘ [1..1]
1 \ 0.N \ Left Join \ [1..%]
0.N \ 1 \ Right Join \ [0..1]
0.N \ 0.N \ Left Join \ [0..%]
n.d ‘ n.d. ‘ Inner Join ‘ [0..1]

important, the relationships must be sorted
according to the join order in the ER2CDS
model. Furthermore, the join type is defined
based on the specified cardinalities of the
relationship.

. Generation of associations: The asso-
ciations are generated similarly to the
from_clause, with the difference that an asso-
ciation type has to be defined for the rela-
tionship. The concrete mapping is illustrated
in Table 2. It is important to note that cardi-
nalities are only applied for association and
composition, but not for association-to-parent
since the CDS syntax does not require them.

5. Generation of attributes: First, the key

attributes are generated with the appropri-
ate key keyword of CDS, then the remaining
attributes, considering the no-out attributes
which are not added to the CDS view entity.

The resulting template is illustrated in List-
ing 13, with <...> denoting markers. Using this
template, the generated CDS view entity for the
example presented in Listing 12 and Fig. 5 is
displayed in Listing 14.

5.4.2 CDS View Import

The import of existing CDS view entities into
BIGER2CDS is implemented indirectly, using the
serialized data of the view. Similarly to the
value-help and validation, the webservice defines
and exposes a CDS view entity to access the
required data. When importing an existing CDS
view entity, the data of all associated entities is
requested and used to create an ER2CDS model.
After converting the SAP representation to an
ER2CDS model, the resulting model is serialized
to the file system, triggering the creation of the
Langium model.

15

5.5 bigER2CDS Modeling Tool

Fig. 6 shows a screenshot of the LSP-based real-
ization of the BIGER2CDS modeling tool in the
VS Code extension. The language server is based
on Langium. The textual domain-specific lan-
guage is defined in the Langium grammar, while
the graphical modeling part is implemented using
Sprotty!?. It is well integrated with VS Code and
also supports LSP.

The user interface of the tool, the FEditor-
Panel webview, serves as the main container for
the ER2CDS diagram. It is divided into the main
modeling container and the property panel (see
Fig. 6). The modeling container itself is an empty
container in which the current model is rendered.
On the other hand, the property palette contains
different elements depending on the currently
selected element. A custom implementation for
all different element types exposes input elements
within the property palette.

The tool palette is another user interface ele-
ment that hosts the model editing tools for
BIGER2CDS, like selection, deletion, validation,
and search. It is separated into two parts. For
the header bar, the following tools are available
starting from the left:

® Default tools Tools that are enabled by
default. ER2CDS defines the MarqueeKey-
Tool and DeleteKeyTool as default tools.
The first allows enabling the MarqueeMouse-
Tool using ’Shift’, the latter allows deleting
elements using the ’Delete’ or ’Backspace’
key.

® DeleteMouseTool Deletion of an element
on mouse click.

® MarqueeMouseTool Selection of multiple
elements by dragging the mouse.

Ohttps://sprotty.org/, last accessed: 17.07.2025

https://sprotty.org/

T W N =

10
11
12
13
14

O~ O T W

= = e
B W N = O ©

@AccessControl. authorizationCheck : #CHECK

@Metadata.ignorePropagatedAnnotations:
@EndUserText . label:
define view entity <name> as
([inner join | left outer join |
([<entity> | <entityAlias>].
<secondAttribute> (and)?)x*)x
([association[1..1] | association [1..x]
to <entity> (as
<entityAlias>]. <secondAttribute >
([composition [1..1] | composition [1..x]
of <entity> (as <entityAlias>)7?)x
(association to parent <entity> (as

<firstAttribute > = [<entity> |
{
((key)? [<entity> |
(<entity>)=*
}
where
[<entity> | <entityAlias>]. <attribute>

true
’Generated by ER2CDS’
select from <entity>

right outer join]
<firstAttribute > =

<entityAlias>]. <attribute>

[=1< <> <=]>]

association [0..1] |
<entityAlias>)? on ($projection. <firstAttribute> =
(and) ?) %)=

composition [0..1] |

<entity> (as
[<entity> |

<entityAlias>)? on
<entityAlias>].

association [0..x*]]
[<entity> |

composition [0..x*]]

<entityAlias>)? on ($projection.
<entityAlias>]. <secondAttribute> (and)?)*)=x*

(as <attributeAlias>))x

<fixValue>

Listing 13: The template used by ER2CDS to generate CDS view entities.

@AccessControl.authorizationCheck : #CHECK

@Metadata.ignorePropagatedAnnotations:
@EndUserText.label:

true
’Generated by ER2CDS’

define view entity EmployeeManagesDepartment as select

from Employee

inner join Department on Employee . DEPARTMENTID = Department . DEPARTMENT ID

key Employee.PERNR,

Employee . FNAME as FirstName,
Employee .INAME as LastName,
Employee .DEPARTMENT ID,

Department .NAME as DepartmentName ,
Department .LOC as Location

}

Listing 14: An example of an generated CDS view entity using ERCDS, this CDS view entity has been
created from the textual specification in Listing 12 and the graphical specification in Fig. 5

® Validation Triggers a validation request to
the language server.
e Search Allows searching within the tool
palette.
The palette further offers the creation tools for all
ER2CDS elements like Add Entity and Add Edge.
Fig. 6 presents a complete overview of the
BIGER2CDS modeling tool, integrated into VS
Code with the textual and graphical editor, and

16

highlights the value help functionality in the prop-
erties palette, where, while the modeler is defining
the name of an entity, the tool suggests valid
names based on the connected SAP S/4HANA
database.

Regarding the deployment and distribution of
BIGER2CDS, both VS Code and Business Appli-
cation Studio (BAS) allow for the installation of

manager.er2cds U manager.er2cds X

manager.er?cds > €2 ZER2CDS_MANAGER » €2 man:
er2ecds ZER2CDS_MANAGER

~ entity Employee {
key PERMR : NUMC
FMAME : CHAR as FirstName
LNAME : CHAR as LastName
DEPARTMENT_ID : NUMC
H

9 PERNR:NUMC

18 ~ entity Department { FNAME :CHARFirstName
11 no-out DEPARTMENT_ID : NUMC LNAME:CHAR Lasthame
12 NAME : CHAR as DepartmentName

DEPARTMENT_ID: NUMG
13 Loc :

14 1

CHAR as Location

16 - relatienship manages {

17 Employee[1] -> Department[1]
18 join order 1
19 DEPARTMENT_ID = DEPARTMENT_ID ‘
Properties
20}
Employee
Name
Alias
Attributes

@ oo

) Palette

@x 820 0

v

4% Nodes

Add Entity

Add Relationship
/* Egde

Add Edge

&2 Attribute
Add Attribute
Add Join Clause

Department
BEPARTMENTD:NUMG
NAME:CHARDeparmentName
LOGC:CHARLocation

Employee]

Employee

EmployeeSalary

+ x o

(O Employee.PERNR >

Fig. 6: The BIGER2CDS modeling tool integrated in VS Code.

extensions through the VS Code Marketplace'!,
making it the platform of choice for the tool. Users
can search, install, and use the extension directly
within the development environment!? without
any further dependencies on the local runtime
environment.

6 Evaluation

Our evaluation is twofold and composes a con-
trolled experiment—focusing on the expressive-
ness of the CDS grammar (Req-1 and Req-6),
import/export features (Req-2) and the SAP
integration (Reg-3)—and a case study with
practitioners—focusing on the usability of the
BIGER2CDS tool (Reg-5, Req-7, Req-8, and Reg-
9). Note that all data belonging to the experi-
ments, including the task descriptions with sam-
ple solutions, the imported and exported models
can be found in the BIGER2CDS repository!?.

VS Code Marketplace: https://marketplace.visualstudio.c
om/VSCode

12BIGER2CDS tool in the VS Code marketplace: https://ma
rketplace.visualstudio.com/items?itemName=BIGModelingT
ools.er2cds

13BIGER2CDS repository: https://github.com/borkdominik
/ER2CDS/tree/main/evaluation

17

Our evaluation responds to the following research
questions.
e RQ1: To what extent is BIGER2CDS able
to model, import, and export CDS?
® RQ2: What is the usability of BIGER2CDS
for business experts and developers?

6.1 Experimental Evaluation

The experimental evaluation focused on the
expressiveness of the grammar to represent mod-
eled and imported CDS views. We first modeled
20 existing CDS view entities using BIGER2CDS
(see Table 3 for descriptive statistics of the
dataset). These CDS views were derived from the
company for which one of the paper’s authors
works. He was himself responsible for developing
these CDS views using the textual language and
the Eclipse ADT tool. The selection was aimed to
cover a diversity of CDS view concepts and also
a diversity of CDS view sizes, ranging from 0 to
23 relations, three to 128 elements, and 16 to 221
lines of code, respectively. Afterward, we used the
model to generate a CDS view entity and com-
pared it to the original textual view description.
Furthermore, the resulting output is imported into
the SAP S/4HANA system of the original view to

https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds
https://github.com/borkdominik/ER2CDS/tree/main/evaluation
https://github.com/borkdominik/ER2CDS/tree/main/evaluation

Table 3: Descriptive statistics of the models in our evaluations

Metric Modeled /Exported Models Imported Models Case Studies
Min. Max. Avg. Std. | Min. Max. Avg. Std. | Taskl Task2 Task3
Dev. Dev.
Relations | © 23 5.55 6.12 | 0 30 3.89 5.00 | O 2 6
Elements | 3 128 31.05 30.79 | 2 325 34.38 4935 | 5 8 13
Lines of Code] 16 221 65.30 53.51 | 31 1115 116.76 132.40 | 16 20 27

validate its correctness. The dataset consisted of
ten standard CDS view entities created by SAP
and ten custom CDS view entities implemented by
one co-author working in a company using a SAP
S/4HANA system.

All modeled CDS view entities output a syn-
tactically correct CDS view entity. We tested this
by importing the generated CDS view code into
the running SAP system without receiving any
errors. Furthermore, when comparing the gen-
erated view to the original view, 20 out of 20
were evaluated positively regarding the correct-
ness of the output itself by the authors of this
paper by using basic text comparison techniques.
BIGER2CDS can model and generate all the
customer-specific view entities and standard view
entities.

Next, we evaluated the import of existing
CDS view entities into BIGER2CDS. 100 ran-
domly selected standard CDS view entities were
imported to BIGER2CDS and validated concern-
ing the tool’s capability to i) import and ii) display
the CDS view entity (see Table 3 for descrip-
tive statistics of the dataset). Furthermore, the
errors and warnings issued by BIGER2CDS were
documented.

Regarding the import of existing CDS view
entities, BIGER2CDS was able to import all view
entities of the dataset successfully. Furthermore,
all of the evaluated examples could also be ren-
dered. However, the import was incorrect for one
out of the 100 CDS view entities. The reason for
this was the UNION operator, which is not sup-
ported by BIGER2CDS since a UNION of two
queries would result in two separate ER2CDS
models with the same structure (i.e., the same
fields) in the result set.

In a final step, we aimed to contrast the def-
inition of a concrete CDS with BIGER2CDS to
its implementation in Eclipse using ADT. Fig. 7

18

shows the textual specification of CDS in Eclipse
ADT while Fig. 8 presents the corresponding
CDS implementation using the graphical concrete
syntax in BIGER2CDS. While this comparison
obviously only shows a single instance, it serves
the purpose of illustrating the complexity of spec-
ifying valid CDS using the textual syntax only
compared to the more intuitively comprehensible
representation in a graphical manner (more on this
in the case study evaluation). Admittedly, not all
users prefer a graphical representation, but having
the graphical and the textual representation avail-
able in BIGER2CDS in a synchronized manner is
clearly an asset as it offers a more accessible way
to specify CDS.

Table 4 summarizes the extent to which our
implemented BIGER2CDS tool fulfills the indi-
vidual requirements introduced in Section 4. As
can be seen, eight out of nine requirements are
completely fulfilled. The one partially fulfilled
requirement relates to the lacking ER2CDS lan-
guage support for the "UNION’ CDS operator.
As explained previously, this operator does not
make sense in the context of BIGER2CDS as the
UNION operator would require establishing cross-
references between two CDS views in the tool.
An obvious workaround is to create two individ-
ual CDS view models in BIGER2CDS,; trigger the
code generator on both, and then only hand-write
the UNION code to connect the two CDS.

6.2 Case Study

For the case study, the participants are presented
and asked to model three tasks with increasing
difficulty with BIGER2CDS. The description of

19 @AccessControl.authorizationCheck: #CHECK

2 @EndUserText.label: 'Delivery Schedule for Customers’
3 @etadata.ignorePropagatedAnnotations: true

4 define view entity Z_I_MVLCONFIRMED

5 as select distinct from I_SalesDocumentItem
6 inner join I_SalesDocument as _SalesDocument on I
7 inner join I_SalesDocumentPartner as _SalesDocumentPartner on
8

9

10 left outer join I_SalesDocumentScheduleLine as _SalesDocumentScheduleLine on

12
13

14 left outer join I_DeliveryDocumentItem as _DeliveryDocumentItem on
15 and
16

17 association [1..1] to I_CalendarDate as _ScheduleDate on _SalesDocumentScheduleLine.ConfirmedDeliveryDate =
18

19

20 key I_SalesDocumentItem.SalesDocument,

21 key I_SalesDocumentItem.SalesDocumentItem,

22 I_SalesDocumentItem.PurchaseOrderByCustomer,

23 I_SalesDocumentItem.ProductConfiguration,

24

25 _SalesDocument.IncotermsClassification,

26 _SalesDocument.IncotermsTransferLocation,

27

28 _SalesDocumentPartner.Customer,

29 _SalesDocumentPartner.Supplier,

30

31 _SalesDocumentScheduleLine.ConfirmedDeliveryDate,

32 _SalesDocumentScheduleLine.OrderQuantityUnit,

33

34 _DeliveryDocumentItem.GoodsMovementStatus,

35

36 _ScheduleDate.CalendarDate,

37 _ScheduleDate.CalendarMonth,

38 _ScheduleDate.CalendarYear,

39

40

41 //Associations

42 _ScheduleDate._Calendarionth

43

44 3}

45 where

46 I_SalesDocumentItem.HigherLevelItem <> '000000"

47 and I_SalesDocumentItem.SalesDocumentRjcnReason = '*

48

_sal

Item.Sal = _sal .sal

I_Sal

t
tPartner.Sal

[. t
and _SalesDocumentPartner.PartnerFunction

I_SalesDocumentItem.SalesDocument
11 and I_SalesDocumentItem.SalesDocumentItem
and _SalesDocumentScheduleLine.IsConfirmedDelivSchedLine

_SalesDocumentScheduleLine.SalesDocument
_SalesDocumentScheduleLine.SalesDocumentItem

I_sal

Item.Refere
Ttem.Refer

tItem.Sal

= _Deliver

t
tItem Item

I_sal

Item.Sal TDeliver

_ScheduleDate.CalendarDate

Fig. 7: Example of a CDS view entity using Eclipse ADT, equivalent to the graphical variant in Fig. 8

|_SalesDocumentPartner_SalesDocumentPartner

I_SalesDocumentitem

SalesDocument:CHAR Relationship1

SalesBesument:CHAR
ParinerFunetion: CHAR

Customer:CHAR

SalesDocumentitem: CHAR
Highertevetitem: CHAR
SalesDocumentRicnReason: CHAR
PurchaseOrderByCustomer: CHAR

Supplier:CHAR

ProductConfiguration:CHAR
Relationship0

Relationship3

Relationship2

SatesBeeument: CHAR

|_SalesDocumentScheduleLine_SalesDocumentScheduleline

SatesDeeument: CHAR
BalesBeeumentitem: CHAR

I_SalesDocument_SalesDocument

IncotermsClassification: CHAR

IncotermsTransferLocation: CHAR

|_DeliveryDocumentitem_DeliveryDocumentitem
RefereneeSBBesument: CHAR
‘ReferenceSBbeeumentitem: CHAR
GoodsMovementStatus:CHAR

|_CalendarDate_ScheduleDate

CalendarDate:DATS

cl Relationship4 CalendarMonth:CHAR
“oAs CalendarYear:CHAR

ConfirmedDeliveryDate: DATS

OrderQuantityUnit:CHAR

_CalendarMonth

Fig. 8: Example of a CDS view entity using ER2CDS, equivalent to the textual variant in Fig. 7

the three tasks'?, as well as a reference imple-
mentation of all three!® can be found in the
BIGER2CDS repository.

14 BIGER2CDS repository case study: https://github.com/b
orkdominik/ER2CDS/blob/main/evaluation/case-study /cas
e-study.pdf

15BIGER2CDS repository case study examples: https://gith
ub.com/borkdominik/ER2CDS/tree/main/evaluation/case-s
tudy/examples

19

After executing the three modeling tasks we
surveyed the participants to gather feedback and
collect data. The survey can be divided into
three parts: six questions regarding the three
tasks of the case study, for each task we asked:
1) if the participant could implement the given
task using BIGER2CDS, and i) if the par-
ticipant could implement the given task using

https://github.com/borkdominik/ER2CDS/blob/main/evaluation/case-study/case-study.pdf
https://github.com/borkdominik/ER2CDS/blob/main/evaluation/case-study/case-study.pdf
https://github.com/borkdominik/ER2CDS/blob/main/evaluation/case-study/case-study.pdf
https://github.com/borkdominik/ER2CDS/tree/main/evaluation/case-study/examples
https://github.com/borkdominik/ER2CDS/tree/main/evaluation/case-study/examples
https://github.com/borkdominik/ER2CDS/tree/main/evaluation/case-study/examples

Table 4: Requirements Fulfillment

Requirement Fulfillment

Reg-1: We developed a comprehensive domain-specific language to represent CDS
DSL for CDS (cf. Fig. 4 and Listing 11).

Reg-2: We realized a template-based model-to-text transformation that uses ER2CDS

CDS code generation

models as input and automatically generates valid SAP code from it. The
evaluation yielded zero errors for the code generator.

Req-3:
SAP S/4Hana connection

We realized a webservice that enables the efficient integration between
BIGER2CDS and SAP S/4Hana. The tool can query the existing views in the
SAP database and can automatically generate the corresponding models.

Req-4:
VS Code & BAS integration

We successfully deployed BIGER2CDS as an extension in the VS Code marek-
tplace from which it can be directly installed and used in VS Code and in

BAS.

Req-5:
Runtime dependencies

No additional runtime dependencies are introduced through BIGER2CDS. The
tool can be executed directly within VS Code or BAS.

Reqg-6:
CDS language support

Except for the UNION operator, BIGER2CDS has full CDS language support.
The experiments with 100 randomly sampled CDS yielded only a single error,
which was related to the use of the UNION operator.

Req-7:
CDS CRUD support

We realized full CRUD support for the textual and the graphical concrete
syntax. Users can equally edit the model in whatever presentation they prefer.

Reg-8:
CDS model validation

We realized custom validations for created and imported CDS. Entire CDS
models are validated against the CDS grammar while all property values are
further validated against a connected SAP S/4Hana system.

Req-9:
Editing support

We realized syntax highlighting, code completion, and cross-referencing for the
textual concrete syntax. Moreover, we realized the property palette, as well as
default, delete, and marquee tools, to support efficient model editing in the

graphical view.

the standard textual syntax of CDS. Each ques-
tion provides possible answers using the Lik-
ert scale [18]. Questions of the standard system
usability score (SUS) [7] followed, quantifying the
usability of BIGER2CDS. The SUS questionnaire
is widely adopted with more than 20.000 cita-
tions in GScholar. It offers a standardized score
for usability that allows a comparative assessment.
Subsequently, the participants were asked whether
they prefer using BIGER2CDS or the standard
textual syntax of CDS in the future. Finally, our
survey concluded with three open questions for
positive or negative feedback and suggestions for
future improvements of BIGER2CDS.

The case study was conducted with eight par-
ticipants: four CDS developers (three with three
to five years relevant experience, one with 104
years of relevant experience) and four business
experts (one with up to three years relevant expe-
rience, one with five to ten years of relevant
experience, and two with more than 10 years of
relevant experience). All participants were able
to create the CDS view entity for the first two
tasks using BIGER2CDS, while only five thought

20

they could implement the same tasks using only
the textual syntax of CDS. Even fewer partici-
pants (two) assessed themselves as being able to
implement the third task of the case study using
only the textual syntax of CDS. In contrast, seven
out of eight participants were able to implement
it using BIGER2CDS. Regarding the traditional
approach, a lack of programming skills regarding
CDS development was the main issue, while when
using ER2CDS, the only issue was linked to a
lack of knowledge in CDS features (association to
parent, composition).

The SUS for each participant ranged from 65
to 100 (out of 100), with an average value of 86.25,
a median value of 91.25, and a standard deviation
of 12.82. Classifying these scores concerning the
studies analyzed in [1], renders the BIGER2CDS
tool usability above-average.

Finally, it is significant to note that all busi-
ness experts who participated in the case study
prefer to use BIGER2CDS over the textual syn-
tax of CDS in the future. Further, two par-
ticipating developers favor using BIGER2CDS
over their experienced use of the textual syntax.

This finding underpins the increased accessibil-
ity and effectiveness of our model-driven approach
and the developed tool support compared to
the traditional, code-only approach, especially,
but not exclusively, for business-oriented users
or domain experts lacking a strong programming
background.

7 Discussion

The evaluation of BIGER2CDS has shown the
effectiveness and usefulness of the tool with real-
world examples and real-world CDS developers
and business stakeholders. The experiment for cre-
ating and importing existing CDS view entities
presented the strong capabilities the tool already
has. No findings indicated the unfeasibility of such
a modeling tool for CDS view entities.

Furthermore, the results of the case support
the business need for BIGER2CDS. One of the
significant findings is that BIGER2CDS allows
developers and business experts to create CDS
view entities. Also, the SUS indicates high usabil-
ity of the tool, making it accessible to a broader
audience [45]. Another critical finding is the users’
preference to use BIGER2CDS over the tex-
tual CDS syntax. Especially for business experts,
BIGER2CDS offers a valuable alternative for cre-
ating CDS view entities, again indicating the value
of such a tool.

The open questions showed rich feedback and
further shed light on the fact that developers
are also eager to use the tool. Regarding this
open feedback, the hybrid modeling of CDS and
the higher level of abstraction are denoted as
advantages of BIGER2CDS. The suggestions for
improvement are related primarily to limitations
of the ER2CDS grammar, in more detail, the
UNION operator, which is currently not sup-
ported, and serve as the basis for further develop-
ment and future work within the context of low-
code business app development and, specifically,
BIGER2CDS.

7.1 Implications

Next, we discuss implications for the broader
MDE community that can be derived from our
research and the lessons we learned.

21

From an MDE community perspective, we
showed that it is feasible to realize hybrid mod-
eling support for industrially used languages like
CDS. We showed that new technology stacks are
capable of realizing more accessible solutions able
to bridge the gap between different types of users
with varying backgrounds and preferences, and
the highly complex and technical domains they are
working in, in our case, SAP with the CDS.

By providing a higher level of abstraction,
the BIGER2CDS enables business experts who
may lack extensive programming skills to partic-
ipate in the CDS development process, bridging
the gap between domain experts and developers.
We showed how an academic tool prototype can
seamlessly integrate with SAP S/4HANA systems,
offering features such as data model validation,
value help, and the import of existing CDS view
entities.

From a technical perspective, this research
contributes a novel hybrid modeling tool that
is realized on the latest technology stacks. The
underlying architectural principles and the means
to integrate the widely used frameworks can
inform others who are interested in developing
hybrid modeling editors [11] with web technolo-
gies. BIGER2CDS effectively employs Langium
for language server capabilities and Sprotty for
graphical rendering, demonstrating the synergies
between these frameworks in creating a robust
and user-friendly hybrid modeling environment.
Langium allows for the creation of domain-specific
languages with relative ease, thanks to its compre-
hensive grammar and parser support. We showed
how the built-in functionality of Langium can be
extended to support custom LSP actions for model
editing, validation, and code generation. More-
over, we showed how Sprotty can be integrated
with Langium to seamlessly support hybrid mod-
eling. We further show how such a developed tool
can be successfully deployed as an extension to
the VS Code Marketplace and integrated into an
industrial web application.

Our research further shows how custom
domain-specific modeling editors can exploit the
rich functionality and services offered by platforms
like VS Code. We show how the rich language
supporting functionality of VS Code and LSP
can be facilitated to efficiently realize a feature-
rich, cross-platform, modern web-based hybrid
modeling editor.

BIGER2CDS implements a template-based
approach for generating CDS view entities from
ER models, ensuring the correctness and quality
of the generated CDS views. This transformation
process is crucial for maintaining consistency and
accuracy in the CDS development lifecycle and
can be a blueprint for other MDE tool developers.

By releasing BIGER2CDS on the VS Code
Marketplace'® and open source repositories'”, we
enable efficient further development, customiza-
tion, and adoption of our solutions.

From a domain expert perspective we have
implications based on our thorough evaluation and
the controlled experiments. Our research demon-
strates that MDE approaches can be developed
that are well-received by both developers and busi-
ness experts for supporting highly technical and
complex tasks like the development of CDS. This
should raise interest in exploring more means to
equip (or even replace) highly technical indus-
trial solutions with MDE approaches. A need that
was only recently raised in an industrial modeling
survey [20].

7.2 Challenges

The realization of BIGER2CDS was not free from
challenges. To enable the community to learn
from our research, we share our reflections on
the challenges and limitations we faced in the
following.

Managing the complexity of hybrid graphical
and textual representations in ER2CDS was a
significant hurdle, particularly in ensuring consis-
tency and accuracy across model transformations.
The decision to use the Langium model as the
single truth and transforming graphical model
edits into the textual representation, which then
triggers the standardized and mature Langium
document builder lifecycle, has proved useful in
our context. Designing an intuitive yet powerful
UI that caters to both novice and expert users
proved challenging, often resulting in a trade-
off between accessibility and functionality. Future
work can clearly further improve the Ul-end of
BIGER2CDS.

16BIGER2CDS VS Code extension https://marketplace.visu
alstudio.com/items?itemName=BIGModelingTools.er2cds

7BIGER2CDS Github repository https://github.com/borkd
ominik/ER2CDS

22

Next to the conceptual challenges described
before, we also faced limitations in the tools
and frameworks used. BIGER2CDS is not fully
integrated with SAP Business Application Stu-
dio (BAS), although integration is feasible. We
decided to build a webservice as a wrapper for
the tight integration, which would require more
development. Despite its intended accessibility,
BIGER2CDS still demands some technical exper-
tise, restricting its use for entirely non-technical
stakeholders. Especially when aiming for creating
complex CDS views, business stakeholders might
require further assistance, e.g., in the sense of an
intelligent modeling assistant [23].

The simplified approach of hybrid textual and
graphical modeling sometimes overlooks deeper
complexities present in CDS view entities. The
hybrid modeling of CDS views highlighted a
significant challenge in maintaining synchroniza-
tion between these representations. The hybrid
approach sometimes led to inconsistencies when
models became overly complex.

From a wider adoption perspective, we see
broader barriers primarily in the sometimes insuf-
ficient documentation and inadequate beginner
resources for the used technologies. As e.g.,
Langium and Sprotty are under continuous devel-
opment and maturation, we believe this barrier
will be removed soon. A final challenge we face
is the need to actively involve domain experts
throughout the development, as their early feed-
back can be crucial for the eventual usability and
intention to use of the tool. What helped here
is that one of the co-authors was working at the
company that used SAP and implemented custom
views by themselves. Consequently, it was unusu-
ally easy to efficiently receive feedback and guid-
ance throughout the requirements engineering,
conceptualization, and implementation phases.

7.3 Threats to Validity

This research is not exempt from limitations and
threats to validity [53]. From an internal and con-
cept validity point of view, we made sure that all
experiments were conducted in a controlled and
equal environment. Participation was voluntary,
and there is no reliability relationship between
the participants and the researchers. Notably, one
of the authors of this paper is a co-worker of

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.er2cds
https://github.com/borkdominik/ER2CDS
https://github.com/borkdominik/ER2CDS

the company in which we conducted the empiri-
cal evaluation. We did not measure the time and
did not make a comparative efficiency evaluation
of our tool; these are part of our future research
agenda. Notably, the effectiveness is highly sub-
jective and based on the expertise, not only the
experience, of the participants. We did not mea-
sure the expertise of the individual participants in
our questionnaire.

A particular threat we could not mitigate is
the limited sample size, which hampers the con-
clusion validity and the external validity. We tried
to mitigate this by using three representative case
study tasks with a diverging complexity and by
randomly sampling 100 existing CDS models for
testing the importing functionality and the lan-
guage expressiveness of BIGER2CDS. Still, we
cannot generalize from these insights, but we
believe having eight real practitioners and a num-
ber of real CDS models for testing our approach
yields very promising and reliable insights. Other
modeling cases conducted with other participants
might lead to different observations and findings.
Part of our future research, and based on the
open release of the modeling tool, will focus on
gathering more feedback.

The testing protocol itself is also not exempt
from threats to validity. We used a standard-
ized system usability questionnaire. A different
questionnaire might lead to different conclusions.
Moreover, we can state that the questionnaire
was intentionally compact as we wanted to col-
lect responses to all questions and did not want to
risk that participants stop the survey before con-
cluding. More specific questionnaires testing, e.g.,
the perceived usefulness, the ease of use, and the
intention of use, will lead to even richer insights.

Concluding the threats to validity, we can
state that the presented results are limited to
the scope defined by the empirical evaluation.
Considering the fact that we used standardized
questionnaires, real domain experts, and real CDS
models, we believe our implications hold and that
this research can make meaningful contributions,
especially, but not limited to, researchers inter-
ested in developing novel web-based MDE tools
and practitioners in the context of SAP Core Data
Services.

23

8 Conclusion

This paper contributes a novel model-driven engi-
neering approach for SAP Core Data Services
(CDS) view entities. We introduced a domain-
specific language, the ER2CDS modeling lan-
guage, for hybrid textual and graphical modeling
of CDS view entities. The novel BIGER2CDS tool
presented in this paper supports the hybrid model-
ing of CDS views and the model-driven generation
of their implementation in SAP. Furthermore, its
import feature enables the integration of the tool
with running SAP systems and the import of
existing CDS view entities.

Our multi-faceted evaluation proved the effec-
tiveness of the tool in modeling, importing, and
generating CDS view entities. An empirical user
study further showed that business users and CDS
developers felt comfortable using the tool, many
of whom even reported that they would like to use
the tool in their professional work. This under-
pins our assumption that a model-driven approach
with a hybrid modeling tool fosters accessibility
and eases the development of SAP S/4Hana CDS
views.

In our future work, we aim to extend the
empirical evaluation of our tool to gain fur-
ther experience reports. The current version of
BIGER2CDS is publicly accessible in the VS Code
marketplace?. Furthermore, the tool is available
open source via'3. In a future extension of the
approach, a modeling guide or modeling assistant
using artificial intelligence [2, 12, 23, 47] is aimed
at further increasing users’ productivity. All of
these would improve the model-driven engineering
process for CDS and, furthermore, the low-code
development of business applications [8].

References

(1] Bangor A, Kortum PT, Miller JT (2008) An
empirical evaluation of the system usabil-
ity scale. Intl Journal of Human—-Computer
Interaction 24(6):574-594

Bork D (2021) Conceptual modeling and
artificial intelligence: Challenges and oppor-
tunities for enterprise engineering - keynote
presentation at the 11th enterprise engineer-
ing working conference (EEWC 2021). In:
Aveiro D, Proper HA, Guerreiro S, et al (eds)

Advances in Enterprise Engineering XV -
11th Enterprise Engineering Working Confer-
ence, EEWC 2021, Revised Selected Papers,
Lecture Notes in Business Information Pro-
cessing, vol 441. Springer, pp 3-9, https:
//doi.org/10.1007/978-3-031-11520-2_1

Bork D, Langer P (2023) Language server
protocol: An introduction to the protocol, its
use, and adoption for web modeling tools.
Enterp Model Inf Syst Archit Int J Concept
Model 18:9:1-16. https://doi.org/10.18417
JEMISA.18.9

Bork D, Karagiannis D, Pittl B (2020) A sur-
vey of modeling language specification tech-
niques. Inf Syst 87. https://doi.org/10.1016/
J.15.2019.101425

Bork D, Langer P, Ortmayr T (2023) A
vision for flexible glsp-based web modeling
tools. In: Almeida JPA, Kaczmarek-Hefl M,
Koschmider A, et al (eds) The Practice of
Enterprise Modeling - 16th IFIP Working
Conference, PoEM 2023, Vienna, Austria,
November 28 - December 1, 2023, Proceed-
ings, Lecture Notes in Business Information
Processing, vol 497. Springer, pp 109-124, ht
tps://doi.org/10.1007/978-3-031-48583-1_7

Braghin C, Lilli M, Riccobene E, et al
(2024) Kant: A domain-specific language for
modeling security protocols. In: Mayo FJD,
Pires LF, Seidewitz E (eds) Proceedings of
the 12th International Conference on Model-
Based Software and Systems FEngineering,
MODELSWARD 2024, Rome, Italy, Febru-
ary 21-23, 2024. SCITEPRESS, pp 62-73

Brooke J, et al (1996) Sus-a quick and dirty
usability scale. Usability evaluation in indus-
try 189(194):4-7

Bucaioni A, Cicchetti A, Ciccozzi F (2022)
Modelling in low-code development: a multi-
vocal systematic review. Softw Syst Model
21(5):1959-1981. https://doi.org/10.1007/S1
0270-021-00964-0

Chen PP (1976) The entity-relationship
model - toward a unified view of data. ACM
Trans Database Syst 1(1):9-36. https://doi.

24

[10]

[11]

[13]

[15]

org/10.1145/320434.320440

Ciccozzi F, Tichy M, Vangheluwe H, et al
(2019) Blended modelling - what, why and
how. In: Burgueno L, Pretschner A, Voss S,
et al (eds) 22nd ACM/IEEE International
Conference on Model Driven Engineering
Languages and Systems Companion, MOD-
ELS Companion 2019, Munich, Germany,
September 15-20, 2019. IEEE, pp 425-430,
https://doi.org/10.1109/MODELS-C.2019.
00068

David I, Latifaj M, Pietron J, et al (2023)
Blended modeling in commercial and open-
source model-driven software engineering
tools: A systematic study. Softw Syst Model
22(1):415-447. https://doi.org/10.1007/S102
70-022-01010-3

Garmendia A, Bork D, Eisenberg M, et al
(2023) Leveraging artificial intelligence for
model-based software analysis and design.
In: Romero JR, Medina-Bulo I, Chicano F
(eds) Optimising the Software Development
Process with Artificial Intelligence. Natural
Computing Series, Springer, p 93-117, https:
//doi.org/10.1007/978-981-19-9948-2_4

Giner-Miguelez J, Gémez A, Cabot J (2022)
Describeml: a tool for describing machine
learning datasets. In: Kithn T, Sousa V
(eds) Proceedings of the 25th International
Conference on Model Driven Engineering
Languages and Systems: Companion Pro-
ceedings, MODELS 2022, Montreal, Quebec,
Canada, October 23-28, 2022. ACM, pp 22—
26, https://doi.org/10.1145/3550356.355908
7

Glaser P, Bork D (2021) The biger tool -
hybrid textual and graphical modeling of
entity relationships in VS code. In: 25th
International Enterprise Distributed Object
Computing Workshop, EDOC Workshop
2021, Gold Coast, Australia, October 25-29,
2021. IEEE, pp 337-340, https://doi.org/10
.1109/EDOCW52865.2021.00066

Glaser P, Hammerschmied G, Hnatiuk V,
et al (2022) The biger modeling tool. In: Link
S, Reinhartz-Berger I, Zdravkovic J, et al

https://doi.org/10.1007/978-3-031-11520-2_1
https://doi.org/10.1007/978-3-031-11520-2_1
https://doi.org/10.18417/EMISA.18.9
https://doi.org/10.18417/EMISA.18.9
https://doi.org/10.1016/J.IS.2019.101425
https://doi.org/10.1016/J.IS.2019.101425
https://doi.org/10.1007/978-3-031-48583-1_7
https://doi.org/10.1007/978-3-031-48583-1_7
https://doi.org/10.1007/S10270-021-00964-0
https://doi.org/10.1007/S10270-021-00964-0
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1007/S10270-022-01010-3
https://doi.org/10.1007/S10270-022-01010-3
https://doi.org/10.1007/978-981-19-9948-2_4
https://doi.org/10.1007/978-981-19-9948-2_4
https://doi.org/10.1145/3550356.3559087
https://doi.org/10.1145/3550356.3559087
https://doi.org/10.1109/EDOCW52865.2021.00066
https://doi.org/10.1109/EDOCW52865.2021.00066

[16]

[17]

[20]

[21]

[23]

(eds) Proceedings of the ER Forum and PhD
Symposium 2022 co-located with 41st Inter-
national Conference on Conceptual Modeling
(ER 2022), Virtual Event, Hyderabad, India,
October 17, 2022, CEUR Workshop Proceed-
ings, vol 3211. CEUR-WS.org, URL https:
//ceur-ws.org/Vol-3211/CR_120.pdf

Glaser PL, Bork D (2021) The biger tool
- hybrid textual and graphical modeling of
entity relationships in vs code. In: 2021 IEEE
25th International Enterprise Distributed
Object Computing Workshop (EDOCW), pp
337-340, https://doi.org/10.1109/EDOCW5
2865.2021.00066

Hutchinson J, Rouncefield M, Whittle J
(2011) Model-driven engineering practices in
industry. In: Proceedings of the 33rd Inter-
national Conference on Software Engineering,
pp 633-642

Joshi A, Kale S, Chandel S, et al (2015) Likert
scale: Explored and explained. British journal
of applied science & technology 7(4):396-403

Keller H (2015) Cds - one concept, two fla-
vors. https://community.sap.com/t5/technol
ogy-blogs-by-sap/cds-one-concept-two-flavo
rs/ba-p/13168795, accessed: 2024-6-14

Michael J, Bork D, Wimmer M, et al (2024)
Quo vadis modeling? Softw Syst Model
23(1):7-28. https://doi.org/10.1007/S10270
-023-01128-Y

Microsoft (2024) Language server protocol
specification. https://microsoft.github.io/la
nguage-server-protocol /specifications/lsp/3
.17 /specification/, accessed: 2024-5-5

Microsoft (2024) What is the language server
protocol? https://microsoft.github.io/langua
ge-server-protocol /overviews/lsp /overview/,
accessed: 2024-6-7

Mussbacher G, Combemale B, Kienzle J, et al
(2020) Opportunities in intelligent model-
ing assistance. Softw Syst Model 19(5):1045—
1053. https://doi.org/10.1007/S10270-020-0
0814-5

25

[24]

[25]

[26]

[28]

[29]

[32]

O’'Regan G (2015) Pillars of computing.
Springer

Petzold J (2022) A textual domain specific
language for system-theoretic process analy-
sis. PhD thesis, Kiel University

Petzold J, Kreifl J, von Hanxleden R (2023)
PASTA: pragmatic automated system-
theoretic process analysis. In: 53rd Annual
IEEE/IFIP International Conference on
Dependable Systems and Network, DSN
2023, Porto, Portugal, June 27-30, 2023.
IEEE, pp 559-567, https://doi.org/10.1
109/DSN58367.2023.00058, URL https:
//doi.org/10.1109/DSN58367.2023.00058

Popov G, Lu J, Vishnyakov V (2023) Toward
extensible low-code development platforms.
In: International Conference on Innovation of
Emerging Information and Communication
Technology, Springer, pp 487497

Rodriguez-Echeverria R, Izquierdo JLC,
Wimmer M, et al (2018) Towards a language
server protocol infrastructure for graphical
modeling. In: Wasowski A, Paige RF, Haugen
@ (eds) Proceedings of the 21th ACM/IEEE
International Conference on Model Driven
Engineering Languages and Systems, MOD-
ELS 2018, Copenhagen, Denmark, October
14-19, 2018. ACM, pp 370-380, https://doi.
org/10.1145/3239372.3239383

SAP SE (2020) Abap core data services —
s/4hana - best practice guide. https://www.
sap.com/documents/2019/01/0e6d5904-3
67d-0010-87a3-c30de2ffd8ff.html, accessed:
2024-6-14

SAP SE (2020) Developing apps with sap fiori
elements. https://sapuib.hana.ondemand.c
om/sdk/# /topic/03265b0408e¢2432c9571d6b
3feb6blfd, accessed: 2024-5-5

SAP SE (2024) Abap - core data services
(abap cds). https://help.sap.com/doc/abapd
ocu_latest_index_htm/latest/en-US/index.ht
m?file=abencds.htm, accessed: 2024-5-5

SAP SE (2024) Cds ddl - cds view entity,
association. https://help.sap.com/doc/aba

https://ceur-ws.org/Vol-3211/CR_120.pdf
https://ceur-ws.org/Vol-3211/CR_120.pdf
https://doi.org/10.1109/EDOCW52865.2021.00066
https://doi.org/10.1109/EDOCW52865.2021.00066
https://community.sap.com/t5/technology-blogs-by-sap/cds-one-concept-two-flavors/ba-p/13168795
https://community.sap.com/t5/technology-blogs-by-sap/cds-one-concept-two-flavors/ba-p/13168795
https://community.sap.com/t5/technology-blogs-by-sap/cds-one-concept-two-flavors/ba-p/13168795
https://doi.org/10.1007/S10270-023-01128-Y
https://doi.org/10.1007/S10270-023-01128-Y
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://doi.org/10.1007/S10270-020-00814-5
https://doi.org/10.1007/S10270-020-00814-5
https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/10.1145/3239372.3239383
https://doi.org/10.1145/3239372.3239383
https://www.sap.com/documents/2019/01/0e6d5904-367d-0010-87a3-c30de2ffd8ff.html
https://www.sap.com/documents/2019/01/0e6d5904-367d-0010-87a3-c30de2ffd8ff.html
https://www.sap.com/documents/2019/01/0e6d5904-367d-0010-87a3-c30de2ffd8ff.html
https://sapui5.hana.ondemand.com/sdk/#/topic/03265b0408e2432c9571d6b3feb6b1fd
https://sapui5.hana.ondemand.com/sdk/#/topic/03265b0408e2432c9571d6b3feb6b1fd
https://sapui5.hana.ondemand.com/sdk/#/topic/03265b0408e2432c9571d6b3feb6b1fd
https://help.sap.com/doc/abapdocu_latest_index_htm/latest/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_latest_index_htm/latest/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_latest_index_htm/latest/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm

[34]

[35]

[36]

[37]

[40]

pdocu_cp-index_htm/CLOUD /en-US/index.
htm?file=abencds_simple_association_v2.ht
m, accessed: 2024-6-14

SAP SE (2024) Cds ddl - cds view entity,
association to parent. https://help.sap.com
/doc/abapdocu_cp_index_htm/CLOUD/e
n-US/index.htm?file=abencds_to_parent_ass
oc_v2.htm, accessed: 2024-6-14

SAP SE (2024) Cds ddl - cds view entity,
composition. https://help.sap.com/doc/aba
pdocu_cp-index_htm/CLOUD/en-US/inde
x.htm?file=abencds_composition_v2.htm,
accessed: 2024-6-14

SAP SE (2024) Cds ddl - cds view entity,
select. https://help.sap.com/doc/abapdoc
u_cp-index_htm/CLOUD /en-US/index.ht
m?file=abencds_select_statement_v2.htm,
accessed: 2024-6-14

SAP SE (2024) Cds ddl - cds view entity,
select, associations. https://help.sap.com/d
oc/abapdocu_cp_index_htm/CLOUD /en-U
S/index.htm?file=abencds_association_v2.ht
m, accessed: 2024-6-14

SAP SE (2024) Cds ddl - cds view entity,
select, data_source. https://help.sap.com/d
oc/abapdocu_cp_index_htm/CLOUD /en-U
S/index.htm?file=abencds_joined_data_sourc
e_v2.htm, accessed: 2024-6-14

SAP SE (2024) Cds ddl - cds view entity,
select, select_list. https://help.sap.com/doc
/abapdocu_cp_index_htm/CLOUD /en-US/
index.htm?file=abencds_select_list_entry_v2.
htm, accessed: 2024-6-14

SAP SE (2024) Cds ddl - define view entity.
https://help.sap.com/doc/abapdocu_cp_i
ndex_htm/CLOUD/en-US/index.htm?file=
abencds_define_view_entity.htm, accessed:
2024-6-14

SAP SE (2024) Introduction to abap core
data services (cds). https://www.sap.com/
documents/2022/01,/96489f20-157¢-0010-b
cab-c68f7e60039b.html, accessed: 2024-6-14

26

[41]

[42]

[43]

[44]

[45]

[48]

[49]

[50]

SAP SE (2024) Sap announces g4 and fy
2023. https://news.sap.com/2024/01/sap-a
nnounces-q4-and-fy-2023-results/, accessed:
2024-6-9

SAP SE (2024) Sap s/4hana 2023. https://
help.sap.com/doc/e2048712f0ab45e791e6d15
ba5e20c68/2023 /en-US /FSD_OP2023 latest.
pdf, accessed: 2024-6-9

SAP SE (2024) Vdm layers and view types.
https://help.sap.com/docs/SAP_S4HANA_
ON-PREMISE/ee6{f9b281d8448f96b4fe6c89
f2bdc8/0a875bc7a005465aad92c¢08becc1177
6.html, accessed: 2024-6-14

Sarferaz S (2023) Virtuelles Datenmodell,
Springer Fachmedien Wiesbaden, Wiesbaden,
pp 349-360. https://doi.org/10.1007/978-3-6
58-40499-4_20, URL https://doi.org/10.100
7/978-3-658-40499-4_20

Sarioglu A, Metin H, Bork D (2025) Accessi-
bility in conceptual modeling - A systematic
literature review, a keyboard-only UML mod-
eling tool, and a research roadmap. Data
Knowl Eng 158:102423. https://doi.org/10.1
016/J.DATAK.2025.102423

Schulz O (2016) Der SAP-Grundkurs fiir
Einsteiger und Anwender. Rheinwerk Verlag

Shilov. N, Othman W, Fellmann M, et al
(2023) Machine learning for enterprise model-
ing assistance: an investigation of the poten-
tial and proof of concept. Softw Syst Model
22(2):619-646. https://doi.org/10.1007/S102
70-022-01077-Y

Statista (2024) Top ERP software market
share by company 2023. https://www.statis
ta.com/statistics/249637 /erp-software-mar
ket-share-by-company/, accessed: 2024-5-5

TypeFox (2025) Document lifecycle. https:
//langium.org/docs/reference/document-lif
ecycle/, accessed: 2025-07-17

TypeFox (2025) Features. https://langium.
org/docs/features/, accessed: 2025-07-17

https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_to_parent_assoc_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_to_parent_assoc_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_to_parent_assoc_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_to_parent_assoc_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_composition_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_composition_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_composition_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_statement_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_statement_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_statement_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_joined_data_source_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_joined_data_source_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_joined_data_source_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_joined_data_source_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_define_view_entity.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_define_view_entity.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_define_view_entity.htm
https://www.sap.com/documents/2022/01/96489f20-157e-0010-bca6-c68f7e60039b.html
https://www.sap.com/documents/2022/01/96489f20-157e-0010-bca6-c68f7e60039b.html
https://www.sap.com/documents/2022/01/96489f20-157e-0010-bca6-c68f7e60039b.html
https://news.sap.com/2024/01/sap-announces-q4-and-fy-2023-results/
https://news.sap.com/2024/01/sap-announces-q4-and-fy-2023-results/
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://doi.org/10.1007/978-3-658-40499-4_20
https://doi.org/10.1007/978-3-658-40499-4_20
https://doi.org/10.1007/978-3-658-40499-4_20
https://doi.org/10.1007/978-3-658-40499-4_20
https://doi.org/10.1016/J.DATAK.2025.102423
https://doi.org/10.1016/J.DATAK.2025.102423
https://doi.org/10.1007/S10270-022-01077-Y
https://doi.org/10.1007/S10270-022-01077-Y
https://www.statista.com/statistics/249637/erp-software-market-share-by-company/
https://www.statista.com/statistics/249637/erp-software-market-share-by-company/
https://www.statista.com/statistics/249637/erp-software-market-share-by-company/
https://langium.org/docs/reference/document-lifecycle/
https://langium.org/docs/reference/document-lifecycle/
https://langium.org/docs/reference/document-lifecycle/
https://langium.org/docs/features/
https://langium.org/docs/features/

[51] TypeFox (2025) Grammar language. https: Appendix A Complete

//langium.org/docs/reference/grammar-lan Langium
guage/, accessed: 2025-07-17
Grammar

[52] TypeFox GmbH (2024) Langium. https://la Definition
ngium.org, accessed: 01.02.2023

[53] Wohlin C, Runeson P, Host M, et al (2012)
Experimentation in software engineering.
Springer Science & Business Media

27

https://langium.org/docs/reference/grammar-language/
https://langium.org/docs/reference/grammar-language/
https://langium.org/docs/reference/grammar-language/
https://langium.org
https://langium.org

1 grammar ER2CDS

2

3 entry ER2CDS:

4 ’er2cds ’ name=ID

5 (entities+=Entity | relationships+=Relationship) *;
6

7 Entity :

8 (type=EntityType)? ’entity name=ID '{°

9 alias’ alias=ID)?

10 (attributest+=Attribute)*

11 (’expose’ (associations4+=Association)x)?
12 (’where’ (whereClauses+=EntityWhereClause) x)?
13 10

14

15 Attribute:

16 (type=AttributeType)? name=ID (': ' datatype=DataType)? ('as’' alias=ID)?;
17

18 Association :

19 name=ID (' as alias=ID) 7;

20

21 EntityWhereClause :

22 (attribute=[Attribute:ID] comparison=ComparisonType fixValue=FixValueType);
23

24 Relationship :

25 (type=RelationshipType)? ’'relationship’ ' name=ID °{°’
26 ((source=RelationshipEntity)? ((' > target=RelationshipEntity))?)?
27 ("join’' ‘order’ joinOrder=JoinOrderType)?
28 (joinClauses+=RelationshipJoinClause) *

29 B]

30

31 RelationshipEntity :

32 target=[Entity:ID] ([~

33 cardinality=CardinalityType

34 1) 7?5

35

36 RelationshipJoinClause :

37 (firstAttribute=[Attribute:ID] comparison=ComparisonType secondAttribute=[Attribute:ID]) ;
38

39 DataType:

40 type=ID;

41

42 type EntityType = ’'no—expose’;

43 EntityType returns EntityType:

44 NO_-EXPOSE

45 H

46 NO_EXPOSE returns string:

47 ’no—expose ’;

48

49 type AttributeType = 'key’ | ’'no—out’;

50 AttributeType returns AttributeType:

51 KEY | NO-OUT

52 8

53 KEY returns string:

54 ‘key ’;

55 NO.OUT returns string:

56 ’no—out ’;

57

58 type RelationshipType = ’association’ | ’association —to—parent’ "composition ’;
59 RelationshipType returns RelationshipType:

60 ASSOCIATION | ASSOCIATION.TO-PARENT | COMPOSITION
61 ;

62 ASSOCIATION returns string:

63 >association ’;

64 ASSOCIATION.TO-PARENT returns string:

65 ’association —to—parent ’;

66 COMPOSITION returns string:

67 ’composition ’;

68

69 type CardinalityType = '1° | "0..N’;

70 CardinalityType returns CardinalityType:

71 ONE | ZERO-MANY

72 ;

73 ONE returns string:

74 71l 7 g

75 ZERO-MANY returns string:

76 ’0..N’;

77

78 type JoinOrderType = number;

79 JoinOrderType returns number:

80 INT | ONE

81 ;

82

83 type FixValueType = string | number;

84 FixValueType returns FixValueType:

85 CHAR | INT | ONE

86 8

87

88 type ComparisonType = ‘= |
89 ComparisonType returns ComparisonType:

90 EQUAL | NOT_-EQUAL | LOWER.THAN | GREATER.THAN | LOWER.EQUAL | GREATER_-EQUAL
3;]leUAL returns string:

gi NOT-EQUAL r(;turns string :

gg LOWER_THAA;I/‘)r;turns string:

g; GREATER.THAN roturns string :

183 LOWEFLEQU;L;rcturns Gmimeg o

}g; GREATER.E;QEAI: returns string:

103 >=7

104

105 terminal ID: /[_./a—2zA—-Z][\w-/]x*/;

106 terminal INT returns number: /[0—9]4/;
107 terminal CHAR: /\ [\s\S]%?\’/;
108

109 hidden terminal WS: /\s+/;

110 hidden terminal ML.COMMENT: /
111 hidden terminal SL.COMMENT: /

JA*[\s\ST1*?*\//;
/N/["\n\t]x/; 28

\
\
Listing 15: ER2CDS DSL grammar implemented using the Langium grammar.

	Introduction
	Background
	SAP HANA
	Core Data Services
	Core Data Service Example
	Langium-based Language Servers

	Related Works
	Requirements Elicitation
	Realization of bigER2CDS
	Architecture
	ER2CDS Syntax
	Textual Concrete Syntax
	Graphical Concrete Syntax

	Model Graphical Editing
	Integration with SAP S/4HANA
	ER2CDS Model-to-Text Transformation
	CDS View Import

	 bigER2CDS Modeling Tool

	Evaluation
	Experimental Evaluation
	Case Study

	Discussion
	Implications
	Challenges
	Threats to Validity

	Conclusion
	Complete Langium Grammar Definition

