

Establishing Interoperability between EMF and MSDKVS: An
M3-Level-Bridge to Transform Metamodels and Models

Florian Cesal and Dominik Bork

To appear in:

Software and Systems Modeling

© 2024 by Springer

Final version available soon:

www.model-engineering.info

http://www.model-engineering.info/

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS:

An M3-Level-Bridge to Transform Metamodels and Models

Florian Cesal and Dominik Bork

Business Informatics Group, TU Wien, Favoritenstrasse 9-11, Vienna, 1040, Austria.

*Corresponding author(s). E-mail(s): dominik.bork@tuwien.ac.at;
Contributing authors: flo.ces.fc@gmail.com;

Abstract

Many powerful metamodeling platforms enabling Model-Driven Software Engineering (MDSE)
exist, each with its strengths, weaknesses, functionalities, programming language(s), and developer
community. Platform interoperability would enable users to exploit their mutual benefits. Such
interoperability would allow the transformation of metamodels and models created in one plat-
form into equivalent metamodels and models in other platforms. Language engineers could then
freely choose the metamodeling platform without risking a lock-in effect. Two well-documented
and publicly available metamodeling platforms are the Eclipse Modeling Framework (EMF) and
the Modeling SDK for Visual Studio (MSDKVS). In this paper, we propose an M3-Level-Bridge
(M3B) that establishes interoperability between EMF and MSDKVS on the abstract syntax level
and on the graphical concrete syntax level. To establish such interoperability we i) compare the
two platforms, ii) present a conceptual mapping between them, and iii) implement a bidirec-
tional transformation bridge including both the metamodel and model layer. We evaluate our
approach by transforming a collection of publicly available metamodels and automatically generated
or manually created models thereof. The transformation outcomes are then used to quantita-
tively and qualitatively evaluate the transformation’s validity, executability, and expressiveness.

Keywords: MSDKVS, EMF, metamodeling, model transformation, MDSE, Sirius, graphical concrete
syntax, abstract syntax, M3B, DSL

1 Introduction

The definition and use of modeling languages offer
many benefits in how software teams and language
designers can efficiently cooperate on creating a
model-based representation of the system under
study. Metamodeling platforms1 offer means to
easily define customized languages and many addi-
tional functionalities such as code generation,

1Note that throughout this paper we will use the term plat-
form as a representative of all tools, frameworks, and platforms
that allow metamodeling.

automatic validation, and graphically representing
models. These platforms are widely used in enter-
prise modeling and model-driven software engi-
neering (MDSE). However, once modelers work
with one platform, switching to a different one
is cumbersome, complex, and costly, especially
because automated support for metamodeling
platform interoperability is scarce.

This paper looks at the two well-established
and actively used metamodeling platforms Eclipse
Modeling Framework (EMF) [37] and Modeling
SDK for Visual Studio (MSDKVS) [28, 36]. We

1

Springer Nature 2021 LATEX template

2 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

propose a transformation bridge between EMF
and MSDKVS related to bridges reported in [6, 25,
26, 30]. Our bridging enables language designers to
switch between platforms by transforming already
defined metamodels in one platform into syntac-
tically and semantically equivalent metamodels in
the target platform. Syntactic equivalence refers
to a mapping of source features to similar fea-
tures in the target platform, whereas semantic
equivalence refers to the equivalence of a fea-
ture’s meaning within the current metamodeling
domain, e.g., the translation of multiple inheri-
tances into semantically equivalent single inher-
itances [24, 28]. Notably, in an ideal setting, a
lossless, fully identical transformation would be
aimed for. Given the many differences in the con-
ceptual, technical, and feature levels of existing
metamodeling platforms (including those between
EMF and MSDKVS), such identical mappings are
not feasible. Instead, with this paper, we aim for
an equivalence relationship between concepts and
features of the two metamodeling platforms in
question and discuss, where the limitations of such
an approach are. Aside from these limitations, we
show that syntactically and semantically equiv-
alent transformations between metamodels and
models of EMF and MSDKVS are possible and,
therefore, enable a bridge for users who aim to
switch from one of the two platforms to the other.

The EMF-MSDKVS bridge enables i) migra-
tion and reusability of existing metamodels
across platforms, ii) decoupling the develop-
ers of the underlying programming languages
these platforms are built upon, and iii) making
use of specific platform capabilities employed
elsewhere [27], e.g., plugins only available for
EMF; thereby ultimately enabling iv) metamod-
eling platform-spanning toolchains, i.e., a
chain of tools developing with different metamod-
eling platforms, conjointly realizing a complex
model-driven software engineering pipeline. Capa-
bilities, such as code generation, which are more
sophisticated in, e.g., EMF, can also be a moti-
vational factor for transforming metamodels from
MSDKVS to their EMF equivalent. In the ecosys-
tem of metamodel repositories, many projects
exist that have been created with one metamodel-
ing platform. Establishing a toolchain that allows
the transformed metamodel to be interpreted by
other platforms thusmitigates a platform lock-
in.

Generally, transformation bridges are based on
mappings between the meta-metamodels of both
platforms. These mappings are created by analyz-
ing the similarities and identifying the differences
between these platforms located at the M3 layer of
the standardized metamodeling stack [10]. Previ-
ous approaches implement transformation bridges
targeting the platforms’ abstract syntax elements
(e.g., classes and relationships), mostly ignoring
the platform’s functionalities to graphically repre-
sent and manipulate the created models as this is
where the heterogeneity between different meta-
modeling platforms is very rich and custom solu-
tions, often even technologies, for each platform
are in place.

This paper first analyses the EMF and MSD-
KVS platforms and then proposes, implements,
and evaluates a transformation bridge. We build
upon and improve our previous work reported
in [15] primarily by i) a model-layer transforma-
tion, i.e., our bridge now enables also the exchange
of models between EMF and MSDKVS; and ii) a
comprehensive evaluation of both the metamodel
and the model transformation on a syntactic and
semantic level. The evaluation is concerned with
testing whether the transformators produce valid
outcomes, i.e., that the produced models and
metamodels can be imported, and that the pro-
duced metamodels can be used to start runtime
instances in the target metamodeling platform.

In the remainder of this paper, Section 2
explains the area in which the implemented
approach is situated and establishes the neces-
sary foundations. Section 3 then discusses related
works. A comprehensive analysis of the EMF
and MSDKVS platforms’ concepts is presented
in Section 4, resulting in mapping rulesets the
transformator has to implement, which are listed
in Section 5. Section 6 explains both parts of
the transformation bridge, namely the M2 trans-
formator located on the metamodel layer, and
the M1 transformator located on the underlying
model layer. Sections 7 and 8 give insight into the
evaluation process and its results. Section 9 con-
cludes this paper with some closing remarks and
an outlook on future work.

2 Metamodeling Foundations

Complete or partial representations of real-world
objects, architectures, or software systems can

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 3

be realized through the use of models. These
models can then be shared and enable commu-
nication among stakeholders [10]. Concerning the
validation and guidelines for defining models, an
abstraction hierarchy exists, divided into a stack
of layers. An example of such a hierarchical stack,
consisting of four layers, has been standardized by
the Object Management Group (OMG) [10, 31]:

M0 Layer (runtime instances) contain-
ing the application data or runtime instances;
M1 Layer (model layer) describing the con-
crete model created by a user that is conform-
ing to a given metamodel (e.g. a UML model);
M2 Layer (metamodel layer) defining the
metamodel (e.g. a UML metamodel); M3 Layer
(meta-metamodel layer) abstracting the def-
inition for possible metamodels. In the OMG
metamodeling hierarchy, the M3 layer is defined
by the MetaObject Facility (MOF [21]) standard.

The M3 level also establishes the foundation
for realizing interoperability between metamod-
eling platforms based on a common abstraction
of their metamodels. Modeling languages consist
of the following elements, which should be taken
into consideration when implementing a transfor-
mation bridge: Abstract Syntax defines classes,
their attributes, and associations required to rep-
resent the relevant parts of the modeled system
and constraints for restricting the set of valid mod-
els. Abstract syntaxes are most often specified
via metamodels [8]. Concrete Syntax defines
the visual representations for the abstract syntax
elements (e.g., graphical and/or textual) [7]. An
introduction to the two types of concrete syntaxes
is given in [10].

Metamodeling platforms offer the ability to
define metamodels on the M2 layer. Some offer
only the ability to define the abstract syntax
of a metamodel, others also allow the defini-
tion of concrete syntaxes. As they all reference
a meta-metamodel to cover all the possibilities
of defining a metamodel, one can argue that the
meta-metamodel can define itself on an even more
abstract level, making every metamodeling plat-
form originate from a most basic type of “meta-
metametamodel”, consisting only of elements and
links between those elements. Attributes, as they
exist in EMF and MSDKVS metamodels, can then
be declared as elements as well, and a link between
a class element and an attribute element can be

regarded as a member variable of a class on the
layer underneath.

As elements and links form the basis of our
abstract notation, the same can be done for the
graphical syntax. Elements can be displayed as
four-sided shapes, links can be displayed as lines.
If two elements are in relation to each other, they
are connected by these lines. As mentioned in [10],
a graphical concrete syntax (GCS) has to combine
different kinds of elements, e.g., graphical sym-
bols (meaning figures, lines, but also labels for
displaying an element’s information), composi-
tional rules defining nesting and combination of
graphical symbols, and a mapping between these
symbols to the abstract syntax of a metamodel.

Metamodeling platforms with integrated
graphical user interfaces display a modeling
canvas for the positioning of elements in a two-
dimensional space by assigning them x and y
coordinates. The group of placed model elements
are arranged as a graph and referred to as a dia-
gram. Additional properties, such as coloring and
font features, to name a few, can be edited in an
additional property window. [38]

Once the language engineering part introduced
previously is finished, tool developers can shift
their focus on realizing features to process the
models that modelers can create when using the
engineered language. As stressed in [10], the two
core concepts of model-based software engineering
are models and transformations. Model transfor-
mation is an established research field in the
modeling community [5, 33]. Basically, different
categories of model transformation approaches
can be differentiated based on the format of
the transformation’s source and target: model-to-
model transformations, i.e., transformations where
source and target are models and model-to-text
where the source is a model and the target for-
mat is text, e.g., scenarios where source code
is generated from models. When considering the
model-to-model transformations, we can further
differentiate transformations where the source and
the target model conform to the same meta-
model (endogenous transformations) from exoge-
nous transformations where source and target
models conform to different metamodels (i.e.,
modeling languages). In the remainder of this
paper, we will focus on exogenous model-to-model
transformations between metamodels and models
created with EMF and MSDKVS.

Springer Nature 2021 LATEX template

4 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Fig. 1: Excerpt of the Ecore meta-metamodel [6]

Two prominent exemplars of metamodeling
platforms with which the authors of this paper
have worked with are introduced in the following
and investigated regarding their implementation
of the M3 layer and their concrete syntax.

2.1 EMF

The Eclipse Modeling Framework (EMF) is an
open source metamodeling platform that provides
a rich set of features for, e.g., defining metamod-
els, creating and validating models, transforming
models, and serializing models into XMI for-
mat. EMF allows runtime support to generate
Java classes and programmatically manipulate the
models through reflection. This section describes
the core features of EMF and how EMF supports
metamodeling [37].

Abstract Syntax in EMF. To realize meta-
model support in EMF one needs to specify
the metamodel by instantiating concepts from
the EMF meta-metamodel, called Ecore, i.e., an
implementation in Java of a simplified version
of OMG’s standardized MOF meta-metamodel,
called eMOF (i.e., the essential MOF [21]) model.
This meta-metamodel (see Fig. 1 for an excerpt)
thus plays an essential role as it determines the
expressiveness of all possible metamodels. An
explicit definition of the Ecore meta-metamodel is
given in various sources, e.g., in [6, 10, 30].

An Ecore metamodel is comprised of one or
more EPackages. Each EPackage can contain mul-
tiple EClasses, whereas each EClass can contain
multiple EStructuralFeatures. These features are
divided into two types, namely EAttributes and
EReferences. EAttributes resemble properties of

EClasses, they have an EDataType ranging from
simple datatypes (e.g., Integer, String) to more
complex ones (e.g., user-defined external types).
EReferences are used for linking two EClasses.
Inheritance relationships are realized by defining
ESuperType relations on top of an EClass. EMF
allows the definition of single and multiple inher-
itance relationships. A composition relationship
between source and target EClasses can be defined
by setting the containment flag of an EReference
to “true”.

Concrete Syntax in EMF. The Eclipse web-
site lists three frameworks that can be used for
visualizing Ecore metamodels and models: Graph-
ical Language Server Platform [9, 34]2, Sirius3,
and Graphiti4. For the matter of this paper,
we only consider Sirius as it is the most com-
monly used framework and best resembles the
possibilities of graphical viewpoint representations
compared to MSDKVS. Sirius uses Viewpoint
Specification Projects (VSP) containing descrip-
tive model files ending with .odesign [39]. These
files contain the specification of the graphical rep-
resentation of a model and are comprised of layer
definitions and tool sections containing toolbox
operations with a structured dependency tree of
further inner operation mappings, style mappings
for model shapes, font layout properties, custom
color definitions, and much more.

Regarding the structure of a Viewpoint Spec-
ification Model (VSM) in Sirius, the following
elements are worth mentioning: Beginning with

2https://eclipse.dev/glsp/
3https://eclipse.dev/sirius/
4https://eclipse.dev/graphiti/

https://eclipse.dev/glsp/
https://eclipse.dev/sirius/
https://eclipse.dev/graphiti/

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 5

the root element of the specification file, Group,
which can be compared to Ecore’s EPackage ele-
ment. A group can contain one or more Owned-
Viewpoints, which in turn contain one or more
OwnedRepresentations, describing representations
for the metamodel’s abstract syntax elements. Dif-
ferent types of representations are available, with
the most suitable and relevant for the upcoming
transformation bridge being the diagram repre-
sentation. The other types, i.e., table, tree, and
matrix representations, are not targeted by the
M3B discussed in this paper.

Every representation has a DefaultLayer, with
optional additional layers used for grouping and
also for hiding specific elements contained within
these layers. Each layer contains graphical map-
pings to abstract syntax elements, most notably
the NodeMappings, used for styling standalone
EClasses. Each mapping can define different styles
for the target element (e.g., size, shape, color).
Classes, that are used for containment references
can be graphically attributed via ContainerMap-
pings. Inner or attached classes can be styled
by SubNodeMappings. EdgeMappings are used for
visualizing EReferences, e.g., the style of arrows
(start, end, and the line routing style).

Zero or multiple ToolSections can be defined,
grouping tools for usage on the modeling canvas.
These sections contain different types of Owned-
Tools that can be used for, e.g., creating and
deleting elements, connecting two elements, or
copying a group of elements. A tool can have
one or more sequentially executed operations to
manipulate the modeling canvas. Finally, the Col-
orPalette can be attributed with explicitly defined
colors, usable from within the aforementioned
mappings.

2.2 MSDKVS

MSDKVS supports the development of domain-
specific languages by weaving abstract syntax
and graphical concrete syntax (see [16, 36] for a
detailed introduction). MSDKVS offers a graph-
ical user interface with an integrated editor to
define metamodels (i.e., classes, relationships, and
their properties), a tree explorer, a property edi-
tor window, and several additional features such
as XML serialization of metamodels and models,
code generators using a templating engine, and

Fig. 2: Excerpt of the reconstructed MSDKVS
meta-metamodel [15]

the possibility to build extensions to these fea-
tures. The currently available MSDKVS NuGet
Package5 was released in 2023 and still has an
active community of users with around daily 30
downloads.

Abstract Syntax in MSDKVS. As MSD-
KVS does not publicly offer a representation of
its meta-metamodel, the transformation approach
explained in Section 6 implicitly offers the abil-
ity to reconstruct a MSDKVS meta-metamodel
corresponding to the data of the serialized meta-
model files. Fig. 2 shows the core excerpt of the
reconstructed MSDKVS meta-metamodel repre-
sented as a UML class diagram, containing the
most apparent and most used elements and their
abstract super classes, that have been identified
while working on the transformation and defin-
ing its mapping rules. The full representation is
provided online6.

When creating a DSL in MSDKVS, one ele-
ment always has to act as the root element of
the metamodel and every subsequently created
DomainClass, if not targeted by another embed-
ded relationship, is referenced by this root class.
The root class, by default, initially has the same
name as the DSL itself. Doc is the diagram doc-
ument representing the DSL, containing shapes,
relationships, classes, serialization behavior, and
the mapping of shapes to abstract elements. The

5https://www.nuget.org/packages/
Microsoft.VisualStudio.Modeling.Sdk

6Online supplementary material: https://drive.google.com/
file/d/1-Uzz61MJAW5NPetEuPH-LcUtFgaG iyy/view?usp=
sharing

https://www.nuget.org/packages/Microsoft.VisualStudio.Modeling.Sdk
https://www.nuget.org/packages/Microsoft.VisualStudio.Modeling.Sdk
https://drive.google.com/file/d/1-Uzz61MJAW5NPetEuPH-LcUtFgaG_iyy/view?usp=sharing
https://drive.google.com/file/d/1-Uzz61MJAW5NPetEuPH-LcUtFgaG_iyy/view?usp=sharing
https://drive.google.com/file/d/1-Uzz61MJAW5NPetEuPH-LcUtFgaG_iyy/view?usp=sharing

Springer Nature 2021 LATEX template

6 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

possible entities that can be created on the meta-
modeling canvas are available in the DSL Designer
Toolbox. These elements include DomainClasses
and different types of DomainRelationships, like
embedding relationships (i.e., containers) and ref-
erence relationships. Every relationship is binary
and directed and links members of a source class
(i.e., Source) to members of a target class (i.e.,
Target). Such members include the classes them-
selves as well as the classes inheriting from them.
Both Source and Target reference their abstract
elements through DomainRoles, specified by Role-
Players that finally contain the Moniker type
of the referenced element. Each element can fur-
ther be attributed with various DomainProperties.
External types, e.g., system types such as String,
Boolean, or DateTime can also be referenced
by a DomainProperty. These elements compose
MSDKVS’s abstract syntax. Each element inher-
its from the base class NamedDomainElement,
containing a unique Name and an Id.

Regarding their XML serialization, the
DslDefinition.dsl file, when opened in a text
editor, contains all objects added on the DSL can-
vas and their mapping references to tool palettes,
shapes (i.e., graphical concrete syntax), and other
serialization properties needed for code genera-
tion. Every added abstract or concrete element is
given a Moniker description type to be able to be
referenced in different parts of the DSL. Monikers
are uniquely identifying names for elements.

Concrete Syntax in MSDKVS. Every
class, relationship, and attribute can be visu-
ally enhanced with different shapes and deco-
rators that are maintained within the editor’s
graphical interface adjoined to the abstract syn-
tax definitions. Through mappings between the
concrete and abstract syntax definitions, the lan-
guage designer can customize the appearances
and interaction possibilities like toolbox entries or
graphically editing attributes in the Visual Studio
runtime instances.

The possible shape elements are also listed
inside the DSL Designer Toolbox. As these ele-
ments are tightly included as core features of the
platform, as well as serialized in the same file as
the abstract syntax, some of the graphical syn-
tax elements have been included in Fig. 2. To
summarize all available shapes and their common
attributes, an AbstractShape has been introduced.

Similarly, an AbstractMoniker represents all avail-
able moniker types.

Graphical concrete syntax elements include
GeometryShapes, defining the visual notation of
the mapped DomainClasses. Each DomainProp-
erty of a class or a relationship, e.g., font
attributes and line types, can be visually defined
through DecoratorMaps. CompartmentShapes tar-
get classes that can contain other classes, either
as lists, ports (i.e., attached shapes depict-
ing either an ingoing or outgoing interface), or
image shapes. ImageShapes are freely configurable
shapes that reference an image file contained
within the project’s resources folder. The appear-
ance of relationships, e.g., their line thickness
and style can be defined by Connectors. A sepa-
rate PortShape object is available for graphically
defining contained classes within DomainClasses.
Unique graphical syntax elements in MSDKVS
include the Swimlane element, used for dividing
an existing diagram to create visually sophisti-
cated DSLs.

3 Related Work

This section first offers an overview of existing
works on metamodeling platform interoperability.
It then takes a detailed look at related ambi-
tions toward bridging EMF and MSDKVS and
compares these works to this paper’s approach.

3.1 Transformation bridges

Interoperability deals with the exchange of infor-
mation between two or more systems, and the
ability to use that information in each system
respectively [20, 27]. As modeling languages for
software development gained popularity in the
early 2000s, a need for establishing interoperabil-
ity by transforming the grammarware technical
space (i.e., EBNF-based grammar tools) into the
modelware technical space existed [40]. Once this
interoperability was established, many metamod-
eling platforms followed, which in turn also raised
the need for their interoperability.

Several bridges between different metamodel-
ing platforms and modeling tools have been pro-
posed, including EMF and ARIS [26], EMF and
MetaEdit+ [25], EMF and Visio [30], and EMF
and Generic Modeling Environment [14]. Recently,
a transformation bridge between ADOxx and

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 7

EMF has been proposed in [6]. These transfor-
mation bridges typically consist of one or several
model transformations that are used for exchang-
ing metamodels and models between the two
platforms. These are so-called horizontal exoge-
nous transformations [10, 22, 28], as the source
and target of the transformation are situated on
the same abstraction level but adhere to different
meta-metamodels. Most of these works transform
metamodels, i.e., do not consider interoperability
at the model level which further requires a trans-
formation between concrete syntaxes. Table C5
lists these existing transformation bridges (i.e.,
M3-level-based bridges or M3Bs) between dif-
ferent metamodeling platforms. Consistently to
these related works, we also use bidirectional (or
multiple unidirectional) transformation bridges.

Many of the investigated transformation
bridges are available online, either within pub-
lic code repositories for downloading the libraries
themselves or as widgets on a web page. Nearly
all of them, except for, e.g., the Aris2EMF Bridge,
have been written in Java to directly integrate
EMF functionalities and transformation capabil-
ities, like ATL, into the bridge. Links to the
implementations, if available, are provided and an
indicator of whether or not the available transfor-
mator is still executable in today’s environments
(see Table C5).

As a matter of fact, each system that can be
abstracted to a 3-level architecture can be used
in a transformation bridge, thus also enabling the
transformation of non-metamodeling languages to
achieve tool interoperability [3, 28]. Consequently,
Table C5 also lists transformation approaches
of tools that have an underlying structure that
can be abstracted to a metamodeling archi-
tecture, e.g. Excel. Bézivin et al. [3] define a
pivot metamodel to combine the abstraction of
features that are common among the selected
systems. The bridges in question are listed in
Table C5 as Excel2SoftwareQualityControl, Soft-
wareQualityControl2Mantis, and SoftwareQuali-
tyControl2Bugzilla respectively, where the Soft-
wareQualityControl metamodel acts as the pivot
metamodel. The specific models are, therefore,
not directly transformed to the target tool envi-
ronment. Instead, a pivot metamodel serves as
an intermediary entity. Another interoperability
approach trying to bridge different conceptual
data modeling tools like ER and ORM2 is given

in [11], where a common metamodel, namely the
KF Metamodel [19], with rules for transforming
from and to these conceptual modeling platforms
is used and implemented in a web-based tool called
crowd 2.0 [12].

3.2 EMF and Microsoft DSL Tools

Research on bridging EMF and Microsoft DSL
Tools has been proposed in the past [4, 13]. Dif-
ferences regarding today’s version of MSDKVS as
opposed to the transformation approach in [13] are
e.g., the serialized file formats (.dsldm compared
to today’s .dsl mentioned in [4]), the visual-
ization of a meta-metamodel containing the Val-
ueProperty entity compared to today’s Domain-
Property, and the representation of attributes for
classes and relationships.

The previous approaches execute a chain of
ATLAS transformation language transformations
to generate the transformed metamodel using
the KM3 (Kernel MetaMetaModel), a DSL for
describing metamodels [23] as an intermediate
representation of arbitrary metamodels. As a
transformation already existed between KM3 and
Ecore, the MSDKVS metamodels needed to be
only transformed to this pivot KM3 metamodel.
Thus, no direct transformation between EMF and
MSDKVS tools existed, which introduces poten-
tial information loss as KM3 can be considered
a generic platform-agnostic DSL to represent the
’common denominator’ of several metamodels. We
examined the previous approach with preserved
.dsldm files of the Atlantic-Zoo Github7 and
learned that the execution of the XML2DSL step
always resulted in empty files. This is caused by
the evolution of the MSDKVS platform (men-
tioned above) and the discontinuation of some of
the used components in the previous approach.

This paper gives a detailed comparative anal-
ysis (see Section 4) of the abstract and concrete
syntax elements available in the latest versions
of the EMF and MSDKVS platforms that far
exceed previous works. Moreover, we present the
first direct transformation bridge that also trans-
forms the graphical concrete syntax. One example
transformation was explained in [13], the PetriNet
metamodel, where the question remains if the val-
idation of the transformed metamodel and models

7https://github.com/atlanmod/atlantic-zoo/tree/main/
AtlanticDSLTools

https://github.com/atlanmod/atlantic-zoo/tree/main/AtlanticDSLTools
https://github.com/atlanmod/atlantic-zoo/tree/main/AtlanticDSLTools

Springer Nature 2021 LATEX template

8 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

was successful in the target platform. The sources
of this approach are still available in a reposi-
tory, but as depicted in Table C5 and explained
here, the transformation code is not working with
the current versions of the platforms in question.
In the paper at hand, we address these gaps by
providing an exhaustive quantitative and qualita-
tive evaluation of the transformation bridge (see
Section 7).

4 Comparative Analysis of
EMF and MSDKVS

This section analyzes EMF and MSDKVS regard-
ing their abstract and concrete syntax. The rele-
vant elements were adapted and extended from [6,
29] in terms of concrete syntax concepts extracted
through a detailed investigation of both plat-
forms. A full list of the identified, analyzed, and
mapped abstract and concrete syntax elements
is provided in Appendices A and B, and also
available together with additional material in the
online supplementary material6. In the following,
we concentrate the analysis on the core differences
between EMF and MSDKVS as these differences
establish the challenges of designing a direct trans-
formation bridge (see Section 6).

4.1 Abstract Syntax Features

EMF allows the definition of classes that inherit
properties and possible relationship structures
from multiple classes (i.e., multiple inheritance)
whereas MSDKVS only allows entities to inherit
from one referenced base object (i.e., single inher-
itance). MSDKVS, in contrast to EMF, allows
inheritance between relationships, meaning source
and target roles of the super relationship are also
available in the sub relationship. Furthermore,
domain relationships in MSDKVS can also act
as domain classes that can then be connected
to different domain relationships as a source or
a target role. One minor but challenging dif-
ference relates to the possibility of relationships
between elements to have the same name in EMF,
which leads to name clashes on the MSDKVS
side where relationship names are required to be
unique. On MSDKVS, domain classes are not
directly referenced when creating a relationship.
Instead, they are indirectly referenced through
monikers, and a domain relationship is comprised

of source and target domain roles also referenc-
ing these monikers. In [28], relationships of EMF
are defined as reference-relations and of MSD-
KVS as binary object-relations. We agree on the
EMF part, although we find the definition of role-
relations more suitable for the binary relationships
in MSDKVS, as they indeed explicitly create addi-
tional model elements, namely DomainRoles, for
each source and target role of a domain rela-
tionship, which then reference the “real” meta-
model element via their moniker types. This is
the reason why we list the concept of a Role
in Appendix A and attribute them to MSDKVS
and not to EMF. When implementing a trans-
formation between MSDKVS and EMF, correctly
resolving these indirect dependencies to achieve
syntactical and semantical equivalence, i.e. trans-
lating multi-inheritance and the different ways of
treating relationships into a semantically equiva-
lent single inheritance and relationship treatments
with the same experienced behavior by modelers,
are some of the challenges addressed in this paper.

4.2 Graphical Concrete Syntax
Features

MSDKVS offers the possibility to inherit proper-
ties among shapes (i.e., shape inheritance), while
such an inheritance is not supported in EMF.
Besides the support for widely used basic shapes
like rectangles, circles, and icons, each platform
offers special shape types that cannot be directly
mapped to an equivalent one in the opposite plat-
form. As metamodeling platforms often depend on
an underlying programming language (e.g. EMF
on Java, MSDKVS on C#), the available color-
ing options, styles, and appearance attributes are
limited by the languages’ libraries. As for MSD-
KVS, three different types of color palettes are
available (system, web, and custom). EMF offers a
selection of basic system colors per default. Meta-
modeling platforms also allow the use of custom
image files to adapt the appearance of model
elements. EMF and MSDKVS differ in their sup-
port of various file formats. Icons can be used
to, e.g., add custom appearances to tool palette
items or composition shapes. Different types of
tools have to be defined to create models in a
runtime environment. However, the granularity
of what types of tools can be created and cus-
tomized varies greatly. MSDKVS only allows the

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 9

Table 1: List of mapping rules for abstract syntax concepts

ID (Rule Name) EMF MSDKVS

AS.R0 (Group Mapping) EPackage Language
AS.R1 (Class Mapping) EClass DomainClass
AS.R2 (Relationship Mapping) EReference DomainRelationship
AS.R3 (Attribute Mapping) EAttribute DomainProperty
AS.R4 (Role Mapping) EClass DomainRole
AS.R5 (Data Type Mapping) System Types, Custom Types System Types, Custom Types
AS.R6 (Enumeration Mapping) EEnum DomainEnumeration
AS.R7 (Inheritance) Multiple Single

definition of essential element creation tools for
domain classes and domain relationships. In con-
trast, EMF offers the definition of a vast amount
of additional tools containing, e.g., edition tools,
copy-paste tools, or reconnect edge tools. This func-
tionality is not customizable on MSDKVS, but
some are automatically available when a creation
tool is defined. Thus, copying, pasting, or delet-
ing modeling canvas elements works out of the box
on MSDKVS whereas tool developers using EMF
need to implement such functionality.

5 Transformation Rulesets

Based on the comparative analysis in the previous
section and the detailed assessment documented
in the online supplementary material6, different
rulesets composing the intended transformation
bridge have to be defined. In the following, lists
of mapping rules for the abstract syntax (Table 1
and the concrete syntax (Table 2) are given for
each transformation direction. Two selected spe-
cific rules for each, abstract and concrete syntax,
shall explain in detail how the rulesets gener-
ally have been defined in terms of supporting
the implementation afterward and highlight the
platform-specific features on a code level. A list
with explanations for every rule is available in the
online supplementary material.6

5.1 Abstract Syntax

AS.R1: ClassMapping When transforming
from EMF to MSDKVS, three types of EClas-
sifiers can be distinguished regarding their
type attributes, namely EClasses, EEnums, and
EDataTypes. When transforming an EClass, a tar-
get DomainClass is created using the same Name.
As it is necessary for each element in MSDKVS to

have a unique Id as an identifier, a random GUID
is generated upon creation. Abstract attributes
are transformed to InheritanceModifier values.
If the EMF class is abstract, the modifier receives
the value “1”, as it marks the resulting Domain-
Class as abstract [36]. If the current EClass is
the identified root class of the metamodel, it must
not be abstract in MSDKVS. XmlClassData is
added to the serialized XML data as well to
use MSDKVS’ code generation and model edi-
tor capabilities, containing the resulting generated
moniker types of the added classes to conform to
the required structure on the target side.

In the direction of MSDKVS to EMF, the
class concept is de facto identical, except for
the specifications like inheritance and Domain-
Roles used for targeting in DomainRelation-
ships, as they have to be included in an EClass
as EStructuralFeatures, more concretely, ERefer-
ences. These transformations are executed in Rule
AS.R2. InheritanceModifiers on MSDKVS
(abstract, sealed, public) are transformed accord-
ingly, whereas public is the default value, abstract
directly translates to the abstract attribute of an
EClass (i.e., abstract=“true”). Descriptions sup-
plied in MSDKVS are mapped to documentation
tags on the transformed EClass.

AS.R2: RelationshipMapping Each
EClass can contain two types of EStruc-
turalFeatures, either EReferences or EAttributes.
EReferences are transformed to DomainRelation-
ships, generating a unique identifying GUID for
the required Id attribute. EReferences can either
be flagged as containment references, simple, or
bidirectional references between two EClasses.

Fig. 3 lists these reference types, their avail-
ability in both platforms, and their mapping to

Springer Nature 2021 LATEX template

10 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Fig. 3: Mapping of relationship types between EMF and MSDKVS. Unidirectional relationships (1), bi-
directional relationships (2), and composition relationships (3).

the transformed platform types. EMF offers uni-
, bi-directional, and composition relationships,
whereas MSDKVS only offers bi-directional and
composition relationships. This is due to the fact
that, in MSDKVS, a DomainRelationship always
consists of source and target roles, represented by
DomainClasses and a specific domain role they are
given regarding the relationship definition, shown
as separate entities derived from the Domain-
Classes, referenced via monikers, each starting
with DR in the given figure.

Beginning from EMF, source and target
entities of EReferences are transformed to
DomainRoles, linking each previously transformed
DomainClass via Monikers using the unique
names of the classes. Multiplicities of a EReference
are transformed accordingly.

Regarding the other direction, in MSDKVS,
a DomainRelationship always consists of source
and target roles, representing DomainClasses. A
DomainRelationship in MSDKVS can be mapped
to an EReference in EMF. The name for the ERef-
erence is mapped from the source domain role
from the relationship in MSDKVS, and the type
from the reference is retrieved from the target
domain role, relating to the target domain class.
As a consequence, only bi-directional references
are retrieved when transforming from MSDKVS
to EMF. As stated in the documentation of EMF,
a single, one-way reference can always be defined
as a bidirectional, two-way reference, thus mak-
ing it possible to directly transform each reference
type between these two platforms.

AS.R7: Inheritance As EMF supports
multiple inheritance structures, concrete patterns
have to be applied to break down these structures
into multiple, single inheritance structures on the

target side. The concept of Inheritance between
class structures is trivial when transforming from
MSDKVS to EMF, as both platforms support the
notion of having their classes inherit references
and attributes from other classes. These inheri-
tance references are signaled by the classes’ prop-
erties BaseClass in MSDKVS and ESuperTypes
in EMF. In MSDKVS, these base class references
are done via the DomainClassMoniker types.
MSDKVS additionally allows Inheritance between
DomainRelationships, making the transformation
of inheritance structures based on relationships
challenging to maintain structural integrity, thus
resulting in additional elements as a DomainRela-
tionship first has to be transformed to a class and
then two additional references have to be created
to keep the structure of the metamodel alike.

5.2 Graphical Concrete Syntax

Notably, also the default values for each attribute
in MSDKVS have to be considered in the
transformation since these default values often
mean that the attributes do not have to be
defined at all. Thus, the M2 transformator
has to know which values are the default
ones. These have been received through exten-
sive testing and reading of the available API
documentation. An example of such values is
the BorderSizeComputationExpression of a
shape mapping in EMF, which maps to the
OutlineThickness attribute of a shape in MSD-
KVS. In EMF, this value defaults to one, whereas
in MSDKVS the default value is 0.03125. In
many cases, EMF provides simple default num-
ber values which are just multiplied on the

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 11

Table 2: List of mapping rules for graphical concrete syntax concepts

ID (Rule Name) EMF MSDKVS

GCS.R0 (Canvas Mapping) Viewpoint Diagram
GCS.R1 (Class Shape Mapping) NodeMapping GeometryShape
GCS.R2 (Icon Mapping) NodeMapping ImageShape
GCS.R3 (Relationship Shape Mapping) EdgeMapping Connector
GCS.R4 (Composition Shape Mapping) ContainerMapping CompartmentShape
GCS.R5 (Attribute Layout Mapping) Label DecoratorMap
GCS.R6 (Special Shape Mapping) BorderedNode Swimlane, Port
GCS.R7 (Color Mapping) Named Colors, RGB Named Colors, RGB
GCS.R8 (Shape Inheritance) ✗ ✓
GCS.R9 (Tool Palette Mapping) ToolSections ToolboxTab

target side. DomainPaths are used in MSD-
KVS for correctly mapping a shape entity to a
domain entity. These domain paths are defined
as XPath-like syntaxes and are built as fol-
lows:<RelationshipName.PropertyName/!Role>.
To identify the target shape on the modeling can-
vas, a containment reference in addition to the
source’s property name and role has to be given.

GCS.R1: ClassShapeMapping NodeMap-
pings in EMF are transformed into Geome-
tryShapes, visualizing DomainClasses through dif-
ferent geometries, like Rectangles or Circles.
The comparison tables in Appendix B are grouped
into the various identified shape types after hav-
ing investigated both metamodeling platforms. A
DomainClass is then referenced accordingly by
mapping the ShapeMoniker inside the Diagram.

Geometry shapes in MSDKVS reference
DomainClasses only. The corresponding trans-
formed graphical entity in Sirius is called a
NodeMapping. The customization of the appear-
ances (e.g., geometries), styles (e.g., border style,
font style), and layout (e.g., positioning) of the
entity itself and its domain properties are consid-
ered in rule GCS.R5. An example of a NodeMap-
ping resulting from a four-sided GeometryShape
has the style:SquareDescription attribute.

GCS.R7: ColorMapping Sirius in EMF
lets users define colors through drop-down
tables of predefined System Colors, User Fixed

Colors in separate user colors palettes, Computed
Colors by dynamically computing RGB compo-
nents, or as Interpolated Colors, that dynam-
ically change the coloring of a referenced
object through the definition of so-called Color

steps [2]. Through these steps, a color can be

changed by associating values via computation
expressions. For our transformation approach,
only user-fixed colors and system colors are taken
into account. Most named system colors can be
directly translated to MSDKVS’ color scheme,
although some exceptions have to be considered,
e.g., Sirius’ dark red color can map to MSDKVS’
DarkRed color by removing the underscore. If
a corresponding color has not been found, back-
ground and border colors default to black, whereas
label and filling colors default to white in MSD-
KVS.

MSDKVS uses three types of color definitions:
Custom, Web, and System. System colors have
names that correspond to the objects in the Win-
dows OS, like Scrollbar or WindowBackground.
Web colors consist of colors that are identified by
their uniquely standardized web names, which are
used in web development. Custom color palettes
can also be used, which are the same as in, e.g.,
a Paint program, where the user can define them
through a color picker. These are usable on all
objects, where colors can be applied (e.g., dia-
gram background color, line colors, text colors,
border colors, etc.). A ColorMapper class acts as
the middleware that takes the color used in MSD-
KVS as input and looks up the system color to
get the RGB values of a selected named color
(i.e., web or system). These RGB values are then
injected separately on the target EMF metamodel.
A viewpoint specification model in Sirius can be
supplemented with an additional section of user-
defined color palettes, calculated by their red,
green, and blue values, respectively, and given a
name by the designer. This functionality is used
when transforming the MSDKVS colors to EMF.

Springer Nature 2021 LATEX template

12 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

6 Transformation Bridge

Fig. 4 sketches all three layers involved in realiz-
ing interoperability between EMF and MSDKVS.
On the left, the MSDKVS column consists of
the implicitly defined meta-metamodel on the M3
layer (see Fig. 2), with its user-defined metamodel
on the M2 layer. The metamodels are serialized
in XML format as .dsl files. These files are
used as input and output of the transformation,
depending on which platform is the source and
the target of the transformation. The Transforma-
tor itself is divided into transforming metamodels
(M2 Transformator) and models (M1 Trans-
formator). The M2 Transformator is written
in C# and de-serializes the incoming files into data
structures that can be manipulated and worked
with on the code level. Abstract and concrete
syntax elements represented as XML tags inside
these input files are examined, and the mapping
rules, based on the M3 concepts of both platforms,
are applied sequentially to transform the source
metamodel into an equivalent metamodel of the
target platform. Section 6.1 discusses some of the
special cases for each direction that have to be con-
sidered during this step. An additional outcome
of the M2 transformation is a mapping informa-
tion file, containing a serialized JSON object of
all the applied strategies (e.g., renaming strate-
gies based on duplicate relationship names or
resulting from solving multiple to single inheri-
tance structures). This file is then used as input
in the M1 Transformator to map the model ele-
ments accordingly. The M1 Transformator is
written in Java and uses the Ecore Reflection
API to serialize and de-serialize source and target
(meta)models more thoroughly (see Section 6.2 for
details). It requires the Ecore metamodel file as
input in both directions, the model file created in
the source platform conforming to the previously
transformed metamodel, and the aforementioned
mapping file.

6.1 M2 Transformation

The identified elements in each platform and their
counterparts in the other platform resulted in
comprehensive rulesets (cf. Section 5). The great-
est challenges faced and detailed steps on how

Fig. 4: Transformation bridge between EMF and
MSDKVS

these were solved during the traversal and trans-
formation of elements in the M2 Transformator
are discussed in the following.

6.1.1 EMF2MSDKVS

Nested EPackage Flattening. We recognized dif-
ferent styles of EPackage definitions in publicly
available EMF metamodels (see Table 3 in the
row entitled “Grouping”). Ecore metamodels can
either have one or multiple EPackages defined,
while EPackages may also have ESubPackages.
Therefore, as MSDKVS usually only has one
equivalent language definition, these EPackage
contents are flattened and merged into one global
EPackage before executing the transformation.
Naming conventions for avoiding possible name
clashes are transformed accordingly.
Entity Name Clashes. Detecting and resolv-
ing name clashes are essential when realizing
metamodeling platform interoperability [6].
Different naming strategies to avoid possible
name clashes, e.g., across multiple ESubPack-
ages, are executed. For domain relationships,
the MSDKVS names are changed as follows:
<sourceEClass.name> <EReference.name>
<targetEClass.name>. Name clashes on domain
classes are resolved by mapping the EPack-
ages’ nsPrefix attribute to the DomainClass’
Namespace attribute.

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 13

Fig. 5: Adapted Expansion Strategy [17]: (a) multiple inheritance in EMF; (b) transformed single inher-
itance in MSDKVS

Multiple Inheritance. As EMF, in contrast to
MSDKVS, supports multiple inheritance, a trans-
formation of multiple inheritance structures into
equivalent single inheritance structures is neces-
sary. We adapted the Expansion Strategy pattern
proposed by Crespo et al. [17] to translate the
complex structures of multiple ESuperTypes in
EMF into equivalent single BaseClass references
in MSDKVS without information loss (see Fig. 5).
Important to note is that also EReferences that
target a super class have to be duplicated to the
newly created domain classes as Domain Relation-
ships in MSDKVS. In addition to the abstract
syntax duplicates, this affects the transformation
of all types of graphical concrete syntax map-
pings from Sirius as well, which results in more
Shape classes on MSDKVS side and Creation
Tools inside the modeling editor.
Root Element Pattern Matching. MSDKVS me-
tamodels require a root element that is mapped
to the diagram shape. This diagram shape pro-
vides the modeling canvas in the runtime instances
of a domain model. As per API requirement,
this selected root element has to be the source
domain role of domain relationships marked as
containment relationships, where the targets are
all domain classes that are neither part of an
existing containment relationship (e.g., children
of compartments) nor should target any base
classes they would inherit from. When transform-
ing an Ecore metamodel to MSDKVS, existing
EClasses are matched against these criteria. If
such an EClass can be found, this EClass is trans-
formed and acts as the MSDKVS root diagram
element. If no EClass is suitable, then an addi-
tional default domain class is generated that acts
as the diagram’s root element.

Icon Mapping. Sirius supports the definition of
icon styles on different node mappings by refer-
encing workspace images in various file formats.
For MSDKVS, a requirement to attribute a model
entity with icons is that the images have to be in
the Bitmap format. Therefore, library calls to con-
vert these files to the required format on the target
platform are employed in the M2 transformation.
Reserved Keywords. As MSDKVS operates on
C#, the type of reserved keywords that are
not allowed, e.g., used as the name of a class
or attribute differs from its counterpart. During
the evaluation step (see Section 7), some Ecore
metamodels contained attributes, references, or
class names that proved invalid when the trans-
formed DSL was opened inside the MSDKVS
environment. Thus, the employed naming strat-
egy prepends an underscore to a name when such
a reserved keyword is being found.
DomainEnumeration Literal Validity. For trans-
forming EEnum entities with their literal values,
special attention has to be given to the fact that
MSDKVS does not allow a variety of special char-
acters like comma, backslash, or white spaces in
their EnumerationLiterals. Each invalid character
is transformed into an underscore, one of the only
special characters not reserved by the language’s
API. A mapping file generated on top of the M2
transformation contains mapping information for
each literal value for correct lookup in the M1
transformation step.
GUID and ID Handling. Each graphical concrete
or abstract syntax element needs an Id property,
which contains a generated GUID that uniquely
identifies the element. When transforming from
EMF to MSDVKS, these GUIDs have to be

Springer Nature 2021 LATEX template

14 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

explicitly generated when the elements are cre-
ated. Mappings inside the DslDefinition.dsl

file cross-reference these IDs thus providing the
linking functionality in the Visual Studio IDE and
the correct code generation capabilities. There-
fore, when transforming, a lookup of already
created elements when the XML tree is filled is
done with the help of these Id attributes. As
a result, EAttributes in EMF, which are named
Id, cannot be transformed trivially because in
MSDKVS, this reserved field is a necessary prop-
erty of every element. Thus, Id names are always
transformed lowercase and the applied naming
conventions can be looked up in the generated
mapping information file.
Duplicate DomainRole Names. When transform-
ing EReferences to DomainRelationships, two dif-
ferent DomainRoles, either used as source or tar-
get, must not have the same PropertyName when
their other end of the relationship is the same. For
instance: ClassA has relationships to ClassB and
ClassC. If the transformation results in, e.g., hav-
ing a DomainRelationship from ClassA to ClassB
with its target role PropertyName being “Target”
and the same applies for relationship ClassA to
ClassC, then naming conventions have to be exe-
cuted on the second relationship target role. The
employed naming strategy updates a counter vari-
able for how often the same target or source base
names have been used, applies it to the newly
created role, and increments it. In the example
above, this results in the relationship ClassA to
ClassC having its target domain role renamed to
Target 1.
Duplicate DomainRelationship Names. Like for
DomainRoles, two DomainRelationships must not
have the same name. Similar renaming conven-
tions apply, i.e., counting the number of already
recognized equal names and adding the current
count to the newly created relationship.

6.1.2 MSDKVS2EMF

Relationship Roles. DomainRelationships in
MSDKVS differ from their required representation
on the target EMF side in so far, that the source
and the target entities of these relationships are
referencing the corresponding domain classes
through monikers. Source and target domain
roles can have different names attributed to them
compared to their actual classes used for creating

the domain relationship. This construct has to
be considered when transforming from EMF to
MSDKVS, too, as for every EReference, at least
one role has to be created in MSDKVS. Domain
classes are then referenced through moniker types
by their unique names. When transforming from
MSDKVS to EMF, the transformator has to
look up the source and the target domain classes
and transform these DomainClasses into the
EReferences’ eTypes and eOpposites accordingly.
Attributable Relationships. In MSDKVS not only
classes but also relationships can have attributes.
As already mentioned in [13], this behavior can
be implemented similarly, meaning that domain
relationships with attributes attached to them are
mapped to classes that are referenced from both
transformed domain classes, leading to additional
EClass and EReference entities on the target EMF
side. Multiplicities are transformed accordingly to
maintain the original behavior.
Shape Inheritance. MSDKVS allows inheritance
on the graphical representation of classes and
relationships. Therefore, the M2 Transformator
has to check possible inherited shape classes and
transform them accordingly.
Implicit Modeling Tool Capabilities. MSDKVS
supports only the explicit definition of element
creation tools on domain classes and domain rela-
tionships, while some tooling capabilities that can
be explicitly defined in Sirius are inherently avail-
able on MSDKVS’ modeling canvas, e.g. copy and
paste. To achieve an equivalent experience, the
number of tools on EMF is thus typically higher
because the M2 Transformator generates these
additional tools for every Node or Edge Creation
Tool defined in MSDKVS.
Color Naming. MSDKVS supports a variety of
colors for graphical properties (e.g., FillColor,
TextColor, and BackgroundColor). Sirius only
supports a small subset of these named colors,
e.g., standardized system colors like white, black,
and green. To be able to transform the colors
from MSDKVS into equivalent colors in EMF,
the M2 Transformator looks up the composing
red, green, and blue color values for MSDKVS’
named colors and transforms them to Custom
User Palettes used by Sirius which can be named
by the designer.

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 15

6.2 M1 Transformation

This section provides explanations of the final
tasks of the transformation process, namely the
transformation of models. An analysis of how
models are represented in each platform is given,
and their serialization formats are compared.

6.2.1 Serialization of Models

Each platform offers separate executable runtime
environments for defining and editing models.
Each model is graphically represented by its meta-
model’s available graphical concrete syntax. If
no graphical concrete syntax has been defined,
the tree editor of each modeling instance can be
used for creating classes and relationships instead.
EMF and MSDKVS both serialize the model files
in the XML Metadata Interchange (XMI) format,
thus easing the realization of the M1 Transforma-
tor to some extent.

6.2.2 Transformation approach

Typically, one cannot find concrete examples of
models based on defined metamodels contained
within model/metamodel zoos. Most or nearly all
of the retrieved repositories contain only the meta-
model definitions (either within .ecore files for
EMF or .dsl files for MSDKVS) and no con-
crete models conforming to these definitions are
available.

To examine the transformator’s validity, a ran-
dom model generator [1] is being used to generate
models as input on the EMF side. Regarding the
transformation of MSDKVS models to EMF mod-
els, the MSDKVS source models have been created
manually to best represent the underlying domain
and its features.

When comparing EMF and MSDKVS mod-
els directly, one can infer that each (simple)
attribute from a source class maps to an equivalent
attribute on a target class. The transformation
of relationships acts as the main difficulty here
because, in EMF, references look like attributes
(when speaking about XML syntax), whereas in
MSDKVS, they are expanded by default, creating
sub-elements of the DomainClass element.

Regarding the concept of inheritance, EMF
adds an xsi:type attribute containing the sub-
class type to the superclass entity, whereas, in

MSDKVS, the name of the subtype is used
directly as a tag.

In MSDKVS models, each DomainClass and
DomainRelationship element obtains a unique
identifier (i.e., GUID) to be referenced from inside
other elements. As mentioned in the M2 Transfor-
mator, these GUIDs have to be generated man-
ually when transforming from EMF to MSDKVS
on the M1 layer. Special consideration must be
given to these GUIDs, as different attributes can
be flagged as the identifying attribute, like the
name attribute of a Person entity in the Fam-
ily Tree example shown later in Fig. 7a. These
class elements are then referenced by using the
generated GUID from the diagram element (i.e.,
the root element) and the value of this unique
attribute value. EMF also uses a referencing tech-
nique regarding relationships by giving each class
a number based on their position in the model’s
list of type-equivalent XML elements, which, in
addition to their class name, can be used for
interpreting simple and bi-directional references.

6.2.3 EMF to MSDKVS

The files containing the source metamodel and its
model are used in addition to the generated map-
ping file, providing critical mapping information
for each abstract syntax element. Through iterat-
ing each EClass, and then every EStructuralFea-
ture, i.e., EAttributes or EReferences, contained
within these class elements, all elements are trans-
formed by applying corresponding transformation
rules. The main challenge in loading the model file
into the M1 transformator was that, after investi-
gating the models either randomly generated via
the library mentioned in Section 8.1 or manually
created inside EMF, their root XML tags could
differ from each other. As MSDKVS has to have
a class defined as the diagram’s root class on the
M2 layer, the generated model file also has to
have that same class as the root of its content. If
that is not the case, the first element correspond-
ing to the identified or generated root element,
extracted from the generated mapping.json file in
the previous transformation step, is used.

The following list contains information on how
the M1 transformation tackles the mapping of
the abstract syntax elements from the platform’s
metamodel layers using the created mapping.json

file from the M2 step:

Springer Nature 2021 LATEX template

16 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Class mapping. When a class entity is trans-
formed, the target name is extracted from the
generated mapping file and with it, an XML tag in
the resulting modeling representation is created.
Attribute mapping. Attributes from one class
entity can be mapped using the naming conven-
tions documented in the mapping.json file to
a target attribute contained within the previ-
ously transformed target class entity. Attributes
are used the same way in both platforms, as the
M2 transformator does not attribute the resulting
DomainProperty XML data with the ElementRe-
ference indicator.
Relationship mapping. Relationship mappings
are the most challenging mappings as their repre-
sentation depends on their relationship type.
Containment references are contained within
the composite class. Regarding the serialization
of containment references into XML format, EMF
lists the contained elements inside the containing
class elements’ tag, whereas in MSDKVS, addi-
tional XML tags for the relationship itself, e.g.,
the relationship name, have to be generated and
inserted during the transformation. As mentioned
before, simple and bi-directional references use a
numbering mechanism to target different class ele-
ments inside the model. When transforming such
relationships, the list of available elements filtered
by the target classes has to be collected and the
correct index selected.
Inheritance mapping. Inheritance mapping is
cumbersome when multiple inheritance relation-
ships are involved, as they are distributed among
several single inheritance relationships and copied
classes in MSDKVS as a result of the M2 trans-
formation. Thus, the mapping.json file has to be
consulted to find the correct inheritance structure
to use for transforming the model entity. Each
class mapping contains a superclass mapping,
referencing the targeted transformed superclass,
filtered by the source’s used superclass.
Additional information. Information such as
namespace declarations inside the models’ root
tags or the root class mapping has to be handled
accordingly. The mapping file contains additional
information on how the transformed metamodel
and its file extensions were named after having
executed the M2 transformations in order to add
these namespaces into the XMI.

The transformation implementation follows a
sequential execution as follows. First, the trans-
formation direction is determined based on the
first input parameter of the program. Afterwards,
the submitted input files are de-serialized into
corresponding structures (i.e., source Ecore meta-
models and models as well as the mapping infor-
mation). Then, the root element of the Ecore
model is extracted and transformed into the equiv-
alently mapped target root element. Afterwards,
the remaining classes and their attributes as well
as their relationships are transformed, whereas
relationships targeting not yet transformed class
elements are temporarily queued to be trans-
formed once the required classes have been trans-
formed. Lastly, the resulting element tree based
on the acquired mapped target elements, where
each element contains a list of key-value pairs
resembling an XML-like structure, is serialized
into a model file, properly readable in the runtime
instance of MSDKVS.

6.2.4 MSDKVS to EMF

When transforming models from MSDKVS to
EMF, the transformed Ecore metamodel in com-
bination with the Reflection API is used to create
the target model entities. The procedure differs
in terms of loading the source model files into
code, as no equivalent API is available in Java for
interpreting them properly. Thus, a basic XML
reader library is used for de-serializing the generic
XMI structure of the model into code. Similar
to the serialization structure of the transforma-
tion result for the direction of EMF to MSDKVS,
the models are de-serialized to a tree-based data
template containing several key-value pairs resem-
bling their various tags and attributes referencing
the metamodel attribute definitions. The following
list contains information on how the M1 trans-
formation tackles the mapping of the abstract
syntax elements from the metamodel layer using
the mapping.json file from the M2 step.

Class mapping. Class mappings are trans-
formed to corresponding class name tags in Ecore.
Lists for each class already transformed are main-
tained to get their exact index inside the XML
file for reference transformations that are not
containment references.
Attribute mapping. Attribute elements are
added to the transformed class elements as

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 17

attributes. Important to note here is that the
serialization of attributes can be different for each
attribute, depending on if their Reference flag
has been set to, e.g., “Element”. Thus, the map-
ping file has to be consulted for each attribute to
retrieve the mapping information containing the
value of the flag. Normally, the flag defaults to
“null”, meaning the attribute is used as a normal
attribute. When the flag’s value is “Element”, the
attribute has been de-serialized to a separate sub-
element with one ValuePair object, where the key
is the name of the attribute and the value equals
the attribute’s value, easily being translatable
into an EMF model entity’s attribute.
Relationship mapping. Contained classes are
wrapped inside their composite class, with addi-
tional tags denoting their domain relationship
names. Other types of relationships, i.e., bi-
directional references with source and target
domain roles, are serialized differently. Similar to
the M2 layer, target classes of relationships are ref-
erenced through monikers, their name assembled
as follows: <class name>Moniker. If such a class
has an attribute other than their GUID attribute
set as their naming attribute (i.e., IsMonikerKey),
the value of this naming attribute, which must
be unique, is used for further referencing the
correct target classes. Domain relationships, that
were transformed into EClasses, are flagged specif-
ically, as the M1 Transformator has to do a
class lookup and add two additional references
to solve the “Relationship as a Class” functional-
ity correctly. Depending on the UseFullForm and
OmitElement attributes for the XML serialization
behavior defined on the M2 layer, the relationships
have to be transformed differently (an explanation
and evaluation is given in Section 8).
Inheritance mapping. As the transformed
Ecore metamodel cannot contain any multiple
inheritance structures, this makes it easier to find
the target element as opposed to solving multiple
inheritances to multiple single inheritances from
EMF to MSDKVS.

The following code sections are executed
sequentially to realize the MSDKVS to EMF M1
transformation. First, the Ecore metamodel file,
the model file for MSDKVS, and the mapping
file generated in the M2 transformation are being
loaded into memory. Using the Ecore API, an

empty Resource is created based on the meta-
model content. The resulting EPackage element
is retrieved, set as the target root element, and
registered as a dynamic package in the EPack-
age Registry Instance. Then, the MSDKVS model
is de-serialized and put into a tree of Elements,
resulting from the existing XML tags inside the
model file. A tag’s attributes are resembled by
key-value pairs contained within the resulting
elements. These XML tag elements are then iter-
ated and mapped, with the help of the mapping
information, to corresponding Ecore elements.

After obtaining all elements inside the source
model file, the root element is first transformed.
As each XML tag is saved as an element inside
the resulting tree, the traversal of these elements
differs greatly in comparison to the other direc-
tion, as the correct type of each element has to be
distinguished properly before transforming it. The
mapping information containing the names of the
source and the target elements helps in finding the
correct target element. A separate table is main-
tained, containing the created EObjects and their
moniker key values for every node of the model
file. If an element has been traversed, it is flagged
to omit duplicate processing. All key-value pairs
are then transformed into EAttribute values with
the correct EDataType.

The transformation of relationships takes the
different serialization types into account, possi-
bly skips elements if the UseFullForm method has
been used, and the correct referencing of trans-
formed class entities by looking at the moniker key
values. Finally, the resulting Ecore data is saved
inside a model file using the Ecore API.

6.3 MSDKVS2EMF Transformation
Example

For showcasing the transformation bridge, we will,
in the following, refer to a small example of a fam-
ily tree metamodel that we created in MSDKVS
and subsequently transformed, using our trans-
formation bridge, into a valid EMF metamodel.
The example, adapted from the tutorial of Sir-
ius8, comes also with a graphical concrete syntax
specification on MSDKVS’ side, which enables
to exemplify the feasibility of the transformation
bridge. The goal of this example case is thus to

8https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial

https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial

Springer Nature 2021 LATEX template

18 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

(a) Family Tree metamodel in MSDKVS

(b) Transformed Family Tree VSM (left) and metamodel (right) in EMF

Fig. 6: Family Tree metamodel in MSDKVS and transformed into EMF.

illustrate the feasibility of realizing syntactic and
semantic equivalence between the two platforms
involving the abstract and the graphical concrete
syntax. Full images are provided online.6

Fig. 6a shows the source metamodel inside the
Visual Studio IDE. In this example, a basic fam-
ily tree metamodel with graphical concrete syntax

descriptions has been created that contains a com-
partment relationship between Country and Town
and an inheritance structure between the Person
domain class as the base class ofMan andWoman.
Fig. 7a shows a manually created model of an
excerpt of the family tree of the British House of

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 19

(a) A created Family Tree model in MSDKVS (b) Transformed Family Tree model in EMF

Fig. 7: Family Tree model in MSDKVS and transformed into EMF.

Windsor based on the previously defined meta-
model in MSDKVS. The result of executing the
M2 Transformator on the source MSDKVS meta-
model is shown in Fig. 6b, showing the resulting
Ecore metamodel both graphically and in a tree
structure. The resulting EMF model and its enti-
ties depicted in Fig. 7b have been created using
our realized M1 Transformator. For better com-
parability, the EMF model elements have been
positioned accordingly on the canvas.

7 M2 Evaluation

This section reports on the results of experi-
menting with the M2 Transformator. The trans-
formation is implemented as two uni-directional
transformations which means that either MSD-
KVS metamodels (*.dsl files) or EMF metamod-
els (*.ecore files) with optional .genmodel and
.odesign files for graphical concrete syntax map-
pings and code editor generation settings serve as
input.

We searched and selected a representative set
of metamodels of both platforms from publicly
available collections and also through dedicated
metamodel search engines [32]. A collection of
44 metamodels from MSDKVS and 75 randomly
selected metamodels from the AtlanMod Atlantic
Zoo9 with additional 22 metamodels referencing

9https://github.com/atlanmod/atlantic-zoo

and containing Sirius VSMs and 18 metamodels
(some of which overlapping with VSM available
metamodels) containing EMF specific features
like multiple inheritance or nested EPackages
was composed. Thus, the metamodels have been
selected mostly at random; all manual additions
were motivated by the goal to have a represen-
tative set of metamodels (i.e., a set that differs
in size, contains metamodeling concepts, and is
equipped with a graphical concrete syntax speci-
fication).

With the evaluation, we thus aim to respond
to the following research questions:

RQ1: Are the transformed metamodels valid
when opened in the target platform?, and

RQ2: Are the transformed metamodels exe-
cutable, i.e. can editor code be generated and
runtime instances successfully started?

7.1 Experimental Setup

In the following, we dive deeper into the ana-
lytical aspects of the metamodel transformation
approach. First, quantitative aspects are listed
and compared. Table 3 shows statistical infor-
mation about the experiment’s source metamod-
els’ abstract syntax, as well as the metrics of
the resulting transformed metamodels in the tar-
get platforms. Table 4 depicts the metamodels’
concrete graphical syntax metrics, showing both
source and target metamodel values. To analyze

https://github.com/atlanmod/atlantic-zoo

Springer Nature 2021 LATEX template

20 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Table 3: Metamodel abstract syntax metrics
Source Target

EMF MSDKVS MSDKVS EMF

Min Med Max Avg Min Med Max Avg Min Med Max Avg Min Med Max Avg

Grouping 1 2 50 2.83 1 1 1 1 1 1 1 1 1 1 1 1

Classes 1 12 300 33.56 2 8.5 39 10.55 1 13 346 38.92 2 10 47 11.57

Abstract Classes 0 2 83 5.77 0 1 9 1.61 0 1 109 6.59 0 1 9 1.61

Inherited Classes 0 7 335 31.79 0 3.5 34 5.20 0 7 335 31.79 0 3.5 34 5.20

Multiple Inheritances 0 0 134 4.75 - 1 - - - - - - - 0 0 0 0

Relationships 0 11 437 36.23 0 9 40 10.86 0 12 3750 130.83 0 13 79 18.20

Inherited Relationships -2 - - - 0 0 4 0.30 0 0 0 0 - - - -

Relationships as Class -3 - - - 0 0 15 1.18 0 0 0 0 - - - -

Attributes 0 10 98 21.32 1 17.5 170 29.11 0 11 236 28.28 1 17.5 170 30.27

Enumerations 0 0 18 1.36 0 1 21 2.43 0 0 18 1.36 0 1 21 2.43

DataTypes 0 0 60 0.92 0 0 9 1.36 0 0 60 0.92 0 0 9 1.36

1 MSDKVS does not support multiple inheritance structures
2 EMF does not support inheritance among relationships
3 EMF does not support attributing relationships and using them as classes

Table 4: Metamodel concrete syntax metrics
Source Target

EMF MSDKVS MSDKVS EMF

Min Med Max Avg Min Med Max Avg Min Med Max Avg Min Med Max Avg

Class Shapes 0 0 12 0.60 0 2 16 3.48 0 0 12 0.60 0 3 23 4.27

Inherited Class Shapes - - - - 0 0 10 0.43 0 0 0 0 - - - -

Icon Shapes 0 0 18 0.77 0 0 11 0.39 0 0 18 0.77 0 0 11 0.39

Relationship Shapes 0 0 39 1.73 0 2 10 3.30 0 0 39 1.73 0 2 17 3.98

Containment Shapes 0 0 27 0.79 0 0 5 1.23 0 0 27 0.79 0 0 5 1.20

Tools 0 0 398 9.81 0 6 25 7.84 0 0 14 1.39 0 10 41 13.82

1 22 out of 75 Ecore metamodels had a Sirius VSM

the qualitative aspects, the transformed meta-
models are opened with the target platform.
Both platforms offer automatic validation, mean-
ing that when the project files are opened, their
internal structure is validated. Validation errors,
if present, are listed accordingly. As the MSDKVS
diagram editor on the M2 layer offers the abil-
ity to define concrete syntax elements upon the
abstract syntax entities, the validation step checks
both areas for errors. On the EMF side, the trans-
formed .odesign files containing the definitions
for graphical concrete syntax mapping required
separate, manual validation. An overview of the
success rates for both directions is provided in
Table 7. If the validation yielded no errors, the
platforms’ functionalities upon creating models
were tested.

7.2 Semantic Analysis

As a final part of the evaluation process for the
M2 transformator, a selection based on the source
and their transformed target metamodels used
for each direction was defined. These metamodels
were analyzed in-depth regarding their behavior
while creating and operating with models inside
their generated runtime environments. The goal
was to investigate the metamodel functionalities
to further strengthen the interoperability aspect
of this paper’s transformation bridge.

The following aspects, comprising mainly the
mapping of meta-metamodel concepts from one
platform to the other, were chosen to investigate
semantical equivalence between the source and the
transformed metamodels:

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 21

• Class Mapping: Correct mapping of class enti-
ties, their names, number of attributes, inher-
itance relationships, and, if applied, possible
renaming strategies in the target environment.

• Relationship Mapping: Multiplicity map-
ping, source and target class mappings, and the
special types of relationships like containment
and bi-directional references. This includes, e.g.,
a correct cascading of delete behavior in con-
tainment references.

• Attribute and Enumeration Mapping:
Datatype conformity, identical default values,
and enumeration literals (taking into account
the naming conventions listed in Section 6.1.1)

• Class Shape Mapping: Correct coloring and
styling of classes and attributes as well as
mapped geometries.

• Relationship Shape Mapping: Routing
styles, source and target styling, line styles, and
attributes must be considered.

• Tool Mapping: Sectioning of tools, tool icons,
and their interaction with the modeling canvas
(e.g., creation of relationships between two valid
entities, creation of classes).

Subsets of ten metamodels for each direction
used in the quantitative and qualitative analysis
were selected for the investigation of these defined
aspects. The metamodels are chosen by setting
up scattered plot diagrams, each for two selected
metamodel characteristics standing in correlation
to one another based on representative metrics cal-
culations discussed in [18]. These metamodels then
also act as the referencing metamodels for the M1
transformation evaluation done in Section 8.

The steps taken to evaluate the semantic prop-
erties of the selected metamodels are the following:

1. Transform source to target metamodel
2. Copy the resulting files into the target environ-

ment
3. Confirm the validity of both abstract and con-

crete syntax
4. Generate executable code based on the meta-

model
5. Run an experimental instance of the platform
6. Create empty model files based on the trans-

formed metamodel
7. Initialize the graphical modeling canvas, if

available

8. Interact with the modeling canvas and the tree
editor, i.e., create classes and relationships, edit
attributes, delete elements

9. Investigate the resulting shapes and compare
their properties to the source definition

7.2.1 EMF to MSDKVS

By having selected a subset of metamodels using
a variety of different aspects spread among all
the available metamodels, this evaluation aims to
give an adequate overview of how semantic equiv-
alence regarding model behavior and interaction
is achieved.

Fig. 8 shows the approach used for selecting
the set of metamodels that have to be investigated
further for semantic evaluation. Each diagram,
having two distinct but connected metamodel
metrics as its x and y axes, gives further insight
into how distributed the values among the col-
lected source metamodels are. The yellow dots
represent the x and y coordinates, i.e., metric val-
ues, for the metamodels that have been chosen for
semantic evaluation, which will be listed afterward
in Table 5. The blue dots visualize the remaining
metamodels used inside the feasibility approach in
the previous section.

When looking at Table 5, four of the ten
selected metamodels had graphical representa-
tions available, namely poosl, behaviortree,
sensorProject, and simplePDL. Their shape
mappings to abstract syntax elements and their
tooling sections were transformed and usable in
MSDKVS correctly.

The ATL and KDM metamodel defini-
tions could also be transformed eventually after
some minor fixes had to be made in order for
MSDKVS’ code serialization to work, as two
XmlRelationshipData constructs for the same
DomainClass or its base classes must not have
the same RoleElementName attribute, or else a
validation error would be thrown.

The more cumbersome metamodels are
deemed to be UML2 and c sharp, as they
contain multiple inheritance structures with
many supertype definitions and a number of
SubEPackages. This made evaluating the correct
naming conventions for domain roles and domain
relationships difficult at first, since also opening
the resulting DSLs in Visual Studio resulted in
performance issues due to their file sizes and

Springer Nature 2021 LATEX template

22 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Fig. 8: Metric distribution and highlighted metamodels used for manual evaluation for EMF.

entity counts. The problems during validation of
the transformed c sharp DSL were eventually
eliminated, as they only resulted from duplicated
source domain role names. The UML2 DSL, on
the other hand, could not be solved completely
as of yet, as 1) the number of relationships being
rendered on the metamodeling canvas made the
interaction and finding the source of the problem
impossible, and 2) the number of faulty domain
relationships with errors due to the applied nested
renaming strategies as the Ecore metamodel con-
tained multiple eSuperType relationships with
these supertypes also having multiple eSuper-
Type relationships was still error-prone during

model evaluation, thus resulting in the UML2
metamodel not being targeted in the model
transformation evaluation. As this metamodel
far exceeds the average representation value of
multiple inheritance structures being 4.75 con-
tained within the source metamodels used for
the feasibility study of the M2 transformation,
namely 42 in combination with 437 relationships
(i.e., the highest value of all used source meta-
models), further investigation has to be done for
these large metamodels in order to achieve better
generalizability of the interoperability.

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 23

Table 5: Semantic evaluation results for transformation direction EMF to MSDKVS.

Metamodel Validity
Classes Relationships Attributes/Enums Shapes Tools

Ant ✓ ✓ ✓ - -

ATL ✓ ✓ ✓ - -

behaviortree ✓ ✓ ✓ ✓ ✓

c sharp ✓ ✓ ✓ - -

HAL ✓ ✓ ✓ - -

KDM ✓ ✓ ✓ - -

poosl ✓ ✓ ✓ ✓ ✓

sensorProject ✓ ✓ ✓ ✓ ✓

simplePDL ✓ ✓ ✓ ✓ ✓

UML2 ✓ ✗ ✓ - -

7.2.2 MSDKVS to EMF

The size of MSDKVS metamodels (i.e., the num-
ber of domain classes) is usually much smaller
compared to EMF, making it easier to appropri-
ately test the transformation. Fig. 9 shows five
scatter plot diagrams for the source DSLs used
to evaluate the M2 transformation, each contain-
ing different metric values on their respective x
and y axes. The yellow dots symbolize the selected
DSLs, identical to the diagrams for the trans-
formation direction EMF to MSDKVS. Table 6
displays the evaluation results. Every language
definition, except fwk dsl, contained at least one
attributed DomainRelationship, resulting in an
EClass with additional EReferences from and to it.
cqrsdsl contained 15 class-like relationships and
could not be rendered by Sirius in general, as the
references were all embedding relationships. For
each contained class, a separate model instance
had to be created to cross-reference them, thus
resulting in invalid shape and layout analysis but
valid abstract syntax. Furthermore, this DSL uses
containment references for source domain classes
that are mapped to GeometryShapes, which, in
the transformator’s current state, is not possible
to visualize correctly after being transformed to
EMF and Sirius, as no sub-nodes can be added to
the resulting NodeMappings, and EdgeMappings

cannot visualize containment references. A possi-
ble solution would be generating a Sirius represen-
tation per such containment structure to visualize
them appropriately from separate models.

7.3 Results

RQ1: Validity of transformed metamod-
els. For the transformation validity (see Table 7)
we were not only concerned about the abstract
syntax but also about the constraints on the
concrete graphical syntax. In the currently imple-
mented version of the transformations, we were
able to address and correct all previously men-
tioned errors [15] thus resulting in a 100% success
rate among graphical concrete syntax elements in
the direction of MSDKVS to EMF.

EMF → MSDKVS is also yielding a 100%
success rate (based on 75 cases) considering the
abstract syntax. The additional Sirius validation
considered the 22 metamodels which contained
a graphical concrete syntax specification. In the
runs that followed, two out of 22 were faulty, stem-
ming from the fact that multiple Ecore metamod-
els were referenced from within the .odesign file,
therefore creating shapes for not available enti-
ties. Future work will investigate how to consider
multiple referenced Ecore metamodels during the
transformation.

Springer Nature 2021 LATEX template

24 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Fig. 9: Metric distribution and highlighted DSLs used for manual evaluation for MSDKVS.

As the M2 Transformator is implemented as
a bridge between two XML serialization formats,
most of the initial problems that occurred orig-
inated from de-serializing the input metamodel
files to data structures. XML namespace errors
were among the most common types of excep-
tions because of limitations the default C# library
provides when de-serializing Ecore metamodel
files, as they contain numerous classes using the
same typed attributes (e.g., firstModelOperations
and subModelOperations in tool sections). These

errors could be eliminated eventually by chang-
ing the content of the metamodel files before the
de-serialization.

RQ2: Executability of transformed
metamodels. The executability assumes a valid
metamodel to run the code generators for cre-
ating and executing modeling runtime instances
in the platforms. When the code generation
throws errors or the modeling canvas cannot be
initialized, the transformed metamodel files are
deemed faulty regarding their executability and

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 25

Table 6: Semantic evaluation results for transformation direction MSDKVS to EMF.

DSL Validity
Classes Relationships Attributes/Enums Shapes Tools

agilemodeler ✓ ✓ ✓ ✓ ✓

candle ✓ ✓ ✓ ✓ ✓

cqrsdsl ✓ ✓ ✓ ✗ ✗

fwk dsl ✓ ✓ ✓ ✓ ✓

generatorlanguage ✓ ✓ ✓ ✓ ✓

hostdesigner ✓ ✓ ✓ ✓ ✓

mbrdcmdmi ✓ ✓ ✓ ✓ ✓

mobiledsl ✓ ✓ ✓ ✓ ✓

nhmodelinglanguage ✓ ✓ ✓ ✓ ✓

spllanguage ✓ ✓ ✓ ✓ ✓

Table 7: Transformation success rates

Direction Abstract Syntax Concrete Syntax

Cases Errors Rate Cases Errors Rate

MSDKVS → EMF 44 0 100% 44 0 100%

EMF → MSDKVS 75 0 100% 221 2 2 90.91%

1 Only 22 collected metamodels were bundled with custom
.odesign files
2 VSMs contained references to multiple Ecore metamodels

semantic evaluation. All transformed metamod-
els that threw no errors during their validation
phase could be used to generate model code on
the target platforms and thus initialize runtime
editor instances for modeling purposes. As a final
step, a small subset of metamodels on each side
and their transformed results were selected for
manually evaluating and comparing their inter-
action on the modeling layer, similar to how the
example in Section 6.3 was conducted. Regarding,
e.g., their tool palette functionalities, interaction
on the modeling canvas, and entity styling, no
significant inequalities were observed besides the
ones mentioned in the previous section.

7.3.1 Limitations

A few limitations adhere to the transformation
approach based on the M2 layer. The M2 transfor-
mator is specific to the EMF and MSDKVS meta-
models. Each additional platform requires a map-
ping according to the identified rule sets and each
rule requires an implementation in C#. For seri-
alizing the new metamodel representations, the

XML schema has to be analyzed and correspond-
ing data structures for (de-)serialization have to
be added. Existing transformations can afterward
be reused, thus creating M3-level bridges spanning
multiple metamodel platforms. Another limita-
tion is the realization of the transformator on the
current platform versions. Core updates to these
platform metamodels, therefore, require similar
updates to the transformator.

Regarding the involved metamodel entities and
unique features of each platform, some limitations
in the transformation’s current state are present
as well. Many of the advanced model operations
supported by Sirius (e.g., filtering using query lan-
guages, flow control operations like Begin, For and
If, Dialog) cannot be mapped directly to avail-
able operations in MSDKVS. As mentioned in
Section 4, only element creation tools are sup-
ported, which target specific metamodel entities.
These features are correctly mapped to and from
Sirius’ model operations Change Context, Create
Instance, and Set.

8 M1 Evaluation

In addition to the feasibility study of the first part
of the transformation, this section considers the
transformation implementation on the model layer
to investigate the complexity and degree of com-
pletion, i.e., if and how all possible definitions can
be transformed.

Springer Nature 2021 LATEX template

26 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

8.1 Model Generation

For testing the transformation approach on the
M1 layer, a random model generator, customiz-
able with several parameters and presented in [1],
is used for generating different models based on
an Ecore metamodel. A selection of previously
transformed metamodels is used, with the gener-
ated mapping.json file, for evaluating the model
transformation approach for the direction EMF→
MSDKVS. For the opposite direction, the under-
lying models have been created manually as no
model generator is available.

The Ecore model generator can be configured
with a variety of optional parameters, like the
average size of a model, the average number of
references per class element, and attribute value
lengths. For this paper’s purposes and for better
readability of the generated model files, an aver-
age size of 20, an average number of references
of four per object, and an average variable length
of eight for attributes were used to create models
that are comprehensible by humans.

8.2 Transformation Results

Tables 8 and 9 list the selected transformed meta-
models used in the M2 transformator discussed
in Section 7, the number of manually created
or generated models based on these results, and
the execution results of the M1 transformator.
Each category identified in Section 6.2 struc-
tures the evaluation. The numbers indicate how
many generated models are valid on the target
platform. Next, each column is analyzed individ-
ually, explaining its purpose and results regarding
the source and their transformed models, listing
found errors or unintended behavior, and possi-
ble solutions and improvements for future releases.
Afterward, the limitations of the M1 transforma-
tor based on the Ecore Reflection API for EMF
→ MSDKVS and JAXB library for serializing and
de-serializing the input models of MSDKVS, used
for the direction MSDKVS → EMF, and output
models are discussed.

As the semantic evaluation regarding the inter-
operability of models based on the M2 transforma-
tion results has already been done in the previous
section, the following results take only the validity
of the transformed models into account, especially
regarding the validity of the mapping strategies

discussed in Section 6.2 in addition to the compar-
ison of their graphical representation, if available,
depicted in column “Layout”. If no graphical con-
crete syntax is available, the model explorer’s
embedding tree is used for investigating the model
contents. Reference relationships are not available
inside this tree editor and are only visible if a
Connector has been defined for these types of rela-
tionships. Therefore, they cannot be checked for
validity inside the modeling run time in Visual
Studio. As no model generator in MSDKVS is cur-
rently available, basic reference links are added
inside the model’s XMI representation file to check
the validity of those.

8.2.1 EMF to MSDKVS

A subset of eight Ecore metamodels was chosen
based on the previous quantitative metrics distri-
bution and qualitative analysis. Table 8 shows the
results of the validity checks for different crite-
ria in addition to the layout of the transformed
Sirius components in terms of coloring, labeling,
and more. Each metamodel was used to gener-
ate ten different model files. These files were then
transformed using the M1 transformation.

• Class transformation: For every model used,
the class transformation resulted in correctly
mapped class entities on the target platform,
having the correct naming based on the map-
ping information created in the M2 transforma-
tor. If a class had been duplicated and renamed
by applying the strategies on the M2 trans-
formator as a result of the expansion strategy,
transforming multiple inheritance structures to
single inheritance structures, the correct type
could be identified accordingly.

• Attribute transformation: Same as for the
class transformation, every class entity con-
tained the correctly mapped attributes, data
types, default values, and enumeration literals.

• Relationship transformation: Regarding
the validity of the relationship transformation
part, only the c sharp metamodel proved to
be invalid, as it contains multiple inheritance
structures nested within multiple inheritance
structures, thus resulting in wrongly resolved
references. Regarding the containment, simple,
and bi-directional references, the transformed
MSDKVS models proved to be valid in terms of
syntax and semantics.

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 27

Table 8: Model transformation results for transformation direction EMF to MSDKVS.

Metamodel Validity

Class Attribute Relationship Inheritance Layout

Ant 10/10 10/10 10/10 10/10 -

ATL 10/10 10/10 10/10 10/10 -

behaviortree 10/10 10/10 10/10 10/10 10/10

c sharp 10/10 10/10 0/10 0/10 -

HAL 10/10 10/10 10/10 10/10 -

KDM 10/10 10/10 10/10 10/10 -

poosl 10/10 10/10 10/10 10/10 10/10

sensorProject 10/10 10/10 10/10 10/10 10/10

Table 9: Model transformation results for transformation direction MSDKVS to EMF.

DSL Validity

Class Attribute Relationship Inheritance Layout OE1 UFF2 ER3

agilemodeler 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✗

candle 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✓

fwk dsl 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✗

generatorlanguage 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✗

hostdesigner 4/4 4/4 4/4 4/4 4/4 ✗ ✗ ✗

mbrdcmdmi 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✗

mobiledsl 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✗

spllanguage 4/4 4/4 4/4 4/4 4/4 ✗ ✓ ✗

1 Indicator for containing at least one OmitElement XmlRelationshipData
2 Indicator for containing at least one UseFullForm XmlRelationshipData
3 Indicator for containing at least one XmlPropertyData data having Representation attribute set to “Element”

• Inheritance transformation: As mentioned
before, inheritance relationships regarding
nested multiple inheritances were the only
recognized error-prone aspect of the M1 trans-
formation. As nearly all of the metamodels
used in the M2 transformator did not use such
complex multiple inheritance trees, one can
infer that these occur very rarely.

• Layout behavior: Regarding the correct and
identical visualization of model content on the
modeling canvas inside the platform’s run time
instances, half of the models had Sirius VSMs
available, all of them showing valid and identical

model shapes based on the transformed meta-
model files. If there was no graphical representa-
tion available, the inherent tree structures were
used for comparing both model contents, which
is reflected in the abstract syntax information
listed in the other columns.

8.2.2 MSDKVS to EMF

In the scope of this paper’s M1 transformator
evaluation, models for the selected DSLs have
been created manually, best resembling the men-
tioned parameterized generation of models on the
EMF side. As creating different models based on

Springer Nature 2021 LATEX template

28 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

the transformed metamodels is a time-consuming
task, we created four models per DSL to show the
feasibility and validity of the M1 transformator.

Table 9 shows the selected DSLs, the number
of valid models for different validity criteria, and
also the three important flags mentioned before
that influence how the model entities are serialized
inside the XML files. Typically, OmitElement has
not been set in any of the looked-at DSL defini-
tions. As UseFullForm is, per default, set to true
when a domain relationship is created, most DSLs
use this feature.

• Class transformation: All class entities to
EClass objects transformations have been exe-
cuted properly.

• Attribute transformation: Every DSL
except candle uses the default serialization
technique for attributes, i.e., identical to an
XML tag attribute. Candle DSL uses cus-
tomized serialization data for one or more
domain properties, such that the model
attributes are serialized as subsidiary XML tags
for the domain class or domain relationship.
The M1 transformation works for both ways
and all transformed models were interpreted
and displayed correctly.

• Relationship transformation: The MSD-
KVS relationship serialization is primarily influ-
enced by the OmitElement and UseFullForm

flags attached to a domain relationship’s XML
data. The mapping information created in the
M2 step attaches each of these flag values to
the resulting reference mapping, thus being
able to check the valid structure in the model
de-serialization to an element tree used for
traversing and transforming to the correct rep-
resentation on the EMF side. Regarding our
input DSLs, typically, elements were not flagged
as omitted, as this is the default setting. The
hostdesigner DSL was the only one, where
no full form of relationships was serialized,
thus skipping the XML tags named after the
domain relationship name itself. The M1 trans-
formator works either way, correctly identifying
and looking up the corresponding EReference
based on the source and target values available
through the Class Mappings retrieved from the
Reference Mappings.

• Inheritance transformation: As MSDKVS
only offers single BaseClass references from

domain classes and domain relationships, no
complex structures were present in the source
model collection. This resulted in equal sin-
gle inheritance ESuperType relationships on the
target side, simplifying finding the correct type
of an EClass, with or without having multiple
nested inheritance relationships.

• Layout behavior:Most MSDKVS DSLs found
contained graphical syntax elements, resulting
in Sirius VSMs on the EMF-side after trans-
formation. This enabled us to also validate the
correct visualization properties for those DSLs.
Regarding the input set of manually created
models, the M1 transformation produced sat-
isfying and graphically similar results on the
target side, with some minor changes regarding
especially the sizes of produced shapes when the
diagram representation is first opened, as these
values are dynamically created.

• OmitElement behavior: As no DSL con-
tained domain relationships flagged by the
“OmitElement” attribute, this behavior could
not be evaluated entirely.

• UseFullForm behavior: As mentioned before,
by default this is set to true, meaning that
the references inside the model classes result in
more subsequent XML tags. The M1 transfor-
mator adapts its de-serialization of the model
file based on the instructions received from
finding the correct reference mapping.

• ElementReference behavior: Both MSD-
KVS styles for serializing domain properties
(i.e., as Attribute and as Element) resulted in
valid target models correctly interpreted by the
Ecore system.

8.3 Limitations

One major limitation is the requirement of always
having an element from the abstract syntax def-
inition acting as the root element, be it either
in MSDKVS, where this requirement for the M2
transformator originated (see Section 6), or EMF,
to read the model file correctly. The generator [1]
used for generating a number of models based
on Ecore metamodels, as stated, targets “... any
non-abstract EClass without a required contain-
ing EReference ...” for a potential root element.
This sometimes results in XMI model files with no
concrete metamodel root element as the XML root
tag, making transforming them impossible based

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 29

on the current approach. When a model is manu-
ally designed in a runtime instance of a metamodel
in Eclipse, one has to define the root element
beforehand when the model file is created. There-
fore, only metamodel instances in EMF where a
designated root element could be extracted that
is able to contain all remaining syntax elements
were used for model generation and evaluation of
the M1 transformator.

This also leads to the M1 transformation only
being able to transform one model file at a time,
thus no referencing model entities in other files,
especially in EMF, is supported.

The next limitation relates to the unavailabil-
ity of an MSDKVS model generator. Although,
with the help of the platform’s API and the T4
templating engine, it would be possible to edit
model files in the experimental runtime instances
of Visual Studio programmatically and thus even-
tually realizing a rudimentary model generator,
the evaluation mentioned above relied on manu-
ally creating the source models. This can be added
to the list of future work.

9 Conclusion

In the course of this paper, interoperability
between the two metamodeling platforms EMF
and MSDKVS has been conceptualized, imple-
mented, and evaluated. A bidirectional trans-
formation bridge to transform metamodels and
models between both platforms was implemented.
The evaluation was conducted by using a rep-
resentative set of diverse and publicly available
metamodels and DSLs 6, and generated or manu-
ally created models. By providing mapping rules
for the graphical notations available in both meta-
modeling platforms, we showed that it is possible
to transform means of graphically representing
elements of transformed metamodels to achieve
not only syntactic but also visual interoperability.

Future research aims to further extend the
interoperability by looking at the available query
languages, like OCL and AQL. Another line of
research targets round-trip transformations by
e.g., extending the available mapping information
file resulting from the M2 transformation with
additional information. Moreover, the bridge itself
does offer a wide variety of opportunities, not only
from a scientific point of view but also from a more
practical one, e.g.:

• Developers can benefit from our concrete syn-
tax mappings when realizing their own bridges.
Our approach adds insights into recogniz-
ing, abstracting, and grouping concrete syntax
structures on top of the known abstract syntax.

• With every new bridge, like the one we pre-
sented, the community gains insight into what
the most popular structures and features,
regarding graphical and abstract syntax, of
metamodeling platforms are. This could inform
a deep systematic comparison of the available
(and future) platforms.

• Developers, having decided to use EMF or
MSDKVS, are not locked in anymore. Instead,
they can now transform their developed meta-
models into initially equivalent artifacts on the
respective target platform.

As new metamodel platforms are being devel-
oped regularly, seeing the importance of bridging
these environments and chaining them together
can be beneficial and motivational in terms of
integrating possible access points early on in the
new metamodeling platforms themselves, e.g., an
API that can be easily integrated into existing
M3B tools, a standardized exchange format, or a
graphical interface for easy usage and extractabil-
ity. Web-based platforms like GLSP [34] and the
development of (web-based) modeling tools are
receiving a huge focus in the modeling commu-
nities [35]. The paper at hand has the potential
to inform the development of these new plat-
forms with the intent to have interoperability with
currently established metamodeling platforms in
mind.

Stronger toolchains and the possibility to
migrate legacy systems developed in old environ-
ments that are no longer receiving support from
the developers are a welcoming change that elimi-
nates the burden for developing teams using these
legacy systems to transport their code bases to
new platforms. With the help of developers work-
ing on bridging frameworks, the fear of having to
scratch existing projects to use newer technologies
is reduced.

The bridge’s code, as well as the full list of
selected metamodels, are available open source,
and the transformation bridge has been deployed
as a freely usable ’MSDKVS - EMF Converter’
service at: http://me.big.tuwien.ac.at/.

http://me.big.tuwien.ac.at/

Springer Nature 2021 LATEX template

30 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

References

[1] Model generator jar for ecore models,
https://modeling-languages.com/a-pseudo-
random-instance-generator-for-emf-models/,
last accessed on 15.03.2023

[2] Official sirius online documentation, https://
www.eclipse.org/sirius/doc/, last accessed on
15.03.2023

[3] Bézivin, J., Bruneliere, H., Jouault, F.,
Kurtev, I.: Model Engineering Support for
Tool Interoperability. In: Workshop in Soft-
ware Model Engineering (2005)

[4] Bézivin, J., Hillairet, G., Jouault, F., Piers,
W., Kurtev, I.: Bridging the MS/DSL Tools
and the Eclipse Modeling Framework. In: Int.
Workshop on Software Factories at OOPSLA
(2005)

[5] Bill, R., Fleck, M., Troya, J., Mayerhofer,
T., Wimmer, M.: A local and global tour on
momot. Softw. Syst. Model. 18(2), 1017–1046
(2019). https://doi.org/10.1007/s10270-017-
0644-3

[6] Bork, D., Anagnostou, K., Wimmer, M.:
Towards interoperable metamodeling plat-
forms: The case of bridging adoxx and emf.
In: Advanced Information Systems Engineer-
ing. 34th International Conference, CAiSE
2022. pp. 479–497. Springer (2022)

[7] Bork, D., Karagiannis, D., Pittl, B.:
Systematic analysis and evaluation of
visual conceptual modeling language nota-
tions. In: 12th International Conference
on Research Challenges in Informa-
tion Science. pp. 1–11. IEEE (2018).
https://doi.org/10.1109/RCIS.2018.8406652

[8] Bork, D., Karagiannis, D., Pittl, B.: A
survey of modeling language specifica-
tion techniques. Inf. Syst. 87 (2020).
https://doi.org/10.1016/j.is.2019.101425

[9] Bork, D., Langer, P., Ortmayr, T.: A
vision for flexible glsp-based web model-
ing tools. In: Almeida, J.P.A., Kaczmarek-
Heß, M., Koschmider, A., Proper, H.A.

(eds.) The Practice of Enterprise Mod-
eling - 16th IFIP Working Conference,
PoEM 2023, Vienna, Austria, November
28 - December 1, 2023, Proceedings. Lec-
ture Notes in Business Information Process-
ing, vol. 497, pp. 109–124. Springer (2023).
https://doi.org/10.1007/978-3-031-48583-1 7

[10] Brambilla, M., Cabot, J., Wimmer, M.:
Model-Driven Software Engineering in Prac-
tice, Second Edition. Synthesis Lectures on
Software Engineering, Morgan & Claypool
(2017)

[11] Braun, G., Fillottrani, P.R., Keet, C.M.: A
framework for interoperability between mod-
els with hybrid tools. Journal of Intelligent
Information Systems pp. 1–26 (2022)

[12] Braun, G.A., Marinelli, G., Gavagnin,
E.R., Cecchi, L.A., Fillottrani, P.R.: Web
interoperability for ontology development
and support with crowd 2.0. In: Zhou,
Z. (ed.) Proceedings of the Thirtieth
International Joint Conference on Arti-
ficial Intelligence, IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August
2021. pp. 4980–4983. ijcai.org (2021).
https://doi.org/10.24963/ijcai.2021/707

[13] Brunelière, H., Cabot, J., Clasen, C., Jouault,
F., Bézivin, J.: Towards model driven
tool interoperability: Bridging eclipse and
microsoft modeling tools. In: 6th European
Conference on Modelling Foundations and
Applications ECMFA. pp. 32–47. Springer
(2010)

[14] Bézivin, J., Brunette, C., Chevrel, R.,
Jouault, F., Kurtev, I.: Bridging the generic
modeling environment (gme) and the eclipse
modeling framework (01 2005)

[15] Cesal, F., Bork, D.: Establishing interoper-
ability between the EMF and the MSDKVS
metamodeling platforms. In: Barn, B.S.,
Sandkuhl, K. (eds.) The Practice of Enter-
prise Modeling - 15th IFIP WG 8.1 Working
Conference, PoEM 2022, London, UK,
November 23-25, 2022, Proceedings. Lecture
Notes in Business Information Processing,
vol. 456, pp. 167–182. Springer (2022).

https://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/
https://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/
https://www.eclipse.org/sirius/doc/
https://www.eclipse.org/sirius/doc/

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 31

https://doi.org/10.1007/978-3-031-21488-
2 11

[16] Cook, S., Jones, G., Kent, S., Wills, A.:
Domain-specific development with visual stu-
dio dsl tools (05 2007)

[17] Crespo, Y., Marqués, J., Rodŕıguez, J.: On
the translation of multiple inheritance hierar-
chies into single inheritance hierarchies. pp.
30–37 (01 2002)

[18] Di Rocco, J., Di Ruscio, D., Iovino, L.,
Pierantonio, A.: Mining metrics for under-
standing metamodel characteristics. In: Mod-
eling in Software Engineering. ACM (2014)

[19] Fillottrani, P.R., Keet, C.M.: Conceptual
model interoperability: A metamodel-driven
approach. In: Bikakis, A., Fodor, P., Roman,
D. (eds.) Rules on the Web. From The-
ory to Applications - 8th International
Symposium, RuleML 2014, Co-located with
the 21st European Conference on Artifi-
cial Intelligence, ECAI 2014, Prague, Czech
Republic, August 18-20, 2014. Proceed-
ings. Lecture Notes in Computer Science,
vol. 8620, pp. 52–66. Springer (2014).
https://doi.org/10.1007/978-3-319-09870-8 4

[20] Geraci, A., Katki, F., McMonegal, L., Meyer,
B., Lane, J., Wilson, P., Radatz, J., Yee, M.,
Porteous, H., Springsteel, F.: IEEE Standard
Computer Dictionary: Compilation of IEEE
Standard Computer Glossaries. IEEE Press
(1991)

[21] Group, O.M.: Omg meta object facil-
ity (mof) core specification (2019), https:
//www.omg.org/spec/MOF/2.5.1/PDF, last
accessed on 04.09.2023

[22] Hebig, R., Seidl, C., Berger, T., Pedersen,
J.K., Wasowski, A.: Model transformation
languages under a magnifying glass: a con-
trolled experiment with xtend, atl, and QVT.
In: ACM Joint Meeting on European Soft-
ware Engineering Conference and Sympo-
sium on the Foundations of Software Engi-
neering. pp. 445–455. ACM (2018)

[23] Jouault, F., Bézivin, J.: KM3: A DSL for
metamodel specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) 8th IFIP WG 6.1 Inter-
national Conference on Formal Methods for
Open Object-Based Distributed Systems. pp.
171–185. Springer (2006)

[24] Karsai, G., Sztipanovits, J., Lédeczi,
Á., Bapty, T.: Model-integrated
development of embedded software.
Proc. IEEE 91(1), 145–164 (2003).
https://doi.org/10.1109/JPROC.2002.805824,
https://doi.org/10.1109/
JPROC.2002.805824

[25] Kern, H.: The interchange of (meta)models
between metaedit+ and eclipse emf using
m3-level-based bridges. In: 8th Workshop on
Domain-Specific Modeling. pp. 14–19 (2008)

[26] Kern, H.: Modellaustausch zwischen ARIS
und Eclipse EMF durch Verwendung einer
M3-Level-basierten Brücke, pp. 123–137 (09
2008)

[27] Kern, H.: Study of interoperability between
meta-modeling tools. In: Ganzha, M., Maci-
aszek, L.A., Paprzycki, M. (eds.) Proceed-
ings of the 2014 Federated Conference on
Computer Science and Information Sys-
tems, Warsaw, Poland, September 7-10, 2014.
Annals of Computer Science and Informa-
tion Systems, vol. 2, pp. 1629–1637 (2014).
https://doi.org/10.15439/2014F255

[28] Kern, H.: Model interoperability between
meta-modeling environments by using m3-
level-based bridges. Ph.D. thesis, Leipzig Uni-
versity, Germany (2016)

[29] Kern, H., Hummel, A., Kühne, S.: Towards
a comparative analysis of meta-metamodels.
In: Lopes, C.V. (ed.) SPLASH’11 Workshops.
pp. 7–12. ACM (2011)

[30] Kern, H., Kühne, S.: Integration of microsoft
visio and eclipse modeling framework using
m3-level-based bridges. In: Workshop on
Model-Driven Tool & Process Integration
(2009)

https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF
https://doi.org/10.1109/JPROC.2002.805824
https://doi.org/10.1109/JPROC.2002.805824

Springer Nature 2021 LATEX template

32 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

[31] Kühne, T.: Matters of (meta-)modeling.
Softw. Syst. Model. 5(4), 369–385 (2006)

[32] López, J.A.H., Cuadrado, J.S.: MAR: a
structure-based search engine for models. In:
23rd Int. Conf. on Model Driven Engineer-
ing Languages and Systems. pp. 57–67. ACM
(2020)

[33] Mens, T., Van Gorp, P.: A taxonomy of model
transformation. Electronic notes in theoreti-
cal computer science 152, 125–142 (2006)

[34] Metin, H., Bork, D.: On developing and oper-
ating glsp-based web modeling tools: Lessons
learned from bigUML. In: Proceedings of
the 26th International Conference on Model
Driven Engineering Languages and Systems,
MODELS 2023. IEEE (2023)

[35] Michael, J., Bork, D., Wimmer, M., Mayr,
H.C.: Quo vadis modeling? findings of
a community survey, an ad-hoc biblio-
metric analysis, and expert interviews
on data, process, and software modeling.
Software and Systems Modeling (2024).
https://doi.org/10.1007/s10270-023-01128-y

[36] Microsoft: Official online documentation
of the modeling sdk for visual studio
(2022), https://docs.microsoft.com/en-us/
visualstudio/modeling/modeling-sdk-for-
visual-studio-domain-specific-languages, last
accessed on 15.03.2023

[37] Steinberg, D., Budinsky, F., Paternostro, M.,
Merks, E.: EMF: Eclipse Modeling Frame-
work 2.0. Addison-Wesley Professional, 2nd
edn. (2009)

[38] Ternes, B., Rosenthal, K., Strecker, S.:
User interface design research for mod-
eling tools A literature study. Enterp.
Model. Inf. Syst. Archit. Int. J. Con-
cept. Model. 16, 4:1–4:30 (2021).
https://doi.org/10.18417/EMISA.16.4

[39] Viyović, V., Maksimović, M., Perisić, B.: Sir-
ius: A rapid development of dsm graphical
editor. In: Intelligent Engineering Systems
INES 2014. pp. 233–238. IEEE (2014)

[40] Wimmer, M., Kramler, G.: Bridging gram-
marware and modelware. In: Bruel, J. (ed.)
Satellite Events at the MoDELS 2005 Con-
ference. pp. 159–168. Springer (2005)

https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 33

Appendix A Abstract syntax
mapping table

Springer Nature 2021 LATEX template

34 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Table A1: Comparison of abstract syntax features in MSDKVS and EMF

Criteria Ecore MSDKVS

ASM Concepts
Class EClass DomainClass
Relationship EReference DomainRelationship
Attribute EAttribute DomainProperty
Enumerations EEnum DomainEnumeration
Role ✗ DomainRole

Grouping EPackage Language, Namespace

Classes
Abstract Classes ✓ ✓
User-defined root element ✓ ✗

Relationships
Arity binary binary
Composition ✓ ✓
Multiplicity ✓ ✓
Inverse ✓ ✗
Endpoints EClass DomainRole
Unique Names ✓(per Class) ✓
Link to Model ✗ ✓

Attributes
Applicable to EClass DomainClass, DomainRelationship, Shapes
Multiplicity single-/multi-valued single-/multi-valued
Unique ✓ ✓
Ordered ✓ ✗
Default Value ✓ ✓
Custom Data Type ✓ ✓
Access Modifier ✓ ✓
Enumerations ✓ ✓

Roles
Multiplicity - ✓
Dependency - DomainRelationship

Inheritance
Single/Multiple multiple single
Instantiation single single
Class Inheritance ✓ ✓
Relationship Inheritance ✗ ✓

Validation ✓ ✓

Constraint Language OCL GPL (C#, VB)

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 35

Appendix B Graphical
concrete syntax
mapping table

Springer Nature 2021 LATEX template

36 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Table B2: Comparison of graphical concrete syntax features in MSDKVS and EMF with regards to their
meta-metamodeling concepts

Criteria Ecore (with Sirius) MSDKVS

GCM Concepts
Integrated Sirius ✓
Diagram Canvas ✓ ✓

Diagram Elements
Mapped to EClass, ERelationship, EAttribute DomainClass, DomainRelationship, DomainProperty
Class Shapes NodeMapping GeometryShape, ImageShape
Relationship Shapes EdgeMapping Connector
Composition Shapes ContainerMapping CompartmentShape
Attribute Layout Labeling DecoratorMap
Special Shapes BorderedNode Swimlane, Port
Layers ✓ ✗

Class Shapes
Geometries ✓ ✓
Icons ✓ ✓
Coloring ✓ ✓
Layout ✓ ✓

Class Geometries
Four sided shapes Square, Diamond Rectangle
Curved shapes Ellipse, Dot Ellipse, Circle, RoundedRectangle
Special shapes Basic shape, Note, Gauge ✗

Class Icons
Image file format ✓ bitmap

Relationship Shapes
Line Style solid, dot, dash, dash-dot solid, dot, dash, dash-dot, dash-dot-dot, custom
Routing Style straight, manhattan, tree rectilinear, straight
Arrowing ✓ ✓
Coloring ✓ ✓
Sizing ✓ ✓

Line Styles
Solid ✓ ✓
Dot ✓ ✓
Dash ✓ ✓
Dash-Dot ✓ ✓
Dash-Dot-Dot ✗ ✓
Custom ✗ ✓

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 37

Table B3: Comparison of graphical concrete syntax features in MSDKVS and EMF with regards to their
meta-metamodeling concepts continued

Criteria Ecore (with Sirius) MSDKVS

Tool Palette
Sectioning ✓ ✓
Creation Tools ✓ ✓
Edition Tools ✓ implicit
Deletion Tools ✓ implicit
Copy Paste Tools ✓ implicit

Creation Tools
Class Creation Tool Node Creation Element Tool
Relationship Creation Tool Edge Creation Connection Tool
Composition Creation Tool Container Creation Element Tool

Filter Mechanisms
Mapping Filter ✓ ✗
Variable Filter ✓ ✗

Springer Nature 2021 LATEX template

38 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Table B4: Comparison of graphical concrete syntax features in MSDKVS and EMF with regards to their
meta-metamodeling concepts continued

Criteria Ecore (with Sirius) MSDKVS

Routing Styles
Straight ✓ ✓
Manhattan ✓ rectilinear
Tree ✓ ✗

Composition Shapes
Geometries ✓ ✓
Icons ✓ ✓
Coloring ✓ ✓
Layout ✓ ✓
Background Style ✓ ✓
Inner shapes ✓ ✗

Composition Geometries
Gradient ✓ ✓
Parallelogram ✓ ✗
Image ✓ ✗

Appearance
Fill Color ✓ ✓
Gradient ✓ ✓

Coloring
Named colors ✓ ✓
RGB ✓ ✓

Style
Border Line Style, Size, Color Line Style, Size, Color
Background ✓ ✓
Foreground ✓ ✓
Labeling ✓ ✓

Labeling
Sizing ✓ ✓
Formatting ✓ ✓
Alignment ✓ ✓
Offsetting ✗ ✓
Positioning ✓ ✓

Inheritance
Shape Inheritance ✗ ✓

Springer Nature 2021 LATEX template

Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models 39

Appendix C Transformation
Approaches

Springer Nature 2021 LATEX template

40 Establishing Interoperability between EMF and MSDKVS: An M3-Level-Bridge to Transform Metamodels and Models

Table C5: List of approaches and implementations regarding the transformation of investigated tools
and their metamodeling concepts.

Tools Language Source available Executable

ADOxx2EMF [6] Java ✓1 ✓

MetaEdit+2EMF [25] Java (Eclipse Plugin) ✓2 -8

Visio2EMF [30] Java ✓3 -8

Aris2EMF [26] ARIS-Script ✗ ✗

DSLTools2EMF [4] Java ✓4 ✗

Excel2SoftwareQualityControl [3] Java ✓5 ✗

SoftwareQualityControl2Mantis [3] Java ✓6 ✓

SoftwareQualityControl2Bugzilla [3] Java ✓7 ✓

GME2EMF [14] Java ✗ ✗

1https://me.big.tuwien.ac.at/adoxxemf/
2http://www.informatik.uni-leipzig.de/∼kern/metaedit.emf.bridge 1.1.0.jar
3http://sourceforge.net/projects/visioemfbridge/
4https://www.eclipse.org/atl/atlTransformations/DSL2EMF/DSLBridge.zip
5https://www.eclipse.org/atl/atlTransformations/MSOfficeExcel2SoftwareQualityControl/
MicrosoftOfficeExcel2SoftwareQualityControl.zip
6https://www.eclipse.org/atl/atlTransformations/SoftwareQualityControl2MantisBT/SoftwareQualityControl2MantisBugTracker.zip
7https://www.eclipse.org/atl/atlTransformations/SoftwareQualityControl2Bugzilla/SoftwareQualityControl2Bugzilla.zip
8 Could not be validated due to involvement of proprietary platforms

https://me.big.tuwien.ac.at/adoxxemf/
http://www.informatik.uni-leipzig.de/~kern/metaedit.emf.bridge_1.1.0.jar
http://sourceforge.net/projects/visioemfbridge/
https://www.eclipse.org/atl/atlTransformations/DSL2EMF/DSLBridge.zip
https://www.eclipse.org/atl/atlTransformations/MSOfficeExcel2SoftwareQualityControl/MicrosoftOfficeExcel2SoftwareQualityControl.zip
https://www.eclipse.org/atl/atlTransformations/MSOfficeExcel2SoftwareQualityControl/MicrosoftOfficeExcel2SoftwareQualityControl.zip
https://www.eclipse.org/atl/atlTransformations/SoftwareQualityControl2MantisBT/SoftwareQualityControl2MantisBugTracker.zip
https://www.eclipse.org/atl/atlTransformations/SoftwareQualityControl2Bugzilla/SoftwareQualityControl2Bugzilla.zip

	Introduction
	Metamodeling Foundations
	EMF
	MSDKVS

	Related Work
	Transformation bridges
	EMF and Microsoft DSL Tools

	Comparative Analysis of EMF and MSDKVS
	Abstract Syntax Features
	Graphical Concrete Syntax Features

	Transformation Rulesets
	Abstract Syntax
	Graphical Concrete Syntax

	Transformation Bridge
	M2 Transformation
	EMF2MSDKVS
	MSDKVS2EMF

	M1 Transformation
	Serialization of Models
	Transformation approach
	EMF to MSDKVS
	MSDKVS to EMF

	MSDKVS2EMF Transformation Example

	M2 Evaluation
	Experimental Setup
	Semantic Analysis
	EMF to MSDKVS
	MSDKVS to EMF

	Results
	Limitations

	M1 Evaluation
	Model Generation
	Transformation Results
	EMF to MSDKVS
	MSDKVS to EMF

	Limitations

	Conclusion
	Abstract syntax mapping table
	Graphical concrete syntax mapping table
	Transformation Approaches

