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Abstract. Many powerful metamodeling platforms exist, each with strengths,
weaknesses, functionalities, programming language(s), and developer commu-
nity. To exploit the mutual benefits of these platforms, it would be ideal to es-
tablish interoperability amongst them and the exchange of metamodels and mod-
els. This would enable language engineers to choose the metamodeling platform
freely without risking a lock-in effect. Two well-documented and freely available
metamodeling platforms are the Eclipse Modeling Framework (EMF) and Mi-
crosoft’s Modeling SDK for Visual Studio (MSDKVS). This paper proposes the
first achievements toward establishing interoperability between EMF and MSD-
KVS on an abstract syntax level and a graphical concrete syntax level. To de-
velop such interoperability, we i) comprehensively analyze the two platforms,
ii) present a conceptual mapping between them, and iii) eventually implement a
bidirectional transformation bridge. The transformed results’ validity, executabil-
ity, and expressiveness are then quantitatively and qualitatively assessed by trans-
forming a collection of publicly available metamodels.

Keywords: Metamodeling · Interoperability · EMF · Sirius · DSL · MSDKVS.

1 Introduction

The definition and use of modeling languages offer many benefits in how software
teams and language designers can efficiently cooperate on creating a model-based rep-
resentation of the system under study. Metamodeling platforms offer means to define
customized languages easily and many additional functionalities such as code gener-
ation, automatic validation, and graphically representing models. These platforms are
widely used in enterprise modeling and model-driven software engineering (MDSE).
However, once modellers work with one platform, switching to a different one is cum-
bersome, complex, and costly, especially because automated support for metamodeling
platform interoperability is scarce.

This paper looks at the two well established and actively used metamodeling plat-
forms Eclipse Modeling Framework (EMF) [23] and Modeling SDK for Visual Stu-
dio (MSDKVS) [22]. We propose a transformation bridge between EMF and MSD-
KVS related to bridges reported in [3, 15, 16, 18]. Such a bridging enables language de-
signers to seamlessly switch between platforms by transforming already defined meta-
models in one platform into syntactically and semantically equivalent metamodels in
the target platform. These bridges further enable reusability of existing metamodels
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in other platforms, decouple the developers of the underlying programming languages
these platforms are built upon, and enable making use of specific platform capabili-
ties employed elsewhere. The transformation bridges are based on a mapping between
the meta-metamodel concepts of both platforms. This mapping is created by analyzing
the similarities and identifying the differences between these platforms located at the
M3 layer of the standardized metamodeling stack [6]. The previous approaches imple-
mented transformation bridges targeting the platforms’ abstract syntax elements (e.g.,
classes and relationships), mostly ignoring the platform’s functionalities to graphically
represent and manipulate the created models. This paper first extensively analyses the
EMF and MSDKVS platforms and then proposes, implements, and evaluates a trans-
formation bridge, thereby considerably advancing previous attempts (see Section 3.2).

In the remainder of this paper, Section 2 establishes the foundations. Section 3 then
discusses related works. A comprehensive analysis of the platforms’ concepts is pre-
sented in Section 4 which establishes the foundation for the bridging in Section 5. Sec-
tion 6 then evaluates the bridge before conclusions are discussed in Section 7.

2 Metamodeling Foundations

Complete or partial representations of real-world objects, architectures, or software sys-
tems can be realized through the use of models. These models can then be shared and
enable communication among stakeholders [6]. Concerning the validation and guide-
lines for defining said models, an abstraction hierarchy exists, divided into a stack of
layers. An example of such a hierarchy stack, consisting of four layers, has been stan-
dardized by the OMG [6, 19]: M0 Layer (runtime instances) containing the applica-
tion data or runtime instances; M1 Layer (model layer) describing the concrete user
model based on the given metamodel (e.g. a UML model); M2 Layer (metamodel
layer) defining the metamodel; M3 Layer (meta-metamodel layer) abstracting the
definition for possible metamodels. In the OMG metamodeling hierarchy, the M3 layer
is defined by the Meta-Object Facility (MOF) standard.

The M3 level also establishes the foundation for realizing interoperability of meta-
modeling platforms based on a common abstraction of their metamodels. Modeling
languages consist of the following elements, which are taken into consideration when
implementing the transformation bridge in the subsequent sections: Abstract Syntax:
defines classes, their attributes, and associations required to represent the relevant parts
of the modeled system, and constraints for restricting the set of valid models. Abstract
syntaxes are most often specified via metamodels [5]. Concrete Syntax: defines the
visual appearances for the abstract syntax elements (e.g., graphical and/or textual) [4].

In practice, language engineers and tool developers need to decide on the most ap-
propriate metamodeling platform considering the requirements at hand. Metamodeling
platforms provide IDEs to efficiently create the abstract and concrete syntax of model-
ing languages, generate editors to create models based on defined metamodels, define
and execute code generators and model transformations. Two prominent exemplars of
such platforms are introduced in the following.
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Fig. 1: Excerpt of the Ecore meta-metamodel [3]

2.1 EMF

The Eclipse Modeling Framework (EMF) is an open source metamodeling platform
that provides a rich set of features for, e.g., defining metamodels, creating and validat-
ing models, transforming models, and serializing models into XMI format. EMF also
allows runtime support to generate Java classes and programmatically manipulate the
models through reflection. This section describes some of the core features of EMF and
provides an overview of how metamodeling is realized with EMF.

Abstract Syntax in EMF. To realize metamodel support in EMF one needs to spec-
ify the metamodel by instantiating concepts from the EMF meta-metamodel. This meta-
metamodel (see Fig. 1 for an excerpt) thus plays an essential role as it determines the
expressiveness of all possible metamodels. An explicit definition of the Ecore meta-
metamodel is given in various sources, e.g., in [3, 6, 18].

Concrete Syntax in EMF. The Eclipse website lists three frameworks that can be
used for visualizing Ecore metamodels and models (i.e., Graphical Language Server
Platform, Sirius, and Graphiti). For the matter of this paper, we only consider Sirius as it
is the most commonly used framework and best resembles the possibilities of graphical
viewpoint representations on the MSDKVS side. Sirius uses so called Viewpoint Spec-
ification Projects (VSP) containing descriptive model files ending with .odesign [24].
These files contain the specification of the graphical representation of a model and
are comprised of layer definitions and tool sections containing toolbox operations with
a structured dependency tree of further inner operation mappings, style mappings for
model shapes, font layout properties, custom color definitions, and much more.

2.2 MSDKVS

MSDKVS supports the development of domain-specific languages by weaving abstract
syntax and graphical concrete syntax (see [9, 22] for a detailed introduction). MSD-
KVS offers a graphical user interface with an integrated editor to define metamodels
(i.e., classes, relationships, and their properties) and a tree explorer, a property editor
window, and several other features such as XML serialization of metamodels and mod-
els, code generators using a templating engine, and the possibility to build extensions
to these features. The currently available MSDKVS NuGet Package1 was released six
months ago and still has an active community of language designers.

1https://www.nuget.org/packages/Microsoft.VisualStudio.Modeling.Sdk
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Abstract Syntax in MSDKVS. As MSDKVS does not publicly offer a view on the
meta-metamodel, the transformation approach explained in Section 5 implicitly offers
the ability to generate a MSDKVS meta-metamodel corresponding to the data of the se-
rialized metamodel files. Fig. 2 shows the core excerpt of the generalized version of the
MSDKVS meta-metamodel as a UML class diagram, the full representation is provided
here2. When creating a DSL in MSDKVS, one element always has to act as the root el-
ement of the metamodel and every subsequently created DomainClass, if not targeted
by another embedded relationship, is referenced by this root class. The root class, by
default, has the same name as the DSL itself, but can be changed after initial creation.
The possible entities that can be created on the metamodeling canvas are available in
the Dsl Designer Toolbox. These elements include DomainClasses and different types
of DomainRelationships, like embedding relationships (i.e., containers) and reference
relationships. Each element can further be attributed with various DomainProperties.

Regarding their XML serialization, the DslDefinition.dsl file, when opened in a text
editor, contains all objects added on the DSL canvas and their mapping references to
tool palettes, shapes (i.e., graphical concrete syntax), and other serialization properties
needed for code generation. Every object on the canvas is given a Moniker description
type to be able to be referenced in other parts of the DSL. Monikers are uniquely iden-
tifying names for elements. The XML content of the metamodel is grouped in different
functional areas where only the entities’ moniker types are used as references, e.g.,
Source and Target role types of a DomainRelationship.

Concrete Syntax in MSDKVS. Every class, relationship, and attribute can be vi-
sually enhanced with different shapes and decorators that are maintained within the ed-
itor’s graphical interface adjoined to the abstract syntax definitions. Through mapping
links between the concrete and abstract syntax definitions the language designer can
customize the appearances and interaction possibilities like toolbox entries or graphi-
cally editing attributes in the Visual Studio runtime instances. MSDKVS does not offer
the possibility to define concrete syntax on the metamodel layer.

3 Related Work

This section first offers an overview of existing works on metamodeling platform inter-
operability. It then takes a detailed look at related ambitions toward bridging EMF and
MSDKVS and compares these works to this paper’s approach.

3.1 Transformation bridges

Interoperability deals with the exchange of information between two or more systems,
and the ability to use that information in each system respectively [12]. As modeling
languages for software development gained popularity in the early 2000s, a need for
transforming the grammarware technical space (i.e., EBNF-based grammar tools) to the
modelware technical space existed [25] to achieve interoperability between these sets of
tools. When this interoperability was established, a plethora of metamodeling platforms
followed, which in turn also raised the need for interoperability amongst them.

2Online supplementary material: https://tinyurl.com/EMF-MSDKVS
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Fig. 2: Excerpt of the MSDKVS meta-metamodel

In the past several bridges between different metamodeling platforms have been
proposed, including EMF and ARIS [16], EMF and MetaEdit+ [15], EMF and Vi-
sio [18], and EMF and Generic Modeling Environment [8]. Most recently, a transforma-
tion bridge between ADOxx and EMF has been proposed in [3]. These transformation
bridges typically consist of one or several model transformations that are used for ex-
changing metamodels and models between the two platforms. These are so-called hori-
zontal exogenous transformations [6, 13], as the source and target of the transformation
are situated on the same abstraction level but adhere to different meta-metamodels.
Most of these works transform metamodels, i.e., do not consider interoperability at the
model level which further requires a transformation between concrete syntaxes.

3.2 EMF and Microsoft DSL Tools

Research on bridging EMF and Microsoft DSL Tools has been proposed in the past [1,
7]. Differences regarding today’s version of MSDKVS as opposed to the transformation
approach in [7] are e.g., the serialized file formats (.dsldm compared to today’s .dsl
mentioned in [1]), the visualization of a meta-metamodel containing the ValueProperty
entity compared to today’s DomainProperty, and the representation of attributes for
classes and relationships.

The previous approaches execute a chain of ATLAS transformation language trans-
formations to generate the transformed metamodel using the KM3 (Kernel MetaMeta-
Model), a DSL for describing metamodels [14] as an intermediate representation of
arbitrary metamodels. As a transformation already existed between KM3 and Ecore,
the MS/DSL metamodels needed to be only transformed to this pivot KM3 metamodel.
Thus, no direct transformation between EMF and MS/DSL tools existed, which intro-
duces potential information loss as KM3 can be considered a generic platform-agnostic
DSL to represent the ’common denominator’ of several metamodels. We examined the
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previous approach with preserved .dsldm files of the Atlantic-Zoo Github3 and learned
that the execution of the XML2DSL step always resulted in empty files. This is caused
by the evolution of the MSDKVS platform (mentioned above) and the discontinuation
of some of the used components in the previous approach.

This paper gives a detailed comparative analysis (see Section 4) of the abstract and
concrete syntax elements available in the latest versions of the EMF and MSDKVS plat-
forms that far exceeds previous works. Moreover, with this paper, we present the first
direct transformation bridge that also transforms the graphical concrete syntax. One ex-
ample transformation was explained in [7], the PetriNet metamodel, where the question
remains if the validation of said transformed metamodel and models was successful in
the target platform. In the paper at hand we address this gap by providing an exhaustive
quantitative and qualitative evaluation of the transformation bridge (see Section 6).

4 Comparative Analysis of EMF and MSDKVS

This section comprehensively analyzes the two platforms regarding their abstract and
concrete syntax capabilities. The list of relevant elements was adapted and extended
from [3, 17] in terms of first-class concrete syntax concepts extracted through a detailed
investigation of the platforms in question. A full list of the identified, analyzed, and
mapped abstract and concrete syntax elements is provided in the online supplementary
material2. In the following, we therefore concentrate the analysis on the core differences
between EMF and MSDKVS as these differences establish the challenges and inform
the design of a direct transformation bridge (see Section 5).

4.1 Abstract Syntax Features

EMF allows the definition of classes that inherit properties and possible relationship
structures from multiple classes (i.e., multiple inheritance) whereas MSDKVS only
allows entities to inherit from one referenced base object (i.e., single inheritance). MS-
DKVS, in contrast to EMF, allows inheritance between relationships. Furthermore,
domain relationships in MSDKVS can also act as domain classes which can then be
connected to other domain relationships as source or target role. One minor but chal-
lenging difference relates to the possibility of relationships between elements to have
the same name in EMF, which leads to name clashes on the MSDKVS side where
relationship names are required to be unique. On MSDKVS, domain classes are not
directly referenced when creating a relationship. Instead, they are indirectly referenced
through monikers, and a domain relationship is comprised of source and target domain
roles also referencing these monikers. When implementing a transformation between
MSDKVS and EMF, correctly resolving these indirect dependencies to achieve syntac-
tical and semantical equivalence is very challenging.

3https://github.com/atlanmod/atlantic-zoo/tree/main/AtlanticD
SLTools
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Fig. 3: Transformation bridge between EMF and MSDKVS

4.2 Graphical Concrete Syntax Features

MSDKVS offers the possibility to inherit properties among shapes (i.e., shape inheri-
tance) while in EMF no inheritance between the graphical syntax specification is possi-
ble. Besides the support for widely used basic shapes like rectangles, circles, and icons,
each platform offers special shape types that cannot be directly mapped to an equivalent
one in the other platform. As metamodeling platforms often depend on an underlying
programming language (e.g. EMF on Java, MSDKVS on C#), the available coloring
options, styles, and appearance attributes are limited by the languages’ libraries. As
for MSDKVS, three different types of color palettes are available (system, web, and
custom). EMF offers a selection of basic system colors per default. Metamodeling plat-
forms also allow the use of custom image files to adapt the appearance of model el-
ements. EMF and MSDKVS differ in their support of various file formats. Icons can
be used to, for example, add custom appearances to tool palette items or composition
shapes. Different types of tools have to be defined to create models in a runtime envi-
ronment. The granularity of what types of tools can be created and customized varies
greatly between EMF and MSDKVS. MSDKVS only allows the definition of essential
element creation tools for domain classes and domain relationships. On the other hand,
EMF offers the definition of a vast amount of additional tools containing, e.g., edition
tools, copy-paste tools, or reconnect edge tools. This functionality is not customizable
on MSDKVS, but some are automatically used when a creation tool is created. Thus,
copying and pasting or deleting elements on the modeling canvas works out of the box.

5 Transformation Bridge

Fig. 3 sketches all three layers involved in realizing interoperability between EMF and
MSDKVS. On the left, the MSDKVS column consists of the implicitly defined meta-
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metamodel on the M3 layer (see Fig. 2), with its user-defined metamodel on the M2
layer. The metamodels are serialized in XML format as .dsl files. These .dsl files are
used as input and output of the transformation, depending on which platform is the
source and the target of the transformation. The Transformator itself is divided into
transforming metamodels (M2 Transformator) and models (M1 Transformator). The
M2 Transformator is written in C# and de-serializes the incoming files into data struc-
tures that can be manipulated and worked with on code level. Abstract and concrete
syntax elements represented as XML tags inside these input files are examined, and the
mapping rules, based on the M3 concepts of both platforms, are applied sequentially to
transform the source metamodel into an equivalent metamodel of the target platform.
The greatest challenges faced during the realization of the M2 Transformator are dis-
cussed in the following and detailed steps of how these obstacles were solved are given.

5.1 EMF2MSDKVS

Nested EPackage Flattening. We recognized different styles of EPackage definitions
in publicly available EMF metamodels (see Table 1 in the Grouping row). Ecore
metamodels can either have one or multiple EPackages defined, while EPackages
may also have ESubPackages. Therefore, as MSDKVS usually only has one equiv-
alent language definition, these EPackage contents are flattened and merged into
one global EPackage before executing the transformation. Naming conventions and
avoiding name clashes are transformed accordingly.

Entity Name Clashes. Detecting and resolving name clashes are essential when re-
alizing metamodeling platform interoperability [3]. Different naming strategies to
avoid possible name clashes, e.g., across multiple ESubPackages, are executed. For
domain relationships, the MSDKVS names are changed as follows:
<sourceEClass.name> <EReference.name> <targetEClass.name>.
Name clashes on domain classes (if there are any), are resolved by mapping the
EPackages’ nsPrefix attribute to the DomainClass’ Namespace attribute.

Multiple Inheritance. As EMF, in contrast to MSDKVS, supports multiple inheri-
tance, a transformation of multiple inheritance structures into equivalent single
inheritance structures is necessary. We adapted the Expansion Strategy pattern pro-
posed by Crespo et al. [10] to translate the complex structures of multiple ESuper-
Types in EMF into equivalent single BaseClass references in MSDKVS without
information loss (see Fig. 4). Important to note is that also EReferences that target
a super class have to be duplicated to the newly created domain classes as Domain
Relationships in MSDKVS. In addition to the abstract syntax duplicates, this af-
fects the transformation of all types of graphical concrete syntax mappings from
Sirius as well, which results in more Shape classes on MSDKVS side and Creation
Tools inside the modeling editor.

Root Element Pattern Matching. MSDKVS metamodels require a root element that
is mapped to the diagram shape. This diagram shape provides the modeling canvas
in the runtime instances of a domain model. As per API requirement, this selected
root element has to be the source domain role of domain relationships marked as
containment relationships, where the targets are all domain classes that are nei-
ther part of an existing containment relationship (e.g., children of compartments)
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Fig. 4: Adapted Expansion Strategy [10]: (a) multiple inheritance in EMF; (b) trans-
formed single inheritance in MSDKVS

nor should target any base classes they would inherit from. When transforming
an Ecore metamodel into MSDKVS, existing EClasses are matched against these
criteria. If such an EClass can be found, this EClass is transformed to be the root
diagram element in MSDKVS. If no EClass is suitable, then an additional default
domain class is generated that acts as the diagram’s root element.

Icon Mapping. Sirius supports the definition of icon styles on different node map-
pings, referencing workspace images in various image file formats. For MSDKVS,
a requirement to attribute a model entity with icons is that the images have to be
in the Bitmap (BMP) format. Therefore, library calls to convert these files to the
required format on the target platform are employed in the M2 transformation.

5.2 MSDKVS2EMF

Relationship Roles. Domain Relationships in MSDKVS differ from their required
representation on the target EMF side in so far, that the source and the target enti-
ties of said relationships are referencing the corresponding domain classes through
monikers. Source and target domain roles can have different names attributed to
them compared to their actual classes used for creating the domain relationship.
This construct has to be considered when transforming from EMF to MSDKVS
too, as for every EReference at least one role has to be created in MSDKVS. Do-
main classes are then referenced through moniker types by their unique names.
When transforming from MSDKVS to EMF, the transformator has to look up the
source and the target domain classes and transform these DomainClasses into the
EReferences’ eTypes and eOpposites accordingly.

Attributable Relationships. In MSDKVS not only classes but also relationships can
have attributes. As already mentioned in [7], this behavior can be implemented
similarly, meaning that domain relationships with attributes attached to them are
mapped to classes that are referenced from both transformed domain classes, lead-
ing to additional EClass and EReference entities on the target EMF side. Multiplic-
ities are transformed accordingly to maintain the original behavior.

Shape Inheritance. MSDKVS allows inheritance on the graphical representation of
classes and relationships. Therefore, the M2 Transformator has to check possible
inherited shape classes and transform them accordingly.
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(a) FamilyTree metamodel in MSDKVS (b) Transformed FamilyTree VSM (left) and
metamodel (right) in EMF

(c) A created FamilyTree model in MSDKVS (d) A created FamilyTree model using the trans-
formed metamodel in EMF

Fig. 5: FamilyTree metamodel and model in MSDKVS and transformed into EMF.

Implicit Modeling Tool Capabilities. MSDKVS supports only the explicit definition
of element creation tools on domain classes and domain relationships, while other
tooling capabilities that can be explicitly defined in Sirius are inherently available
on MSDKVS’ modeling canvas. To achieve an equivalent experience, the number
of tools on EMF is thus typically higher because the M2 Transformator generates
these additional tools for every Node or Edge Creation Tool defined in MSDKVS.

Color Naming. MSDKVS supports a variety of of colors for graphical properties (e.g.,
FillColor, TextColor, and BackgroundColor). Sirius only supports a small subset of
these named colors, e.g., standardized system colors like white, black, and green.
To be able to transform said colors from MSDKVS into equivalent colors in EMF,
the M2 Transformator looks up the composing red, green, and blue color values
for MSDKVS’ named colors and transforms them to Custom User Palettes used by
Sirius which can be named by the designer.

5.3 MSDKVS2EMF Transformation Example

For showcasing the transformation bridge, we will, in the following, refer to a small
example of a family tree metamodel which we created in MSDKVS and subsequently
transformed, using our transformation bridge (see Section 5) to a valid EMF metamodel.
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The example, adapted from the tutorial of Sirius4, comes also with a graphical concrete
syntax specification on MSDKVS’ side, which enables to exemplify feasibility of the
transformation bridge. The goal of this example case is thus to show (and illustrate) the
feasibility of realizing syntactic and semantic equivalence between the two platforms
involving the abstract and the graphical concrete syntax. Full images can be found here2.

Fig. 5a shows the source metamodel inside the Visual Studio IDE. In this example,
a basic family tree metamodel with graphical concrete syntax descriptions has been
created that contains a compartment relationship between Country and Town and an
inheritance structure between the Person domain class as the base class of Man and
Woman. Fig. 5c shows a manually created model of an excerpt of the family tree of the
British House of Windsor based on the previously defined metamodel in MSDKVS.

The result of executing the M2 Transformator on the source MSDKVS metamodel
is shown in Fig. 5b, displaying the resulting Ecore metamodel both graphically and in a
tree structure. Eventually, Fig. 5d shows a model created manually within a run-time in-
stance that uses the transformed Ecore metamodel and the Sirius .odesign specification.
The original model created previously in MSDKVS was used as a reference to show
how both appear visually to the modeler, respectively.

6 Evaluation

This section reports on the results of experimenting with the M2 Transformator. The
transformation is implemented as two uni-directional transformations which means that
either MSDKVS metamodels (*.dsl files) or EMF metamodels (*.ecore files) with op-
tional .genmodel and .odesign files for graphical concrete syntax mappings and code
editor generation settings can be used as input.

We searched and selected a representative set of metamodels of both platforms
from publicly available collections and also through dedicated metamodel search en-
gines [21]. A collection of 44 metamodels from MSDKVS and 75 randomly selected
metamodels from the AtlanMod Atlantic Zoo5 with additional 22 metamodels referenc-
ing and containing Sirius VSMs and 18 metamodels (some of which overlapping with
VSM available metamodels) containing EMF specific features like multiple inheritance
or nested EPackages was composed. Thus, the metamodels have been selected mostly
at random, all manual additions were motivated by the goal to have a representative set
of metamodels (i.e., a set that differs in size, contained metamodeling concepts, and are
equipped with a graphical concrete syntax specification).

6.1 Research Questions

The aim of the experiments was to evaluate the transformation bridge’s overall valid-
ity and the success rate, i.e., whether the transformed metamodels are syntactically and
semantically equivalent and whether it is possible to transform all source metamodels,
respectively. To help with the analysis, additional methods were implemented to cre-
ate informative output files in addition to the resulting metamodels to list the steps the

4https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial
5https://github.com/atlanmod/atlantic-zoo
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Table 1: Source metamodels abstract (left) and transformation success rate (right)
EMF MSDKVS

Min Med Max Min Med Max
Grouping 1 2 20 1 1 1

Classes 1 14 673 2 8 39

Abstract Classes 0 2 83 0 1 9

Inherited Classes 0 7 679 0 3 34

Multiple Inheritances 0 0 134 - - -

Relationships 0 12 437 0 9 40

Attributes 0 10 124 1 15 103

Enumerations 0 0 15 0 1 21

Direction Abstract Syntax Concrete Syntax

Cases Errors Rate Cases Errors Rate

MSDKVS → EMF 44 1 97.73% 44 3 93.18%

EMF → MSDKVS 75 0 100% 22 2 90.91%

M2 Transformator has executed and the entities it has created on the target side. Af-
ter traversing through every metamodel and transforming it, the summarized statistics
provide insights on different criteria (see Table 1).

The derived statistics were analyzed and described based on quantitative metrics
reported in the literature [2, 11, 17, 20]. Afterwards, a qualitative analysis is concerned
with the validation of the transformed metamodels on the target platform by investi-
gating the equivalence of execution functionality (i.e., the modeling support by create,
delete, redo/undo tools etc.) of the source and the transformed metamodels in their re-
spective metamodeling platforms.

With the evaluation, we thus aim to respond to the following research questions:
RQ1: Are the transformed metamodels valid when opened in the target platform?, and
RQ2: Are the transformed metamodels executable, i.e. can editor code be generated
and runtime instances successfully started?

6.2 Experimental Setup

In the following, we dive deeper into the analytical aspects of the metamodel trans-
formation approach. First, quantitative aspects are listed and compared. Table 1 shows
statistical information about the experiment’s source metamodels’ abstract syntax, the
statistics of the conrete syntax is provided in the online supplementary material2. To
analyse the qualitative aspects, the transformed metamodels are opened with the tar-
get platform. Both platforms offer automatic validation, meaning that when the project
files are opened, their internal structure is validated. Validation errors, if present, are
listed accordingly. As the MSDKVS diagram editor on the M2 layer offers the ability
to define concrete syntax elements upon the abstract syntax entities, the validation step
checks both areas for errors. On EMF side, the transformed .odesign files containing the
definitions for graphical concrete syntax mapping required separate, manual validation.
If the validation yielded no errors, the platforms’ functionalities upon creating models
were tested (i.e., starting of runtime instances and creating/editing models).

6.3 Results

RQ1: Validity of transformed metamodels For the transformation validity we not
only concern the abstract syntax but also the constraints on the concrete graphical syn-
tax. We encountered only one erroneous case (out of 44) in the direction MSDKVS
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→ EMF considering the abstract syntax. This error resulted from the fact that one of
the metamodels from MSDKVS did not use the Dsl root tag in its XML serialization.
Instead, DslLibrary was observed to be the root element. If changed to Dsl, the trans-
formation executed successfully. The M2 Transformator though has to be extended to
also allow DslLibrary as a root XML tag for loading MSDKVS metamodels. Regarding
the concrete graphical syntax, two erroneous cases have been identified. One case was
caused by the fact that the mapping rule for mapping port shapes to inner mappings
in bordered nodes in EMF had not been implemented yet. The second error occurred
because of a missing transformation of icon decorator styles for domain properties of
compartments.

The direction EMF → MSDKVS yielding a 100% success rate (based on 75 cases)
considering the abstract syntax. The additional Sirius validation considered the 22 meta-
models which contained a graphical concrete syntax specification. In the runs that fol-
lowed, two out of 22 were faulty, stemming from the fact that multiple Ecore meta-
models were referenced from within the .odesign file, therefore creating shapes for not
available entities. In the next steps regarding the M2 Transformator implementation,
these errors will be looked at accordingly.

As the M2 Transformator is implemented as a bridge between two XML serializa-
tion formats, most of the initial problems that occurred originated from de-serializing
the input metamodel files to data structures. XML namespace errors were among the
most common types of exceptions because of limitations the default C# library pro-
vides when de-serializing Ecore metamodel files, as they contain numerous classes us-
ing the same typed attributes (e.g., firstModelOperations and subModelOperations in
tool sections). These errors could be eliminated eventually by changing the content of
the metamodel files before the de-serialization.

RQ2: Executability of transformed metamodels The executability assumes a
valid metamodel in order to run the code generators for creating and executing modeling
runtime instances in the platforms. When the code generation throws errors or the mod-
eling canvas cannot be initialized, the transformed metamodel files are deemed faulty
with regards to their executability and semantic evaluation. All transformed metamod-
els, that threw no errors during their validation phase, could be used to generate model
code on the target platforms and thus initialize runtime editor instances for modeling
purposes. As a final step, a small subset of metamodels on each side and their trans-
formed results were selected for manually evaluating and comparing their interaction
on the modeling layer, similarly to how the example in Section 5.3 was conducted. Re-
garding e.g., their tool palette functionalities, their interaction on the modeling canvas,
and their entity styling no major inequalities were observed.

6.4 Limitations

A few limitations adhere to the transformation approach based on the M2 layer. The
M2 transformator is specific to the EMF and MSDKVS metamodels. Each additional
platform requires a mapping according to the identified rule sets and each rule requires
an implementation in C#. For serializing the new metamodel representations, the XML
schema has to be analyzed and corresponding data structures for (de-)serialization have
to be added. Existing transformations can afterwards be reused, thus creating M3 level
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bridges spanning multiple metamodels. Another limitation is the realization of the trans-
formator on the current platform versions. Core updates to these platform metamodels
therefore require similar updates of the transformator.

Regarding the involved metamodel entities and unique features of each platform,
some limitations in the tranformation’s current state are present as well. Many of the
advanced model operations supported by Sirius (e.g., filtering using query languages,
flow control operations like Begin, For and If, Dialog, and Model Representations oper-
ations) cannot be mapped directly to available operations in MSDKVS. As mentioned
in Section 4, only element creation tools are supported, which target specific meta-
model entities. These features are correctly mapped to and from Sirius’ model opera-
tions Change Context, Create Instance, and Set.

7 Conclusion

We established interoperability between the EMF and MSDKVS platforms by con-
ceptualizing and implementing a bidirectional transformation bridge able to transform
metamodels defined within both platforms. The evaluation was conducted by choosing
a representative set of publicly available metamodels2. By providing mapping rules also
for the graphical notations available in both metamodeling platforms, we showed that
it is possible to transform means of graphically representing these elements of trans-
formed metamodels to achieve not only syntactic but also visual interoperability.

Future research concentrates on the realization of the M1 Transformator to trans-
form models between EMF and MSDKVS. Furthermore, the realization of roundtrip
transformations based on defined mapping tables and an additional transformation log
file is on our agenda. Eventually, we will release the bridge’s code and metamodels
open source and deploy the transformation bridge as a service at: http://me.big
.tuwien.ac.at/.
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8. Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., Kurtev, I.: Bridging the generic modeling
environment (gme) and the eclipse modeling framework (01 2005)

9. Cook, S., Jones, G., Kent, S., Wills, A.: Domain-specific development with visual studio dsl
tools (05 2007)

10. Crespo, Y., Marqués, J., Rodrı́guez, J.: On the translation of multiple inheritance hierarchies
into single inheritance hierarchies. pp. 30–37 (01 2002)

11. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining metrics for understanding
metamodel characteristics. In: Modeling in Software Engineering. ACM (2014)

12. Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., Radatz, J., Yee, M.,
Porteous, H., Springsteel, F.: IEEE Standard Computer Dictionary: Compilation of IEEE
Standard Computer Glossaries. IEEE Press (1991)

13. Hebig, R., Seidl, C., Berger, T., Pedersen, J.K., Wasowski, A.: Model transformation lan-
guages under a magnifying glass: a controlled experiment with xtend, atl, and QVT. In:
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 445–455. ACM (2018)
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