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Abstract. Modeling is a core task in enterprise systems engineering.
The use of graphical modeling editors, however, remains cumbersome in
general and poses a significant challenge for users with disabilities. Natu-
ral language processing (NLP) and intent recognition are at the forefront
of making many technologies more accessible and intuitive by allowing
users to engage using natural language. This paper presents a natural
language interface (NLI) for speech-based UML model interaction that
leverages state-of-the-art NLP technologies to enable speech-based mod-
eling. We provide a workflow for the creation of NLIs for modeling ed-
itors, a proof-of-concept integration of this approach into the bigUML
open-source modeling editor, and an empirical evaluation that shows
promising results in intent recognition, the effectiveness of model cre-
ation, and usability. Thereby, this paper makes significant contributions
towards more natural, inclusive, and accessible modeling.

Keywords: Natural language interface · Speech-based interaction · GLSP
· Modeling tool · UML · Accessibility.

1 Introduction and Background

In the practice of enterprise modeling, the proficient utilization of modeling edi-
tors is crucial. The use of graphical modeling editors such as bigUML [28], Pa-
pyrus [24], StarUML1, or Visual Paradigm2 is the day-to-day business of software
engineers and domain experts in the context of enterprise and software model-
ing. However, efficient editor-supported modeling typically requires numerous
long and complex interaction sequences involving many switches between key-
board and mouse, and the skilled orchestration of both input devices. This form
of interaction, which is common to all current graphical modeling editors, often
presents accessibility barriers for users with physical disabilities [36].
1 https://staruml.io/
2 https://www.visual-paradigm.com/
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While recent years have seen notable efforts to improve accessibility in soft-
ware engineering and web development 3, the field of conceptual modeling still
lags behind [37]. Innovative means of model interaction and improved accessibil-
ity in modeling have been largely neglected, making the discipline less inclusive
and failing to accommodate all modelers’ varied needs and abilities. This over-
sight not only excludes people with disabilities from participating in conceptual
modeling and model-driven engineering, but also neglects the potential bene-
fits that accessible interfaces provide, as seen by the widespread adoption of
voice assistants (e.g. Siri, Alexa) in everyday homes. Enhancing accessibility in
modeling could thus promote inclusion [8] and enable users of all abilities to
engage. It further offers potential for more natural means of editor interaction
over traditional mouse and keyboard inputs [26].

Natural language processing (NLP) and intent recognition are at the fore-
front of making software applications more accessible by allowing users to specify
their intent in natural language. Nonetheless, the complexity of human language
poses challenges, including e.g., ambiguity, colloquial language (a.k.a. slang),
regional accents and dialects, and speech impairments. Overcoming these chal-
lenges would render conceptual modeling more intuitive, more usable because of
an increase in modeling efficiency, and more accessible to users without technical
training or users facing some form of disability.

This paper introduces speech-based modeling using a natural language in-
terface (NLI) for bigUML [29], a web-based, extensible, and open-source UML
modeling editor. We chose UML class diagrams as the target language because
of the availability of a publicly used modeling editor.

Recently, Large Language Models (LLMs) have been studied for conceptual
model creation from natural language descriptions [1,17,18,23,35,39]. These ap-
proaches rely on one-shot model generation, with the output in textual format
(e.g., PlantUML). This process, however, has three main drawbacks: First, model
creation is an iterative process of editing steps (adding, deleting, and refactor-
ing), rather than one-shot generation. Second, LLMs mainly support standard
languages such as UML or SysML, with limited support for domain-specific lan-
guages (DSLs). Third, for larger models, LLMs frequently hallucinate or diverge
from intended meaning (e.g. due to ambiguous input).

Our approach overcomes these drawbacks by relying on purpose-trained BERT
models. This renders our approach more generally applicable to other modeling
languages. Technically, this research proposes four core contributions:

1. A generic workflow for creating NLIs for modeling editors;
2. a dataset of UML class diagram modeling commands in natural language

that can be used as a reference for other NLI models and other modeling
languages;

3. a reference NLI implementation in bigUML that can be adapted for, and
integrated into, other languages and tools; and

4. an empirical evaluation of our approach.

3 https://www.w3.org/TR/WCAG21/

https://www.w3.org/TR/WCAG21/
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Our software (incl. installation and usage instructions) is freely available
online4. Likewise, with this paper, we release the dataset generator we developed
to create the NLI training data for natural language modeling commands5.

In the remainder of this paper, Section 2 describes the results of a survey
aimed at gathering NL modeling interaction requirements. In Section 3 we then
discuss the development of a natural language (NL) server for UML modeling.
The integration of this server into bigUML alongside the results of a systematic
empirical evaluation is covered in Section 4. Section 5 presents a discussion of
the key findings, before we conclude this paper with an overview of related works
in Section 6 and future research directions in Section 7.

2 Interaction Requirements Analysis

Figure 1 outlines the process we followed to develop the NLI extension for
bigUML. In particular, we point towards the two user studies (cf. (1) and (6)),
which we performed next to the technical development.

(1) Intent
Recognition

Survey

(2) Generate
Training Data

(3) Develop
NL Server

(4) Link Up
bigUML Client

(5) Train NLP
Models

(6) Empirical
Evaluation

Fig. 1: Research outline

2.1 Intent Recognition Study

The training and the evaluation of the developed NLI are primarily based on a
representative dataset of modeling commands and matching intents that need
to be supported. Thus, we compiled a user survey based on primary UML in-
teraction methods [38], where we asked experienced UML modelers about their
choice of voice commands for triggering certain modeling actions on a specific
UML model element.

The survey was carried out to learn more about the natural language in-
structions that modelers intuitively use when engaging with a voice-controlled
UML class diagram editor and to identify various ways modelers articulate simi-
lar tasks typically performed in UML diagramming tools. The participants were
asked to provide full, natural language sentences in response to the modeling
scenarios listed in Table 1. We asked the participants to provide as many nat-
ural language command examples as they could intuitively think of to steer a
modeling tool to execute a certain modeling scenario.
4 https://github.com/sschwantler/bigUML/blob/main/NLI_README.md
5 https://github.com/stklik-org/NLI4UML-DataGenerator

https://github.com/sschwantler/bigUML/blob/main/NLI_README.md
https://github.com/stklik-org/NLI4UML-DataGenerator
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Table 1: User-provided responses on the survey of natural language commands
for UML modeling.
Scenario # Responses Sample Responses

Create a Class 29 – Create a class called car.
– Insert a class Vehicle into the current diagram.
– I want to add a new Class to the diagram, where the new class’ name is "Car".
– Generate a class for "train".
– Declare the class bike.

Add an Attribute
to a Class

25 – Add an attribute called name of type string to the Employee class.
– Add the string property name to the class Bike.
– Attach the attribute motor to the class car.

Add a Method to
a Class

22 – add a method named CalculateSalary with a return type of decimal to the
Employee class
– Create a new operation for the class Bike, which is named getBikeName. The
operation expects two input properties which are both of type string.
– Define the method accelerate for the class car.

Rename a Class 23 – change the class name from Employee to Worker.
– Set the name of the class Bike to Motorcycle.
– I want to rename the already existing class "Car" to "Vehicle".
– The class car should actually be called bike.

Modify an At-
tribute Name of
a Class

26 – Rename the property "Color" of the class "Car" to "PrimaryColor".
– Tyre would be a better name for the car class’s wheel attribute
– Rename the car’s doors to door.
– change the attribute name from name to employeeName in the Worker class.

Modify an At-
tribute Visibility
of a Class

23 – make the employeeName attribute in the Worker class public.
– Change|Update the visibility of the attribute name from the class Bike to pub-
lic.
– make the "rail with" visible to everyone
– Make all attributes of the class car public.

Modify a Method
Name of a Class

23 – rename the method CalculateSalary to ComputeSalary in the Worker class.
– Edit the method name of the method getName inside the Bike class to change
it to getSerialNr.
– "go somewhere" should now be called "move tram"

Modify a Method
Visibility of a
Class

23 – set the ComputeSalary method in the Worker class to public.
– I want to change the accessibility of the method "getPrize" of the class "Car"
to "private".
– Make the car class’s start method private.
– Adjust the visibility of the method ’getSupplierInfo’ to public in the ’Supplier’
class.

Modify Method
Parameters of a
Class

24 – In the method "DriveVihicle" change the parameter "speed" to "double"
"kmh".
– Add one int to the params of the car class’s start method.
– Update the name of the second parameter of the Bike class’ method getWithT-
woParams to secondParam.

Add a Relation 25 – create an association between the Worker and Manager classes.
– create a generalization from the base class Person to the subclass Teacher.
– Let the car inherit from vehicle.
– Create a new relation between the classes car and driver with the following
attributes: 1. The relation is called drives. 2. One driver drives one or more
cars. 3. The relation type is dependency. A driver requires a car to drive.
– Add a one to one association from car to person called drives.

Modify the Posi-
tioning of a Class

32 – The class "Engine" should be below the class "Car".
– Put the car class to the top right of the diagram.
– Position the "Vehicle" class north of "Car" class.

Other Com-
mands

26 – Delete/clear entire diagram..
– Undo the last change.
– Highlight all classes that are subclasses of the ’Vehicle’ class.

Respondents were encouraged to list alternative phrasings and synonyms to
better capture the range of commands. For example, the phrases “Create an
attribute XYZ ” or “add a property XYZ ” represent the same modeling intent.
This is an important piece of information for later steps. To be able to cover a
wide range of different wordings and avoid bias in the capability of understand-
ing queries. An open-ended question allowed participants to suggest any other
commands they believed would be useful for interacting with a UML editor.

The survey was distributed online between March and April 2024 to academic
colleagues and industrial partners, who we could attest had prior experience
in UML modeling. We gathered a total of 301 user-defined natural language
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commands from eleven participants. Table 1 displays an exemplary selection of
NL commands for various model interactions, and lists how many synonymous
responses we received for each modeling intent.

2.2 Data and Analysis

We reviewed the data to identify common patterns in phrasing and discover how
users express modeling commands in natural language. Entries with incomplete
or unclear responses were excluded, ensuring that only meaningful data were
used in the analysis. Subsequently, different wordings could be derived for each
taxonomy entry, which yielded the training data for the NL model.

We then used the Python Natural Language Toolkit (NLTK)6 scripts to
remove stopwords and identify the most frequent terms in all modeling scenarios.

Lessons Learned. Among the survey respondents, we observed a large va-
riety of commands ranging from precise, short instructions to very lengthy com-
mands that are composed of several sub-commands (we discuss the challenge of
such composite commands in Section 4). In the following, we summarize other
findings; the complete generated dataset is available online7.

Consistency in Basic Commands Participants showed a clear pattern in com-
mand structure across modeling scenarios. Most responses followed a “verb
+ object” format, e.g. “create class car” or “add an attribute called name”.

Use of Synonyms Participants used diverse synonyms to describe the same in-
tention. For instance, “attribute” was also referred to as “field” or “property”,
and methods were called “functions”.

Modification Complexity and Relationships Commands related to modi-
fying attributes, methods, or creating relationships are generally more com-
plex. Participants included specific parameters and visibility settings, sug-
gesting the need for the system to accommodate complex instructions and
compound commands with clarity and precision.

Positioning and Layout Control Participants used directional terms such as
“below”, “next to” or specific coordinates to position elements in the diagram,
expecting the ability to adjust layouts relative to other elements.

Focus as a Key Concept One of the most important survey findings was the
need to focus certain diagram elements. As one respondent noted, “being
able to set a context for future commands [. . . ] would make using such a
system a lot easier.” This is particularly relevant in complex diagrams with
nested classes, attributes, and methods that would require long prompts that
become cumbersome for users to phrase and for the system to understand.
Thus, instead of saying “rename the attribute ‘weight’ in the class Car to
‘mass’ ”, the user could say: “focus on attribute weight” followed by “rename
to mass”.

6 https://www.nltk.org/
7 https://github.com/stklik-org/NLI4UML-DataGenerator/blob/main/intents-to-

commands-survey.json

https://www.nltk.org/
https://github.com/stklik-org/NLI4UML-DataGenerator/blob/main/intents-to-commands-survey.json
https://github.com/stklik-org/NLI4UML-DataGenerator/blob/main/intents-to-commands-survey.json
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2.3 Training Data Generation

We use the cleaned survey data for analysis. We developed a training data gen-
erator to enable the generation of large randomized data sets based on the data
queries. The reasoning behind the randomization is to enforce training gener-
alization and avoid overfitting. Thus, for each individual intent in our survey
(Table 1), we created a set of “pattern templates”, which we could automatically
populate with specific entities (concrete class and attribute names, geometric
coordinate positions, etc.). Thus, given that we obtained a set of alternative
formulations for each intent, combined with a large number of possible entities
in our catalog, it is possible to flexibly re-generate different training data and
experiment with the size of the required training data. The employed script for
data generation is available in an open source repository5.

3 NLI Development

Besides gathering training data, we implemented the NLI as a separate compo-
nent that could be easily integrated into bigUML. Our goal was to keep the
modifications of the existing bigUML client and Graphical Language Server
Platform (GLSP) 8 server to a minimum. Thus, the task was to develop a mid-
dleware layer capable of obtaining standardized GLSP commands from natural
language inputs, and translating them into actions that bigUML’s current im-
plementation can recognize and execute without altering its core functionality.

Note, however, that even though the remainder of the section focuses on the
development of an NLI for UML class diagrams in bigUML, the developed ar-
chitecture could easily be reconfigured for other modeling languages and editors,
especially but not exclusively those based on GLSP.

3.1 Architecture

Before developing the tool architecture itself, we defined three design constraints
for the subsequent implementation:

1. Avoiding Feature Interference. Any NL capability must not interfere with ex-
isting editor interaction methods. Users should always be able to choose between
keyboard & mouse, keyboard shortcuts (cf. [37]), or the new NL interaction.

2. Portability. We envision seamless integration across all tools, editors, and
platforms. Thus, the NLI a) exposes its functionality by a REST API and b) is
containerized using Docker9. These choices aim to improve portability, testabil-
ity, and deployment with minimal overhead.

8 https://github.com/eclipse-glsp/glsp
9 https://www.docker.com/

https://github.com/eclipse-glsp/glsp
https://www.docker.com/


Talk to me! Toward Speech-based UML Modeling 7
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bigUML Server
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Speech-
to-Text

Model &
XML Utils BERT

Model IR
BERT

Model EE

Fig. 2: Application Design and Architecture

3. Performance. For minimal additional strain on the existing client or connec-
tion, all components (e.g. speech-to-text transcription) should be implemented
at the NL Server and without online dependencies. Thus, the client’s only addi-
tional responsibility is to capture the audio input.

The conceptual overall application design is shown in Figure 2, with com-
ponents developed in this project highlighted in the darkblue color. From a
high-level view, our application consists of three primary components:

– the NL Server, which is the core contribution of our technique. It parses
user queries to identify modeling intents and extract relevant UML entities.
It exposes a REST API for seamless integration with tools such as bigUML;

– the minimally adapted bigUML Client, which enables the speech record-
ing and use of NLI; and

– the bigUML Server, which is largely unmodified as the NLI reuses func-
tionality previously developed for modeling use with keyboard and mouse.

3.2 Natural Language Server

Based on the above design decisions, we implemented the NL Server using state-
of-the-art NL technologies. Architecturally, the NL Server consists of six compo-
nents (see Figure 2), of which the NLP Classifier and the two NL models could
be seen as the primary components.

NLP classifier The NLP classifier interprets a user’s transcribed input and
maps it to a concrete modeling action. This task is performed using two sep-
arate Bidirectional Encoder Representations from Transformers (BERT) [15]
models: 1. one BERT model performs intent recognition (IR), i.e. what
should be done, while 2. another one is tasked with entity extraction (EE),
i.e. which UML model entity is affected. Both models were trained on the
survey response dataset (see Section 2.3).

Additionally, the NL Server contains three other components, namely

– the Speech-to-Text tool transcribes the user’s spoken language into text
using OpenAI’s Whisper API10.

– the Model & XML Utils component, which parses bigUML’s XML encoding
and bridges the NL Server and the model; and

– the FastAPI11-based REST API to communicate with the bigUML client.
10 https://github.com/openai/whisper
11 https://fastapi.tiangolo.com

https://github.com/openai/whisper
https://fastapi.tiangolo.com
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Fig. 3: bigUML UI Integration of the NL Interface

3.3 Frontend Integration in bigUML

Our prototype requires only minimal changes to the standard bigUML interface,
as seen in (see Figure 3). Specifically, the new panel contains two buttons to start
a voice recording, which is then transcribed and displayed in the Command text
field. Subsequently, the Send command button triggers the command execution.
A short screencast showing the tool in action can be seen online12.

4 NLI Evaluation

To prove the applicability of NLI-based modeling editor interaction and to em-
pirically evaluate our prototype, we conducted experiments with 23 participants
from three different institutes (two universities, one industrial partner). Most
participants were technically skilled software engineering students, while some
participants did not have a technical background. The user study was conducted
in March 2025 and consisted of: 1. a short questionnaire about the users’ expe-
rience with speech assistants (e.g., Siri, Alexa), 2. a modeling task to test the
NLI, and 3. a system usability scale (SUS) [9] questionnaire for the prototype.
The survey form we used and the entire questionnaire are available online13.

4.1 Empirical Evaluation

Our empirical evaluation aims to respond to the following research questions:

RQ1. To what extent are modelers able to create a UML class diagram using
NLI?

RQ2. What is the perceived usability of NLI-based UML modeling?
RQ3. How effective is the developed language model in detecting the correct

modeling intent expressed in natural language?
12 https://github.com/sschwantler/bigUML/blob/main/NLI_README.md
13 https://forms.gle/oe3BEVss5jid3RoF9

https://github.com/sschwantler/bigUML/blob/main/NLI_README.md
https://forms.gle/oe3BEVss5jid3RoF9


Talk to me! Toward Speech-based UML Modeling 9

animal
+ age: integer

duck
+quack()

dog
-owner: string

person1
owns

1

«dataType»
string

«dataType»
integer

UML Class Diagram

(a) UML diagram in graphical concrete
syntax

1 Create a new data type c a l l e d s t r i n g .
2 Create a new data type c a l l e d i n t e g e r .
3 Move i t to the r i gh t o f data type s t r i n g .
4 Create a new abs t rac t c l a s s c a l l e d animal .
5 Move i t to the bottom of data type s t r i n g .
6 Add a pub l i c property c a l l e d age o f type

i n t e g e r .
7 Create a new c l a s s c a l l e d Duck .
8 Move i t to the bottom of c l a s s animal .
9 Add a pub l i c method c a l l e d quack .

10 Create a new c l a s s c a l l e d dog .
11 Move i t to the r i gh t o f c l a s s duck .
12 Add a pr iva t e property c a l l e d owner o f

type s t r i n g .
13 Add a new c l a s s person .
14 Move i t to the r i gh t o f c l a s s dog .
15 Create a g en e r a l i z a t i o n from duck to

animal .
16 Create a g en e r a l i z a t i o n from dog to animal

.
17 Create an a s s o c i a t i o n c a l l e d Owns from

person to dog .

(b) NL commands necessary for creating
the UML diagram

Fig. 4: Solution and NL commands for the example used in the evaluation

We prepared a ready-to-use prototype of bigUML which includes our NLI
extension (the UI extensions and the language model), and also with a tracking
component that logs all interactions between the modeler and the modeling ed-
itor (i.e. timestamped audio clips, derived intents, and the actions performed in
bigUML). Using these data, we could systematically evaluate the current proto-
type and, moreover, learn how humans interact with NLIs. A common modeling
use case for all participants ensured comparability amongst the responses. The
installation and usage instructions—including a short video that demonstrated
how participants could interact with the NLI extension—were distributed as
part of the online survey. Furthermore, users were asked to upload the resulting
model .xmi file, a screenshot of the model, and their usage logs.

Evaluation Use Case The user study was performed to discover how humans i)
interact with a UML modeling editor in natural language, and ii) perceive this
interaction. The former was studied using modeling success rates, while ii) used
a system usability scale evaluation. Most participants were familiar with UML
modeling through university classes or practical use in their job, and many of
them were already familiar with the bigUML modeling editor. Each participant
was asked to complete the same example task of creating a UML class diagram
(cf. Figure 4a) using only the NLI ofbigUML. The example contains a diverse
range of UML modeling elements (abstract class, class, generalization, dataType,
property, visibility, role, multiplicity), while remaining purposefully compact.
Figure 4b shows a minimal set of speech commands that would create this UML
class diagram in bigUML.

4.2 Results

We report on the evaluation results by responding to the three research questions
defined at the outset.
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RQ1 – Human Modeler Support. The first and primary concern of our eval-
uation relates to the usage of the NLI. According to the usage data and the
screenshots, 13 of 23 participants (57 %) completed the modeling use case by
exclusively interacting in natural language. Nonetheless, we observed that sev-
eral users struggled with the “move” intent, meaning that the model elements
were created on top of another. This was also observable by the Move intent’s
relatively low recognition accuracy of around 46% (cf. Table 3). The 10 users
who could not create the model entirely still managed to create partial models,
even though some elements (e.g., individual attributes or methods) were missing.
As a result, some participants solved the problem by repositioning the elements
using the mouse, while others ignored the move command entirely, such that all
elements were placed on top of one another.

Overall, we conclude that some users were able to create models using an
NLI-only approach. This is a reaffirming result for our prototype. Nonetheless,
we noticed that various problems occurred and that the incorrect functionality
of one central intent (in our case, ‘Move’) causes problems.

Answer to RQ1 A majority of our participants succeeded in modeling
using the NLI alone, and many of the remaining participants nearly com-
pleted the task with the NLI. We conclude that our tool has the potential
to serve as an effective alternative input source to the mouse & keyboard
of modeling editors. Nonetheless, we remark that there are still more than
40% of users who could not completely solve the task.

RQ2 – Perceived Usability. Despite the early development stage of our prototyp-
ical implementation, we applied the System Usability Scale (SUS) [9] to derive
an initial usability score, and thus a quantitative measure of the perceived ease
of use, for our system. In the following, we briefly summarize the answers to the
SUS questions on a five-point Likert scale ranging from strongly agree (++), to
agree (+), to neither agree nor disagree (/), to disagree (–), to strongly disagree
(– –). Table 2 shows the frequencies of each specific answer. Aggregating these
scores by each participant leaves a mean combined SUS of 66.85 with a standard
deviation of 16.14 and a median of 70. Minimum and maximum combined SUS
are 30 and 87.5, respectively.

We can notice that the tool has potential, given that most users found the
system easy to use, and that the various functions were well integrated. The vast
majority of users also think that most people would learn to use this system very
quickly, and almost 80% of respondents think that they would not need the sup-
port of a technical person to use the system. It is also promising that a majority
of the respondents reject the statement that the NLI was very cumbersome to
use and that almost half of them felt very confident using the system.

The evaluation, however, also confirmed our expectations that, despite the
good intent and entity recognition, the tool’s usability can be further improved.
Table 2 shows the responses to the SUS. Thus, users responded that they would
rather not like to use the system frequently in its current state and that it is
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Table 2: NLI Prototype – System Usability Scale (SUS)
Question ++ + / – – –

I think that I would like to use the system frequently 0 6 4 10 3
I found the system unnecessarily complex 0 1 3 7 12
I thought the system was easy to use 6 9 5 2 1
I think that I would need the support of a technical person to be able to use
this system

0 3 2 8 10

I found the various functions in this system were well integrated 2 16 4 1 0
I thought there was too much inconsistency in this system 8 4 4 7 0
I would imagine that most people would learn to use this system very quickly 6 14 1 1 1
I found the system very cumbersome to use 1 4 5 3 10
I felt very confident using the system 1 8 6 6 2
I needed to learn a lot of things before I could get going with this system 0 3 1 14 5

Table 3: Evaluation Modeling Use Case Log Data
Intent Count of Intent Avg. Intent Correct Avg. Entity Correct

AddAttribute 99 78.8% 65.7%
AddMethod 72 55.6% 69.4%
AddRelation 124 95.2% 72.6%

ChangeDatatype 9 22.2% 22.2%
ChangeName 53 100.0% 88.7%

ChangeVisibility 3 100.0% 100.0%
CreateContainer 231 92.2% 85.3%

Delete 53 94.4% 62.3%
Focus 118 85.6% 76.3%
Move 160 100.0% 45.6%
Undo 10 90.0% 90.0%

Total 932 88.7% 70.7%

acting inconsistently. This critical feedback is unsurprising as usability was not
a core focus in this initial work on NLI-based UML modeling. Moreover, the
inconsistent behavior seems to correlate with participants being unable to move
elements using NL commands.

Answer to RQ2 Given the early stage of development of the bigUML
NLI, it was expected that the usability would point out some limitations.
Nonetheless, we do see that users found that the system was easy to use,
the functionalities well integrated, and that it would be easy to learn for
most people.

RQ3 – Intent Detection. Since every participant provided logging data for their
modeling session along with all captured voice recordings, we could analyze
them for patterns in natural language understanding performance. The logs are
structured with timestamps and contain the transcribed query text as interpreted
by our speech recognition system. Each query was processed by the NL server
to extract two core elements: the intended modeling action (intent) and the
relevant modeling language elements (entities).

In total, we obtained 932 intent recordings as shown in Table 3, which we
manually matched to the actual user input (speech and transcripts) to the
tool-predicted intents and extracted entities, and classified the correct/incor-
rect information by intent. We see that, overall, many of the NL commands
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Table 4: Examples of Wrong Entity Extraction
Query Entities

Move animal below data
type string

{"element_type": "data type", "element_name": "string"}

Create an owns association
between owner and person

{"relation_type": "owns", "element_name": "association",
"class_name_from": "owner", "class_name_to": "person"}

Add attribute age integer to
animal

{"element_type": "attribute", "element_name": "age integer"}

Fig. 5: Average accuracy of intent and entity detection per participant

operated successfully, such that the intent recognition worked very well (except
ChangeDatatype and AddMethod). Still, we also see that the entity recognition is
less capable, leading to an overall decreased accuracy in command interpretation.

Table 4 shows some examples of entities wrongly identified. The first query
misses an entity containing the direction to move, the second one extracts the
wrong entities (relation type and name are wrong), and the third one displays
an incorrect attribute name.

In a subsequent analysis, we were interested in whether the accuracy changed
between different users. As the use of natural language is subjective (dialects,
different ways non-native speakers speak English, mumbling, audio quality, etc..),
we computed accuracy scores per individual participant. Fig. 5 presents the user-
specific accuracy metrics for all 23 participants. One can see that the results are
quite homogeneous for intent detection, with values ranging from 69.57% to
100.00%. For the entities detection, the values are more diverging with a range
from 52.17% to 100.00%.

The heterogeneity of these results made us curious to check the submit-
ted original audio snippets of some participants, especially those for which the
accuracy values were low. We present these findings, amongst others, in the
subsequent discussion section.
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Answer to RQ3 Across all 932 user-defined NL queries, our approach
could correctly identify 88.7% of modeling intents and 70.7% of entities.
We observe that for specific intents and entities, the recognition requires
better training data. We thus conclude that our NL server is capable of
handling NL input correctly for many user queries in our evaluation case.
We can also state that the accuracy changes between participants.

5 Discussion

The development of the NLI prototype provided insights into how users interact
with model editors using speech. Here we discuss some of the lessons learned.

Synonymous Sentences. Primary success factors were the two user surveys (see
Section 2) through which we discovered a broad set of specific commands that
modelers would use to describe a modeling intent. Although we do not claim
to have an exhaustive dataset, our prototype evaluation showed that the initial
survey covered most commands. Still, our tool also faced an input that had not
been seen before (but was still synonymous) that it could not handle. Gathering
more usage logs enables us to iteratively improve our tool, especially with respect
to intent recognition and entity detection. It also remains an open question
whether and how much data should be used to pre-train our two BERT models.

BERT and model sizes. The recently popularized Generative Pre-trained Trans-
formers (GPTs) are a robust and powerful competitor technology. In combina-
tion with retrieval-augmented generation (RAG), these technologies can also be
customized and typically used with chat prompts.

The BERT models used in our implementation build upon a similarly pow-
erful text processing technique and certainly showed their capability for in-
tent recognition and entity extraction. The technology is also customizable and
proven capable of specialized tasks such as programming (CodeBERT14) or med-
ical domains (e.g. BiomedVLP CXR BERT15) recognition.

As we deliberately used small language models that could be deployed di-
rectly on the user’s computer, an open question is whether larger (pre-trained)
models that run on dedicated servers or as SaaS could be capable of comparable
or even better results.

Accents & Dialects. Accents and dialects had a strong influence on voice tran-
scription. Table 5 shows example results of wrong transcriptions with their in-
terpretation of what was intended, along with an evaluation comment when
listening to the audio recording. Note that every example is from a different par-
ticipant. Recurring issues were poor pronunciation and poor microphone quality.

14 https://github.com/microsoft/CodeBERT
15 https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized

https://github.com/microsoft/CodeBERT
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized
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Table 5: Examples of Wrong Transcriptions
User Transcript Interpretation of Intent Comment

A Select class stack Select class duck Accent
B Move it to the left of the glass any-

more
Move it to the left of class animal Accent

C Add a public method for WAC 2 Add a public method called quack
to duck

Accent, Quiet and
bad Microphone

D Rename it to any matter Rename it to animal Accent, Reverb. and
Echo Effects

E Place it to the left of class torque Place it to the left of class dog Accent

Moreover, the OpenAI Whisper transcription model did consider that the partic-
ipants were non-native English speakers, which might explain why these errors
were observed across different users.

5.1 Limitations

While our NLI shows promising results, several limitations remain.

User Selection Bias. Our user surveys relied on personal invitations primar-
ily comprised of academic participants, with some additions from our industry
partner. Their feedback might not be fully representative of the general user
population.

Exclusion of Accessibility Considerations. Although we aim to increase acces-
sibility, due to our prototype’s early development stage, we could not include
users with disabilities in our study. We plan to reach out to these users with the
upcoming beta version of our software, as their insights are of utmost interest.

Uncontrolled Evaluation Variables. We did not control for factors such as micro-
phone quality or noisy environments, which impact the quality of the recordings,
and, subsequently, the intent recognition and entity detection quality.

Evaluation Realism. It remains unclear how well the NLI performs with larger,
more complex UML diagrams requiring advanced navigation and layout support,
as our current evaluation was based on a compact UML model (cf. Fig. 4a).

6 Related Work

Our research towards the integration of a capable NLI for UML editors touches
upon several related fields. In this section, we position our contributions relative
to the most closely related domains.

Natural Language-based Modeling. The use of NL input in modeling workflows
has been pursued for several decades. Early approaches used a controlled, struc-
tured, or restricted natural language to simplify intent processing [2,16,19,40] for
requirements, translation to use cases, or data extraction. Previous approaches
use NL input for automated derivation of UML diagrams [4, 12, 13, 20, 27, 30],
although these approaches are based on “classical” means of language processing
(parse trees, word tagging, phrasal grammars).
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Recently, LLMs were shown to be effective for translating natural language
into models [10,17], including retrieval-augmented generation (RAG) for domain-
specific environments [3]. These approaches, however, lack support for incremen-
tal editing and often depend on specific tools. In contrast, our work natively in-
tegrates NLI into an existing UML editor. An alternative approach uses chatbots
for incremental domain-specific language (DSL) modeling [32,33].
Speech & Voice Input. Speech interfaces for programming have been studied
since at least 2006 [14]. Since then, powerful AI and LLM approaches [31] were
applied, recently peaking in so-called vibe coding16, whose goal is the exclusive
use of LLMs and NL input to complete small-scale programming projects.

Speech-based modeling has also been explored from several directions. [6] in-
tegrates voice for Simulink diagram editing, while [21] uses voice to draw on in-
teractive whiteboards, showing user acceptance of voice-enabled software. Mod-
elByVoice [11] combines voice, non-vocal sounds, and gestures for modeling. This
project is close to our work, although the tool primarily supports the matching
of short voice commands, rather than the use of an NLI with intent recognition.
Accessibility. Other related work [25] explores NLI for accessibility, e.g., devel-
oping a model editor for blind people. The TeDUB project [34] spearheaded the
accessibility of technical drawings and graphical models, as outlined in [7]. [22]
explores blind users’ interaction with UML class and state diagrams, while [5]
enables their interaction with graph models.

To summarize, we note that existing NL and speech-based modeling ap-
proaches often rely on structured inputs, simple commands, or resource-intensive
LLMs, which lack incremental editing and offer limited DSL support. Our work
instead integrates a lightweight BERT-based NLI into a UML editor, enabling
efficient intent recognition and domain-specific adaptability without the compu-
tational overhead of LLMs.

7 Conclusion & Future Work

This paper introduces a natural language interface (NLI) to improve accessibil-
ity and usability in enterprise modeling editors. Our approach integrates speech
input and state-of-the-art natural language processing (NLP) capabilities into
the bigUML editor, using BERT models for modeling intent recognition and
UML entity extraction. The models were trained on a dataset derived from a
user survey to capture varied natural language modeling commands. An empir-
ical evaluation with modelers showed that our prototype is capable of fulfilling
many modeling tasks, despite the prototype’s early-development phase usability
problems.

In the future, we will extend our approach using the user feedback to sup-
port a more diverse and complex set of modeling actions, including compound
multi-intention commands. Finally, we will also reach out to the accessibility
community to gain insights and feedback from persons with disabilities.
16 https://arstechnica.com/ai/2025/03/is-vibe-coding-with-ai-gnarly-or-reckless-

maybe-some-of-both/

https://arstechnica.com/ai/2025/03/is-vibe-coding-with-ai-gnarly-or-reckless-maybe-some-of-both/
https://arstechnica.com/ai/2025/03/is-vibe-coding-with-ai-gnarly-or-reckless-maybe-some-of-both/
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