
x2OMSAC - an Ontology Population Framework
for the Ontology of Microservices Architecture

Concepts

Gabriel Morais1, Mehdi Adda1, Hiba Hadder1, and Dominik Bork1,2

1 Université du Québec à Rimouski, 1595, boulevard Alphonse-Desjardins, Lévis
(Québec), G6V 0A6, Canada,

gabrielglauber.morais, mehdi adda, hiba.hadder @uqar.ca
2 TU Wien, Business Informatics Group,
Favoritenstrasse 11, Vienna, Austria,

dominik.bork@tuwien.ac.at

Abstract. Applying the Ontology of Microservices Architecture Con-
cepts (OMSAC) as a modelling language calls users to have expertise in
ontology engineering. However, ontology practice remains restricted to a
limited pool of practitioners, leading to a barrier to widely adopting such
a modelling approach. Here, we present x2OMSAC, an ontology popu-
lation framework that enhances the modelling of microservices architec-
tures using OMSAC. We instantiate our framework by FOD2OMSAC,
which limits modellers’ manual tasks to data selection, cleaning, and
validation of created models, thereby eliminating the need for ontology
expertise and, consequently, expanding the potential of OMSAC adopters
for modelling microservices architectures.

Keywords: OMSAC, ontology population, microservices, conceptual mod-
elling, machine learning, OpenAPI, Docker-compose, feature modelling

1 Introduction

Microservices Architecture (MSA) is a recent software engineering paradigm
based on a compositional approach. Systems built using this paradigm are ar-
rangements of microservices providing limited functionalities, which are put to-
gether to form complex systems[6]. It has been widely adopted by industry[2]
in different domains to address various challenges, from the modernization of
monolithic financial applications to large IoT systems.

The Ontology of Microservices Architecture Concepts (OMSAC)[11] is the
MSA domain ontology formalized in the Web Ontology Language (OWL2[18])
using the semantics of the Description Logic (DL). It supports modelling, ex-
ploration, understanding, and knowledge sharing of MSA concepts, and MSA-
based systems representation. For instance, modellers can apply the OMSAC’s
terminology component (TBox) as a modelling language[12]. This application
of OMSAC allows modellers to link heterogeneous concepts and viewpoints si-
multaneously, bringing the capability to explore MSAs holistically and produce

2 Gabriel Morais et al.

different system views according to stakeholders’ information needs through-
out semantic queries. The resulting models are instances of OMSAC’s concepts,
i.e., an assertion component (ABox) that, with the OMSAC’s TBox, make up a
knowledge base of microservices systems.

However, OMSAC – as any ontology – lacks an established process to handle
ontology population, which is creating concept instances related to an exiting
TBox, i.e., creating an ABox. The ontology population process comprises two
essential components: The TBox and an instance extraction engine[15]. Manu-
ally executing this process requires “tremendous effort and time”[9] And calls
for specialized expertise and specific ontology engineering and exploration tools.
Consequently, having an information extraction system that automates this pro-
cess is highly desirable[9].

Accordingly, this paper presents x2OMSAC an ontology population frame-
work tailored for OMSAC. It aims to address the automation challenge by fa-
cilitating existing knowledge to automate the creation of OMSAC ABoxes. We
also present FOD2OMSAC, an implementation of the x2OMSAC framework
based on a semi-automatic approach which populates OMSAC knowledge bases
from a restrained number of inputs: Feature models, OpenAPI, and Docker-
compose files. This implementation applies Sentence Transformer (SBERT[16]),
a Natural Language Processing (NLP) machine learning (ML) model, to linkage
proposes. We evaluate x2OMSAC by using FOD2OMSAC on two open-source
microservices systems. The source code and the evaluation kit are available at
this paper’s code companion repository[13].

The remainder of this paper is as follows. In section 2, we present x2OMSAC
followed by FOD2OMSAC in section 3. In section 4, we present the back-
ground in SBERT and details concerning the semantic matching mechanism
implemented in the framework instance. Then, we detail the adopted evaluation
process (section 5). We discuss our framework in section 6 and close this article
with a short conclusion and feature work perspectives in section 7.

2 x2OMSAC

We designed x2OMSAC inspired by the ontology population process presented
in Petasis et al.[15], which comprises four components: Input (TBox and knowl-
edge resources), instance extraction engine, population process, and validation
(consistency check)[15,9]. Hence, x2OMSAC contains four steps: Knowledge re-
sources selection, model extraction, creation, and validation.

Knowledge Resource Selection In the knowledge resources selection, one
must identify appropriate resources containing knowledge about the microser-
vice’s concept to model. The resource may vary according to the perspective of
the microservice system to be modelled. For instance, modelling microservices’
functional perspective would require information sources containing knowledge
related to the microservice’s functionalities (e.g., requirements, conditions, con-
straints). In contrast, technical perspectives would call for non-functional infor-

x2OMSAC - an Ontology Population Framework 3

mation sources. This knowledge should be cleaned and organized to be correctly
used in the following steps.

Model Extraction and Creation The model’s extraction and creation
steps compose the x2OMSAC’s instance extraction engine and ontology pop-
ulation. The selected knowledge sources are explored to identify instances of
OMSAC concepts and their relations. The challenge here is linking instances
representing different perspectives which may be extracted from distinct knowl-
edge sources in various processing tasks or at other points in time. Indeed, these
relations could be implicit and dictated by the modelling goal.

For instance, when modelling a given microservice, it is possible to describe
the domain functionalities it implements and provide its specific implementation
details. These are two perspectives in OMSAC that are explicitly linked at the
TBox level, but doing the linkage at the instance level is challenging because it
calls for pairwise analysis of instances’ properties, and the knowledge resources
selected could be unlikely to provide any clue to unveil them. Thus, one must
implement mechanisms to identify these linkages regardless of the processed
knowledge resource.

Therefore, the model creation step should handle the instance creation and
linkage using the available information about existing instances in the ontology
and the information extracted in the previous step as knowledge input.

Validation The validation step comprises the consistency check and linkage
review tasks. The former should be conducted by assessing the created ABox
consistency concerning the TBox rules, and the latter should verify that suitable
linkages between different perspectives have been created. The linkage validation
should focus on detecting instance linkages that are optional or hidden at the
conceptual level, i.e., liking individuals from different perspectives.

3 FOD2OMSAC

This section presents FOD2OMSAC, which stands for Feature model, OpenAPI
and Docker compose to OMSAC. It implements the x2OMSAC framework us-
ing a semi-automatic approach for extracting models covering three microser-
vices’ modelling perspectives: Functional, implementation and deployment. It
uses three knowledge resources: Feature model descriptions to handle the func-
tional perspective, OpenAPI (specification version 3) files for the implementation
perspective, and docker-compose for the deployment perspective. We provide a
detailed view of FOD2OMSAC in Figure 1.

FOD2OMSAC implements x2OMSAC’s knowledge resource selection, ex-
traction, creation and validation steps. It is a hybrid ontology population[9]
approach using rule-based and ML-based techniques. It comprises manual tasks
for knowledge resource selection and validation steps, and Python scripts im-
plementing automatic instance extraction and creation steps. The automated
tasks can be invoked by a script providing a command-line interface (CLI), the
micro extractor, which offers commands handling different inputs, allowing the
user to create specific models using specific files. It is possible to create mod-

4 Gabriel Morais et al.

Fig. 1: FOD2OMSAC: Semi-automatic Approach for Creating OMSAC models

els from a unique system or create various systems simultaneously using batch
mode. Figure 2 provides a screenshot of the CLI of the OMSAC ABox creator
tool. In the following, we present each framework step in detail.

Fig. 2: Command line interface of the OMSAC ABox creator tool.

3.1 Manual Pre-processing

The manual pre-processing prepares the different files to be processed by the
micro extractor scripts. The first task is defining the feature model input file,
which must be a CSV file containing ten columns corresponding to concepts in
the OMSC TBox. Table 1 provides the column names and meanings.

In the second task, the user verifies that the OpenAPI files are defined using
version 3 of the OpenAPI specification. Otherwise, a conversion is needed and
can be achieved manually using the Swagger Editor conversion facility.

Each microservice-based system must be organized in different folders if the
batch mode is invoked. OpenAPI files must be named differently (e.g., the mi-
croservice name) to prevent overwriting.

x2OMSAC - an Ontology Population Framework 5

Table 1: Description of the columns required by the CSV file to be processed.
Column Content

goal The goal’s name, it is used as the goal ID.
goal desc A textual description of the goal.
requirement The requirement’s name, it is used as the requirement ID.
type The requirement’s type, it accepts functional or technical as values.
requirement desc A textual description of the requirement.
condition The condition’s name, it is used as the condition ID.
condition desc A textual description of the condition.
constraint The constraint’s name is used as the condition ID.
constraint desc A textual description of the constraint.
depends on The IDs of goals, requirements, conditions or constraints that have a dependency on each other.

3.2 Model Extraction

In this step, FOD2OMSAC extracts only mandatory and highly informative
optional fields to guarantee higher compatibility. The order of extraction is fixed;
thus, the user must start with files containing the feature models, then the
OpenAPI files and finally, the Docker-compose file. When using the batch mode,
these three files must be in each system folder.

When processing the OpenAPI files, the script first injects all the relative
content to obtain an inline file. For doing so, it relies on the dereference function
of the JSON Schema $Ref Parser 3, which enhances the extraction of the inputs
and outputs of each endpoint. Then, the script extracts from each endpoint: The
path, the operation, inputs and outputs, including input and output types and
whether they are mandatory.

The extraction of information from the Docker-compose file identifies the
type of services, including platform-provided services used by the microservices
(e.g., database, messaging, API gateway, and aggregator), the Docker image used
for each service and deployment dependencies.

Finally, the script merges all the information extracted from both files and
stores the extracted models used in the model’s creation step.

3.3 Model Creation

In this step, the script creates the OMSAC ABox instances and links them
using the extracted data from the previous step. It relies on the OWLReady2[8]
Python library and proceeds in the same order as the extraction step, starting
with the creation of the functional perspective and then the implementation and
deployment.

We also implemented the inter-perspective instance linkage mechanism. In
other words, we link individuals from the OMSAC’s Feature class to those of the
OMSAC’s Requirement class throughout the OMSAC’s fulfills object property
based on the instance names. It compares a short text similarity to a 0.7 thresh-
old and automatically links individuals accordingly. The short text similarity is
established using the msmarco-distilbert-cos-v5 pre-trained SBERT model. The
script generates a report of unmatched individuals (i.e., unmatched features.csv)
to be handled manually in the validation step.

3 https://apitools.dev/json-schema-ref-parsert/

https://apitools.dev/json-schema-ref-parser

6 Gabriel Morais et al.

We detailed in Section 4 the process of the SBERT model’s choice and the
identification of the suitable threshold and provided background about SBERT
NPL models.

3.4 Model Validation

In this step, we validate the created models (i.e., the OMSAC’s ABoxes). First,
the user reviews the unmatched individuals and makes the necessary changes for
complete linkage. Then, she validates the model consistency using Protégé[14].

To accomplish the first task, the user relies on the provided report of un-
matched features (unmatched features.csv), which contains two columns: Feature
and requirement. The first column contains the Feature class individuals’ names,
and the second column is the name of the closest individual of the Requirement
class that has been found. The user can then confirm the linkage, change it, or
delete the line. Once the report is reviewed, the user can submit the modified
report using the force linkage command that will force the linkage.

To assess the ABox’s consistency, first, the user must open the ontology in
Protégé (Figure 3a). A pop-up appears asking her to provide the path to the
OMSAC TBox (Figure 3b). Finally, the user must start one of Protégé’s provided
reasoners, such as Pellet (Figure 3c). If the ABox is inconsistent, the reasoner
will show an error message, and the user can ask Protégé to explain the causes
of the inconsistency. In such a case, the user should identify the cause of the
inconsistency and correct it manually.

(a) Opening Generated ABox (b) Importing OMSAC TBox

(c) Starting Pellet Reasoner

Fig. 3: Manual ABox Consistency Validation with Protégé

x2OMSAC - an Ontology Population Framework 7

4 The Semantic Comparison Mechanism

Using a word or character-based similarity measure may not consider that dif-
ferent words could represent a similar concept. NPL techniques have coped with
this issue[3], and it seemed natural for us to rely on one of them for handling
text comparison in FOD2OMSAC. This makes NPL machine learning techniques
highly suitable for handling semantic similarity in heterogeneous knowledge
source contexts[3]. Among these techniques, Bidirectional Encoder Representa-
tions from Transformers (BERT)[5] has become a state-of-the-art technique[3].

Sentence-BERT (SBERT)[16] are ML models applied for the NLP of short
texts. SBERT fine-tunes BERT pre-trained models using siamese and triplet
network architectures to “derive semantically meaningful sentence embeddings
that can be compared using cosine-similarity.”[16] SBERT has exceeded the
performance of previous BERT models for establishing semantic similarity[7].
In addition, they need little effort to implement, as we can rely on a Python
framework and a set of pre-trained SBERT ML models 4.

There is no ML model explicitly trained to process API descriptions based
on the OpenAPI specification and able to match them to other natural lan-
guage sources. Training such a model is out of the scope of this paper. Conse-
quently, we decided to rely on existing pre-trained SBERT models used in the
semantic search for automating concept linkages when building OMSAC ABoxes.
Specifically, for linking the functional and implementation perspectives, i.e., Fea-
ture and Requirement individuals, extracted from the OpenAPI and the feature
model files, respectively.

4.1 Selection of the SBERT Pre-trained Machine Learning Model

Our objective is to find a pre-trained SBERT ML model that minimizes manual
actions in the OMSAC models’ validation step and creates the fewest incor-
rect links. In addition, we need to couple the selected model to a mechanism
to intercept unsuitable linkages that would be handled manually. We rely on
a threshold mechanism to identify potential mismatches before effectuating the
linkage so that they could be automatically placed for manual processing. Thus,
we aim to identify which threshold most limits this risk. Consequently, we as-
sessed selected pre-trained SBERT models considering as criteria the number of
required manual processing, the number of incorrect undetectable linkages (i.e.,
mismatches with a similarity rate above the threshold) and their accuracy (using
the accuracy and F1 measures).

First, we built an evaluation dataset by extracting 47 API endpoints from
three microservices-based systems proposed by Assunçao et al.[1]: EshopOnCon-
tainers, Hipstershop, and Socksshop, and manually mapping them to a require-
ment extracted from the feature model of the e-shopping domain[10]. This eval-
uation dataset contains the expected matches the different pre-trained SBERT
models should find.

4 https://www.sbert.net/

https://www.sbert.net/

8 Gabriel Morais et al.

Table 2: Assessment of the Pre-trained SBERT Models
Criteria

Required Manual
Actions

Incorrect Undetected
Link

Accuracy F1

Model /Threshold 0 0.5 0.6 0.7 0.75 0.8 0 0.5 0.6 0.7 0.75 0.8 0 0.5 0.6 0.7 0.75 0.8 0 0.5 0.6 0.7 0.75 0.8

msmarco-MiniLM-L6-v3 23 23 24 22 29 31 23 18 14 8 6 1 0.511 0.574 0.617 0.723 0.617 0.660 0.676 0.688 0.690 0.745 0.571 0.529
multi-qa-mpnet-base-cos-v1 19 19 23 26 28 32 19 12 8 6 2 1 0.596 0.660 0.617 0.596 0.617 0.553 0.747 0.750 0.667 0.612 0.571 0.432
msmarco-distilbert-cos-v5 19 19 20 23 30 31 19 15 9 3 2 2 0.596 0.617 0.681 0.702 0.574 0.553 0.747 0.735 0.746 0.708 0.500 0.462
msmarco-MiniLM-L12-cos-v5 24 23 24 25 26 30 24 19 15 11 4 2 0.489 0.574 0.617 0.638 0.745 0.681 0.657 0.688 0.690 0.667 0.714 0.571
multi-qa-MiniLM-L6-cos-v1 21 20 23 24 26 29 21 16 13 5 5 1 0.553 0.617 0.596 0.681 0.638 0.660 0.712 0.727 0.678 0.681 0.622 0.579
multi-qa-distilbert-cos-v1 21 20 20 24 25 29 21 14 9 6 2 2 0.553 0.638 0.702 0.660 0.723 0.638 0.712 0.730 0.750 0.667 0.698 0.564

Table 3: Selection of the Pre-trained SBERT Models

Model Threshold Accuracy F1
Required
Manual
Action

Undetected
Incorrect
Links

Criteria
Met

msmarco-distilbert-cos-v5 0.7 0.70 0.71 23 3 2/4

multi-qa-distilbert-cos-v1 0.75 0.72 0.70 25 2 0/4

multi-qa-MiniLM-L6-cos-v1 0.8 0.66 0.58 29 1 1/4

Following, we pre-selected six SBERT pre-trained models according to re-
cent measurements of their performance rate in handling semantic search in
asynchronous contexts[17,4]. We assessed their similarity score regarding our
evaluation criteria using six thresholds: 0, 0.50, 0.60, 0.70, 0.75 and 0.80 (see
Table 2 for the results).

To select the appropriate pre-trained SBERT model, we first identified the
model and threshold pairs with the fewest undetected incorrect links and the
smallest number of required manual actions. The pair multi-qa-MiniLM-L6-cos-
v1 and 0.80 had the best scores (one undetected incorrect link and 29 required
manual actions). Then, we recursively selected the next best score for undetected
incorrect links having fewer manual actions than the previously selected models
and kept the best pair model threshold. Finally, we looked at each pair and their
performance regarding the four criteria announced above and kept the combina-
tions that met the most criteria. Table 3 summarises the set considered and the
selection rounds. From this analysis, we identified the msmarco-distilbert-cos-v5
pre-trained SBERT model and the threshold of 0.7 as the most appropriate for
our purpose.

5 Evaluation

We evaluated x2OMSAC’s capacity to enhance the use of OMSAC as a modelling
language. As it is an abstraction, we assessed its capabilities by evaluating the
FOD2OMSAC implementation. For doing so, we relied on a comparison of the
ABox generated by a junior developer with no ontology engineering knowledge
using FOD2OMSAC to one developed manually by an ontology practitioner
with three years of experience with ontology engineering and more than ten
years of experience in modelling data structures (e.g., relational and no-relation
databases) supported by a domain expert.

We relied on two open-source[1] microservices-based systems from the e-
shopping domain as use cases: EshopOnContainers and Socksshop, and on the

x2OMSAC - an Ontology Population Framework 9

e-shopping domain feature model proposed by Mendonça et al.[10]. The domain
expert reviewed the proposed feature model and conducted the input files’ orga-
nization and cleaning. This input was then used by both manual and automatic
ABox creation. Table 4 summarizes the evaluation results of each model covering
a particular perspective.

Table 4: Accuracy of FOD2OMSAC generated and manually created models.

Model
FOD2OMSAC Accuracy

Systems
Average

eShopOnConatiners Sockshop

Functional model 100% 100% 100%

Implementation model 100% 100% 100%

Deployment model 53% 67% 60%

Inter-perspective linkage 67% 67% 67%

The evaluation results showed that the functional and implementation mod-
els created by FOD2OMSAC were similar to those made by the ontology prac-
titioner. Concerning the inter-perspective linkage, we observed that both ap-
proaches had the same output for the Socksshop system and a difference of three
links for the eShopOnContainers system. Nevertheless, FOD2OMSAC performed
inaccurately when extracting deployment concept instances.

Regardless, when comparing the performance of FOD2OMSAC concerning
the amount of data correctly processed, we observed that the distance between
it and the manual approach is reduced. Indeed, the implementation perspective
was built from seven OpenAPI JSON files representing more than three thou-
sand lines of code. In contrast, the deployment perspective, which performed the
worst, was built from two Docker-compose files representing 340 lines of code,
ten times fewer lines.

6 Discussion

We understand that FOD2OMSAC improved the OMSAC ABox creation dra-
matically and validated the aim of the x2OMSAC framework for reducing the
complexity of creating OMSAC models. The x2OMSAC met the need for techno-
logical openness mandatory to handle technological heterogeneity observed in the
Microservices domain. Indeed, the implementation of the x2OMSAC presented
in this paper handled only a limited set of technologies used for representing
aspects of microservices-based architectures. By enabling FOD2OMSAC to pro-
cess widely adopted standards, we ensured it covers many microservice-based
systems, building a heuristic solution for creating OMSAC ABoxes that avoids
manual-intensive tasks and limits the need for users’ ontology knowledge. As
observed by the user of the FOD2OMSAC, the CLI provided the information
needed to pass through the extraction and creation steps, even if the user had
no previous experience with Protégé.

10 Gabriel Morais et al.

We noted that the instance extraction from Docker-composed files performed
poorly because the script covered a limited number of kinds of services, which
were extracted based on comparing the service name and a set of words. For
instance, if a service contained the string data or db, the script identified it as
a Database instance. However, these files contain limited information, and the
gap between potential and actual instances extracted could be filled by other
knowledge sources, i.e., the OpenAPI files.

This work comes with limitations. The most obvious is the limited number
of inputs used in the evaluation. We limited the experiment to an amount of
information meeting human cognitive capabilities. Indeed, a larger set of inputs
would make it impossible to compare the output of FOD2OMSAC to models
created manually. Besides, the quality of the input used can impact the extrac-
tion accuracy and, consequently, the quality of the final models. Indeed, using
resources extracted from source-code repositories may be prone to error because
we have no guarantee that they are accurate and follow the standards of the
state of the practice.

Similarly, the performance of the pre-trained S-BERT ML models we applied
could impact the quality of the inter-perspective linkage and create undetectable
unsuitable links when used in a different dataset. To handle this risk, we applied
a threshold mechanism that can be tuned to ensure a higher intercept of unde-
tectable mismatches. However, we expect the accuracy of the inter-perspective
linkage mechanism to decrease if the input document uses a language other than
English because, in such a case, the document will contain English (i.e. Ope-
nAPI and docker-compose keywords) and non-English words likely to impact
the semantic similarity performance, as the selected ML model was not trained
with a multi-language dataset.

7 Conclusion

This paper presented the x2OMSAC, an ontology population framework tai-
lored for the OMSAC ontology. We demonstrate how implementing this frame-
work (FOD2OMSAC) based on a semi-automatic approach could handle exist-
ing knowledge sources to build models representing microservices architectures,
which limits manual tasks, abstracts ontology engineering complexity for non-
ontology practitioners, and effectively enhances the creation of OMSAC ABoxes.
In future work, we plan to explore other machine learning models applied to NPL
to increase the linkage mechanism’ accuracy and expand its capabilities. Besides,
we ambition to implement instances of x2OMSAC to handle other formalisms
used in the microservices domain, including Proto Buffers and Kubernetes files.

Acknowledgements. We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) grant number 06351, and
Desjardins.

x2OMSAC - an Ontology Population Framework 11

References

1. Assunção, W.K., Krüger, J., Mendonça, W.D.: Variability management meets mi-
croservices: six challenges of re-engineering microservice-based webshops. In: Pro-
ceedings of the SPLC (A). pp. 22.1–22.6 (2020)

2. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in industry:
insights into technologies, characteristics, and software quality. In: IEEE Interna-
tional Conference on Software Architecture Companion. pp. 187–195 (2019)

3. Chandrasekaran, D., Mago, V.: Evolution of semantic similarity—a survey. ACM
Computing Surveys (CSUR) 54(2), 1–37 (2021)

4. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the
trec 2019 deep learning track. arXiv preprint arXiv:2003.07820 (2020)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

6. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L.: Microservices: yesterday, today, and tomorrow. In: Present and ul-
terior software engineering, pp. 195–216. Springer (2017)

7. Han, M., Zhang, X., Yuan, X., Jiang, J., Yun, W., Gao, C.: A survey on the
techniques, applications, and performance of short text semantic similarity. Con-
currency and Computation: Practice and Experience 33(5), e5971 (2021)

8. Lamy, J.B.: Owlready: Ontology-oriented programming in python with automatic
classification and high level constructs for biomedical ontologies. Artificial intelli-
gence in medicine 80, 11–28 (2017)

9. Lubani, M., Noah, S.A.M., Mahmud, R.: Ontology population: Approaches and
design aspects. Journal of Information Science 45(4), 502–515 (2019)

10. Mendonça, W.D., Assunção, W.K., Estanislau, L.V., Vergilio, S.R., Garcia, A.:
Towards a microservices-based product line with multi-objective evolutionary al-
gorithms. In: 2020 IEEE Congress on Evolutionary Computation. pp. 1–8 (2020)

11. Morais, G., Adda, M.: Omsac-ontology of microservices architecture concepts. In:
2020 11th IEEE Annual Information Technology, Electronics and Mobile Commu-
nication Conference (IEMCON). pp. 0293–0301. IEEE (2020)

12. Morais, G., Bork, D., Adda, M.: Towards an ontology-driven approach to model
and analyze microservices architectures. In: Proceedings of the 13th International
Conference on Management of Digital EcoSystems. pp. 79–86 (2021)

13. Morais, G., Bork, D., Adda, M., Hadder, H.: Companion source code repository.
https://github.com/UQAR-TUW/fod2OMSAC (2022)

14. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015), http://protege.stanford.edu/

15. Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology
Population and Enrichment: State of the Art, pp. 134–166. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2011), https://doi.org/10.1007/978-3-642-20795-2 6

16. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics (11 2019), http:
//arxiv.org/abs/1908.10084

17. Semantic BERT: Pretrained models, https://www.sbert.net/docs/pretrained
models.html

18. W3C OWL Working Group: Owl 2 web ontology language document overview
(second edition) (2012), https://www.w3.org/TR/owl2-overview/

https://github.com/UQAR-TUW/fod2OMSAC
http://protege.stanford.edu/
https://doi.org/10.1007/978-3-642-20795-2_6
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.w3.org/TR/owl2-overview/

	x2OMSAC - an Ontology Population Framework for the Ontology of Microservices Architecture Concepts

