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ABSTRACT
Despite their promise of circularity and optimized resource con-
sumption, the concrete achievement of sustainability through Mi-
croservices Architecture (MSA) faces challenges. Numerous intri-
cate factors can negatively influence MSAs’ design and implemen-
tation, compromising their economic and environmental effective-
ness. We advocate for adopting standard and shared modeling prac-
tices to address these challenges. In this paper, we initiate an open
discussion on the root causes of these challenges, relating them to
the foundational microservices tenets of independence and auton-
omy. We also propose directions for researchers and practitioners
to expand theoretical and practical knowledge of achieving sustain-
able microservices architectures through model-driven engineering
(MDE).

CCS CONCEPTS
• Software and its engineering→ Reusability;Model-driven
software engineering;Abstraction,modeling andmodularity;
• Social and professional topics→ Sustainability; • Computer
systems organization→ Cloud computing.
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1 INTRODUCTION
Sustainability in software engineering has often been associated
with the energy consumption of hardware components and soft-
ware longevity [18], which organizations have considered from an
economic perspective. This vision has evolved beyond economic
aspects and currently includes social, environmental, and technical
ones [18], closely relating it to the circular economy [9]. Indeed,
sustainability aims to create software that “meets the needs of the
present without compromising the ability of future generations
to meet their own [18].” It is also the “capacity to preserve a sys-
tem function over an extended period and to be cost-effectively
maintained and evolved [31].”

Sustainability and circular economy share the fundamental goal
of minimizing resource waste and promoting reuse [9]. In this
context, circularity focuses on the value retention of artifacts and
their production processes, avoiding waste by reusing, renewing,
and regenerating them instead of creating new ones [9, 18].

MSA [24] handles system complexity through modularity and
independence. Its primary unit is the microservice, a small and au-
tonomous service responsible for specific functionality, running
in its own process and communicating through lightweight mech-
anisms [10]. An MSA-based system is a network of fine-grained
distributed services, often deployed on a cloud computing infras-
tructure, that cooperate to achieve complex functionalities [10, 36].

Microservices have characteristics that relate them to system
sustainability. First, their fine-grained nature and technological
independence [10] tackle the intensive resource use observed in
overweight software [19]. Migrating overweight monolithic legacy
applications to fine-grained microservices allows integration of
just the right amount of functionalities, implementation using the
adapted technology, and granular execution on on-demand infras-
tructures [10, 24]. Second, microservice modularity fosters reuse,
which encompasses the consumption of existing instances and
the various arrangements in which a microservice can participate,
contributing to achieving circularity while reducing the risk of
defects and leveraging established expertise for resource-saving
and reliable software development. Besides, reuse enactment is
simplified by consuming microservices permissionless, in the way
that an agreement between consumers and providers is not manda-
tory [14]. Third, microservices development typically relies on
DevOps practices that promote extended process automation, mak-
ing microservices construction and deployment replicable while
allowing DevOps pipelines to be reused [36]. These automatic pro-
cesses enable the creation of microservices instances on the fly,
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supporting on-demand scale-up during operation. Consequently,
microservices’ circularity extends to replicable development and op-
eration processes, complying with the circular systems engineering
bipartite principle introduced in [9].

Finally, virtualization and cloud computing infrastructures allow
microservices granular execution with on-demand localized scale-
ups to face increased consumption. Similarly, they enable microser-
vices to handle failures, preserving end-users from outages [10].
This ensures systems stability and user trustworthiness, impacting
social, economic, and resource usage sustainability tenets [18].

While these microservices tenets contribute to improving soft-
ware scalability and maintainability and shortening the develop-
ment cycle, they also introduce a complexity that can hinder sus-
tainability. Microservices’ rigorous attention to team independence,
reinforced ownership, and slack governance may be barriers to
cross-team coordination and effective reuse. In the pursuit of au-
tonomy and decoupling, microservices duplicates may be created,
and without proper alignment and governance, this can lead to
unnecessary infrastructure scaling and resource overutilization.
Thus, the very qualities that make this architecture reusable and
reliable can also be its limitation in achieving sustainability. We
identified four challenges related to these tenets that model-driven
approaches could help solve: 1. lack of standards, 2. local-driven
design, 3. lack of coordination, and 4. opportunistic reuse.

This paper explores these challenges’ impact on developing sus-
tainable MSA-based systems, highlighting the inherent limitations
of current MSA design, modeling, and reuse practices (Section 2).
Based on this understanding, we outline perspectives, focusing
on MDE, to explore and solve the above challenges (Section 3).
Section 4 briefly discusses challenges related to MDE-based MSA.
Finally, we outline our future plans and briefly conclude with final
remarks (Section 5).

2 CHALLENGES TO MSA SUSTAINABILITY
This section discusses the challenges of accommodating MSA inde-
pendence, design, permissionless governance, and reuse practices
to achieve sustainability. Independence is omnipresent in MSA,
from team organization to technological choice for implementation,
materializing the “share-nothing” philosophy [24]. This microser-
vice tenet fosters the design of uncoupled applications that can be
developed and operated independently, reinforcing team owner-
ship and autonomy. Independence enables effective microservice
management and speeds up development cycles [10]. However, var-
ious challenges emerge when designing sustainable microservice
architectures compliant with the independence tenet [34].

2.1 Lack of Standards
Independence impacts the adoption of shared standards. Indeed,
teams adopt modeling practices and documentation techniques that
fit their needs. MSA primarily uses informal modeling methods,
such as sketches, drawings, semi-formal diagrams (e.g., UML), and
“as-code” specifications (e.g., OpenAPI) [21, 36]. Modeling MSA sys-
tems using these approaches does not address common modeling
challenges like analyzing and exploring multiple viewpoints and
modeling in different granularity levels [23]. Therefore, the ques-
tion of how to formalize, manage, and explore knowledge about

these systems arises. Besides, information is fragmented throughout
teams, which can hinder the development of 360-degree systems
views and the fostering of inter-team communication [1, 23]. Thus,
there is a need for conceptual models to support engineers in the
early stages of microservices architecture development, allowing
them to rely on modeling standards at an abstraction level that
enhances explicit microservices interconnections [21] and com-
mon understanding [23]. Indeed, no widely accepted and applied
formalism to describe MSA has emerged; some works have been
proposed [13, 23, 27], but lack evidence of their adoption in practice.

To achieve reuse, comprehensive descriptions of artifacts and
mechanisms that match reuse opportunities and reusable parts are
mandatory. Reuse retrieval and selection are generally based on
describing elements and defining criteria to compare them, leading
to specifying a standard formalism, which must be widely accepted
and used to be effective [17]. These descriptions are then stored
in repositories accessible to potential users that rely on identifi-
cation mechanisms, such as keyword search and similarity-based
discovery, to select candidates to reuse [6]. Therefore, a greater
understanding of the connections between functionalities and the
microservices implementing them, andmicroservices arrangements
are paramount [1]. Such understanding calls for formalized and
shared abstraction approaches, which must be able to support in-
formation exploration and retrieval [23]. MSA lacks both aspects.

The lack of standards hinders an end-to-end knowledge of MSA-
based systems [23], which is necessary to support sustainability [9].
This results in barriers to microservices identification, variability
management, and, subsequently, reuse and interoperability [1].

2.2 Local-driven Design
A local view of microservices supports teams’ agility, as choices are
made based on local needs and knowledge, with limited alignment
to external dependencies [14, 37]. Therefore, microservices design is
local and bound to a scoped functionality and a team. In this context,
microservices are designed in a closed world, leading to architec-
tural weaknesses. Indeed, deficient alignment caused by a limited
view results in unanticipated usage levels, which, coupled with
automatic scalability mechanisms, lead to resource overconsump-
tion and systems outages [16, 36]. Besides, a local design approach
fosters duplication due to ignorance of similar microservices else-
where in the organization, harming their effective circularity [23].
Tackling duplication implies handling variability [12], which is
complex in MSA, as it encompasses technical and organizational
concerns in addition to functional ones [1]. Indeed, variability is
closely related to the microservice granularity [35], which depends
on the bounded context and operational considerations. Thus, MSA
granularity is tightly related to teams’ concerns and choices.

There are no clear guidelines to help developers define and as-
sess the granularity of microservices [35]. Thus, finding approaches
to objectively define microservices granularity based on trade-offs
between modularity, enhanced by fine-grained microservices, and
operational constraints seems paramount to avoid overweight mi-
croservices. However, local-driven designmay be a barrier to achiev-
ing optimal granularity because some external dependencies, i.e.,
not owned by the team, may introduce constraints that are ignored
during design. Such a situation underscores the need for enforced



Breaking Down Barriers: Building Sustainable Microservices Architectures with Model-Driven Engineering MODELS Companion ’24, September 22–27, 2024, Linz, Austria

alignment, an organization-wide perspective on microservices, in-
tegrated and coordinated design, and close team collaboration [34].

2.3 Lack of Coordination
Microservices are developed in organizational silos, with teams
coordinating, when necessary, only with immediate dependen-
cies [36, 37]. This way of working impacts microservices’ capacity
to be reused [34], and represents a threat to runtime capacity design,
as the team’s knowledge may be restricted to microservices they
own and use [14]. Ignoring who consumes their microservices and
their impacts on runtime resource usage may lead to inappropri-
ate design and technological choices. Moreover, microservices are
exposed to be reused freely [14]. However, orchestrating their con-
sumption from an organization-wide perspective in a permission-
less consumption approach calls for innovative governance. Indeed,
allowing teams to change the boundaries of other microservices
could lead to complexity in resolving and merging changes and new
dependencies, violating the MSA’s independence tenet [26]. There-
fore, the question of allowing a reuse technique to bypass these
fundamental tenets arises, stressing the need for more research in
applying shared and coordinated reuse techniques.

Adopting an inner-sourcing approach guided by shared reuse
ground rules was proposed to tackle this challenge [34]. However,
practical evidence pointed out the complexity of harmonizing inner-
sourcing ownership and microservice practices, mainly in allowing
changes in a microservice not owned by the contributor, confirm-
ing the above assumption. Complying with reuse ground rules also
jeopardizes a team’s autonomy, as the team members cannot freely
choose the microservices they use [34]. While reuse governance is
needed to support organization-wide circular systems engineering,
its achievement is complex because of microservices’ distributed
nature and management practices, which lead to the adoption of in-
effective opportunistic and non-coordinated approaches [15]. There-
fore, proposing innovative governance practices based on enforced
organization-wide coordination is necessary.

2.4 Opportunistic Reuse
Software reuse relies on reusable parts and reuse opportunities.
On the one hand, it leads to the need for design and development
approaches that foster development for reuse. On the other hand, it
leads to the need for approaches allowing developers to identify
reuse opportunities and decide on using existing software parts,
including retrieval processes, selection and adaptation of reusable
artifacts, and reuse enactment, i.e., development with reuse [2].

Opportunistic development with reuse is unstructured, based
on individual initiative, and relies on personal knowledge to make
reuse decisions [6]. A typical example is software developers work-
ing on a project who encounter a requirement similar to one they
solved in a previous project. Instead of designing and implementing
a solution from scratch, they copy and paste relevant code snippets
or modules from the previous project to speed up development.
Current microservice reuse practices are opportunistic [20]. Indeed,
a microservice is reused for a specific case based on the devel-
oper’s personal choice and knowledge, which can lead to pass-by
reuse opportunities [6]. This constitutes a significant barrier to

the identification of reuse possibilities, thus limiting the expected
microservices’ reuse and circularity benefits.

The main limitation of this approach is that reuse focuses on
solving immediate problems rather than considering broader reuse
opportunities across products while introducing new challenges
related to the creation of clones, depicting the impact of local de-
sign practices and poor team coordination. Additionally, quality
concerns arise as, without proper evaluation processes, the reused
component may introduce unexpected errors or inefficiencies into
the reuse context, as the individual who decided to reuse it may not
be aware of the context specificities. Besides, the reused part and its
adaption to the new context may not be documented, preventing
reusable identification, replication, and the projection of fixes [20].
Consequently, the challenge is no longer to create modular and
reusable services but to identify the contexts in which they can be
reused. Therefore, approaches supporting organization-wide reuse
are mandatory for achieving sustainability goals.

3 PERSPECTIVES & MITIGATION STRATEGIES
This section introduces research and practice perspectives that
have the potential to advance our understanding and methods of
applying MDE to improve the design of sustainable MSAs. We built
upon previous perspectives on marrying MSA and MDE [28] by in-
corporating sustainability concerns and integrating new knowledge.
By exploring the perspectives proposed in this paper, we invite re-
searchers and professionals to consider new paths to conciliate MSA
tenets and MDE practices that can address the identified challenges
and open up new avenues for investigation. These perspectives are
designed to inspire fresh thinking and stimulate impactful research
that bridges theory and practice. Table 1 outlines how MSA’s as-
pects and challenges impact sustainability aspects, linking them to
the perspectives for mitigation strategies we discuss below.

Table 1: Overview of Achieving Sustainability in MSA.

MSA Aspects Challenges Impact on Sustainability Mitigation Strategies
Independence Lack of Standards Design Bottom-up Modeling

Design Local-driven Design Design & Circularity Real-time Modeling
Autonomy Lack of Coordination Design & Circularity Systematic Analysis
Reuse Opportunistic Reuse Circularity Systematic Reuse

3.1 Bottom-up Modeling
An end-to-end view of systems, including artifacts, activities, pro-
cesses, and connections, should be explicit and formalized to sup-
port effective circularity and achievement of organization-wide sus-
tainability goals [9]. Building such end-to-end knowledge involves
adopting design practices that document microservices’ internal
and external aspects, comprising descriptions in functional and
technological terms and explicitly identifying interactions between
microservices. However, such a comprehensive MSA representation
is challenged by the lack of standards and its independence and
autonomy tenets.

Various modeling approaches exist in the MSA domain, and
none seem dominant. Using separated models according to spe-
cific viewpoints is common practice [13], requiring mechanisms to
combine the information necessary to analyze microservices holis-
tically [23]. The ability to explore models takes over the unique
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and separate representations aspect. Indeed, it is crucial to effec-
tively extract and process data during analysis, regardless of how
the information is represented [22]. Therefore, the first perspec-
tive is to explore bottom-up modeling strategies that preserve
teams’ independence and autonomy while providing mecha-
nisms to build organization-wide consistent systems views.
Microservices-based systems are modeled from a local and indepen-
dent perspective that modeling approaches must consider. Besides,
standards and tools allowing developers to model a 360-degree
view of microservices architectures are still to be built [23]. In this
context, exploring the transferability of reverse engineering model-
driven approaches [30], collaborative modeling [32], and blended
modeling [7] could be a great starting point. This perspective fo-
cuses on handling the lack of standard and shared approaches in
MSA modeling.

3.2 Embracing Real-time Modeling
The main challenge when adopting systematic reuse is handling
variability [12]. In MSA, variability encompasses managing varia-
tion at two levels: first, at the microservice individual level, which
needs to consider concomitant versions. Second, there is a varia-
tion in the arrangements of microservices, as a microservice can
participate in various compositions, which might be created on the
fly during deployment.

Therefore, the second perspective is to explore models at run-
time approaches. Such approaches help keep microservices rep-
resentation up-to-date by identifying version changes and deploy-
ment interactions resulting from dynamic microservices arrange-
ments. Documenting systems architectures is challenging because
documentation must be kept up-to-date, especially in fast-paced
development approaches like MSA [14]. This necessity underscores
the risk of making decisions based on outdated data, which can
lead to inappropriate reuse identification. This perspective aims to
suggest modeling approaches that handle the rapid evolution of
MSA and document variability to support systematic reuse method-
ologies, tackling the challenge of local-driven design.

3.3 Systematic Sustainability Analysis in MSA
Modeling sustainable systems starts by understanding and making
explicit goals and constraints, analyzing sustainability from social,
economic, environmental, and technical perspectives [18]. These
perspectives form evaluation objectives, which assess a specific
sustainability dimension throughout sustainability quality require-
ments measured using evaluation criteria aligned with stakeholder
concerns. They underscore the relevance of unveiling the inter-
play between the assessed aspects, as sustainability concerns can
support each other or be conflictual. Making these relations visi-
ble through adequate representation allows stakeholders to reach
agreements, conciliating the diversity of sustainability goals and
their positive or negative influences on each other.

Therefore, the third perspective is to explore the applicability
of systematic analysis frameworks in a granular and coordi-
natedway, i.e., allowing to derive local microservices sustainability
objectives and coordinate them among teams. MDE meta-modeling
practices and transformation mechanisms could support such sys-
tematic approaches and enhance team coordination throughout

automatic model processing [3]. Automatic model processing could
identify and link aspects in a multi-model space [23, 25, 27] to sup-
port sustainability analysis and alignment. Besides, automatic trans-
formations could derive specific models from a cross-organization
one [5] to coordinate local sustainability strategies enactment, tack-
ling the lack of coordination between teams.

3.4 Embracing Systematic Reuse
Enabling sustainability benefits by adopting MSA calls for facili-
tating microservices’ reuse on larger scales and optimizing reuse
practices to meet sustainability goals. In this context, systematic
reuse represents a way to achieve circularity in microservices com-
position as it can streamline and generalize “development with
reuse” in MSA. Such a process relies on abstraction and automation
to support matching reusable artifacts and reuse opportunities [17].
However, the systematic reuse process that supports MSA tenets
has yet to be built [1].

Implementing systematic reuse involves centralized processes
and important initial investment, which may not comply with MSA
independence and autonomy tenets [6, 20]. Fostering systematic
reusewithout violatingMSA tenets calls for aligning rigorous gover-
nance models with microservices management, interfering as little
as possible in team dynamics, and fostering automatic processes to
limit costs. Consequently, accommodating reuse governance and
the independence and autonomy of teams calls for comprehensive
solutions at the organizational level [26]. These aspects have yet to
be explored in actual development with reuse approaches applied
to MSA. Managing reuse at the business process level helps cope
with ownership and governance issues, and make explicit func-
tional dependencies between services. Sun et al. [33] applied BPM
and MDE to implement a systematic microservices reuse approach
based on business processes. However, their approach overlooks
sustainability, not assessing the impact of additional consumers on
resource consumption and systems performance.

Therefore, the fourth perspective is to explore how existing
MDE and business process modeling approaches can collabo-
rate to support systematic development with reuse in MSA,
i.e., how microservices reuse can be supported by models that
consider organization and sustainability objectives, concerns, and
constraints. Thus, this perspective tackles the limitations caused
by opportunistic reuse.

4 POTENTIAL ISSUES OF MDE-BASED MSA
Applying MDE to support sustainable MSA comes with several
research challenges. A primary issue is model management in col-
laborative contexts [8]. For instance, handling multi-view modeling,
model conflict detection, and collaboration supported by automa-
tion may impact the feasibility of MDE in the MSA context. Indeed,
collaborative modeling for MSA remains limited to internal team
concerns and roles, overlooking external collaborations [29]. Be-
sides, handling runtime adaptation complexity is a foundation chal-
lenge in MDE [4], which may be exacerbated by MSA complexity.
Similarly, sustainability and stability criteria must be integrated
when analyzing and adapting systems at runtime, which may be
challenging in present MDE practices [11, 31]. Moreover, adopting
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an MDE approach can be costly due to the need for specific training
and tooling, which may pose a barrier for organizations [4].

5 CONCLUSION
This paper discussed the weaknesses of current MSA practices
in achieving sustainable MSA-based systems and presented per-
spectives on developing MDE-based approaches that tackle these
weaknesses. Such approaches must leverage the granularity in
design and operation fostered by MSA while preserving the inde-
pendence and autonomy tenets that are the motivational elements
for various organizations adopting this paradigm [37]. Even if MDE
practices seem promising, we must extend our theoretical and prac-
tical knowledge and continuously reflect on and stay critical about
using cross-team, centralized, and top-down modeling approaches
in MSA. Therefore, we plan to explore new avenues for imple-
menting MDE practices under these constraints. Currently, we are
working on bottom-up strategies to build cross-team views of sys-
tems supported by mining mechanisms [23]. We aim to provide a
limitedly intrusive approach to team practices, leveraging their cur-
rent documentationmethods to build unified views of microservices
systems that can be explored top-down to generate stakeholder-
related views. Besides, we are working on designing sustainability
profiles and metrics to support sustainability-driven decisions in
MSA.
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