
CPSAML: A Language and Code Generation Framework for
Digital Twin based Monitoring of Mobile Cyber-Physical Systems

Andreas Fend
TU Wien, Business Informatics Group

Vienna, Austria
andreas.fend@tuwien.ac.at

Dominik Bork
TU Wien, Business Informatics Group

Vienna, Austria
dominik.bork@tuwien.ac.at

ABSTRACT
Cyber-physical systems (CPS) are finding increasing use, whether
in factories, autonomous vehicles, or smart buildings. Monitoring
the execution of CPSs is crucial since CPSs directly influence their
physical environment. Like the actual system, the monitoring ap-
plication must be designed, developed, and tested. Mobile CPSs,
in contrast to stationary CPSs, bring the additional requirement
that instances can dynamically join, leave, or fail during execution
time. This dynamic behavior must also be considered in the moni-
toring application. This paper presents CPSAML, a language and
code generation framework for the model-driven development of
mobile CPS systems, including a cockpit application for monitoring
and interacting with such a system. The pipeline starts with the
formulation of the system and the CPSs it contains at an abstract
level by the system architect using a domain-specific modeling
language. Next, this model is transformed into SysML 2 for further
extension and richer specificity by system engineers on a more
technical level. In the last step of the pipeline, the SysML 2 model
is used to generate code for the CPS devices, a system-wide digital
twin, and the cockpit application mentioned above. This cockpit
enables the operator to configure and apply the monitoring and in-
teraction with the system during runtime. We evaluate our CPSAML
language and code generation framework on an Indoor Transport
System case study with Roomba vacuum cleaner robots.

CCS CONCEPTS
• Software and its engineering → System description lan-
guages; Application specific development environments.

KEYWORDS
model-driven engineering, cyber-physical systems, multi-paradigm
modeling, digital twin

ACM Reference Format:
Andreas Fend and Dominik Bork. 2022. CPSAML: A Language and Code
Generation Framework for Digital Twin based Monitoring of Mobile Cyber-
Physical Systems. In ACM/IEEE 25th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’22 Companion), Octo-
ber 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3550356.3563134

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3563134

1 INTRODUCTION
The term Cyber-Physical Systems (CPS) typically refers to engi-
neered, physical, and biological systems monitored and/or con-
trolled by an embedded computational core [3]. "The behaviour of
a CPS over time is generally characterised by the evolution of phys-
ical quantities, and discrete software and hardware states" [3]. This
behavior can be modeled mathematically, but this does not guaran-
tee that the system will always behave according to these models at
runtime. For this reason, runtime monitoring of such CPSs is essen-
tial for maintenance. A monitoring system is used by an operator
to get insights into the system during execution. Thereby, system
values, states, and events are visualized in a structured way. These
insights enable the operator, if necessary, to influence the execution
of the system in order to correct or prevent possible errors.

"Compared with CPS that rely on stationary and huge machines
or sensors and emphasize how to utilize cyber components to bet-
ter master the physical world, mobile CPS concentrate on their
mobility" [12]. This also places new demands on the CPS to enable
this mobility. Since any cable-based connection is a limitation for a
mobile CPS, other technologies have to be used. The power supply
usually comes from built-in batteries and communication is usu-
ally done through wireless technologies. The use of batteries and
wireless communication introduces the problem that the communi-
cation to the mobile CPS can be interrupted or even disconnected.
This poses the challenge of dynamically adding/removing compo-
nents to/from the system at runtime.

Although an operator uses themonitoring system, it gets realized
by a developer. Developers and operators often have different views
on the system,which can lead to complications. To bridge that gap, it
is important to involve the operator in the design of the monitoring
system. This is where the model engineering aspect comes into
play. Model engineering abstracts real world concepts in a way,
such that only the relevant properties are left. A model therefore
is a simplified representation of reality. This helps planning and
designing complex systems, as a model should give a common sense
of the underlying system.

In this paper we aim to provide a generic solution for the Model-
Driven Development (MDD) of mobile CPS and their monitoring
systems. Our approach focuses on two specific stakeholders, system
architects aiming to design systems, and operators aiming to moni-
tor and interact with the system. In this work we want to address
both stakeholders at different stages following a multi-paradigm
approach which is commonly adopted for MDD in CPSs [2, 9]. We
will start with a Domain-Specific Language (DSL), which allows
the system architect to model the CPS and its functionalities, sen-
sors, and actuators from a more abstract viewpoint. Subsequently,
we apply multiple model transformations and code generation to

https://orcid.org/0000-0001-8259-2297
https://doi.org/10.1145/3550356.3563134
https://doi.org/10.1145/3550356.3563134


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andreas Fend and Dominik Bork

automate the realization of a cockpit application which enables
monitoring and interacting with the CPS system.

Through the proposed MDD pipeline, we assume that we can
better support both the system architect and the operator for the
development of a mobile CPS. The system architect only keeps the
focus on her interests through the introduced DSL, while the oper-
ator is supported by the generated cockpit application. In addition,
the used code generation should save a lot of implementation effort
for developers. Above all, such a solution offers the advantages of
rapid adaptation in the code in the case of changes in monitoring
or in the system. For evaluating the feasibility of our approach, we
will realize a Indoor Transport System (ITS) (see Section 5).

In the remainder of this paper, Section 2 introduces the relevant
foundations before related works are presented in Section 3. Sec-
tion 4 then comprehensively introduces the MDD pipeline which
is evaluated in a case study in Section 5. A critical discussion (Sec-
tion 6) and concluding remarks (Section 7) wrap up this paper.

2 BACKGROUND
2.1 Model-Driven Development
In Model-Driven Development (MDD), models are treated as "first
class citizens" that drive the (software) development. Models con-
form to a metamodel that describe "the whole class of models that
can be represented by that language." [7] Such metamodels specify
abstract structures (i.e., the abstract syntax) and constraints that are
used to validate models [6]. Since the abstract syntax is not intended
for humans, a concrete syntax (textual, graphical, or hybrid) must
be defined to enable efficient human comprehension [5, 17]. Re-
garding the scope of a modeling language, languages with a narrow
scope, directed toward specific stakeholders with specific purposes
(i.e., Domain-Specific Languages (DSL) can be differentiated from
languages with a broad scope, addressing several stakeholders with
diverging purposes (i.e., General Purpose Languages (GPL)). In ad-
dition to language engineering transformations are essential in
MDD. Model-to-model transformations are used to convert models
of one language into other models conforming to either the same
(i.e., endogenous) or a different modeling language (i.e., exogenous).
In model-to-model transformations, the elements of the source
metamodel are mapped to the elements of the target metamodel.

2.2 SysML 2
The Systems Modeling Language (SysML) 2 [18, 20] is a language
standardized by the OMG for the specification, analysis, design and
verification and validation of complex systems that may include
hardware, software, information, processes, personnel and facilities.
SysML 2 builds on the Kernel Modeling Language (KerML) which
is divided into the layers root, core, and the KerML library. SysML
2 is structured in a modular manner by using packages which are
specified in addition to the concept of elements in the root layer
of KerML. The core layer describes the direct semantic mapping to
formal logic. In the KerML library fundamental elements, like data
types, functions as well as physical units are defined. In the SysML
library, which is based on the KerML library, all elements for the
different features of the language are defined, which are divided
into structure modeling and behavior modeling.

2.3 Robot Operating System (ROS)
The Robot Operating System (ROS) is an open source framework
for the development of robot software. It is a collection of tools,
libraries, and conventions that aim to simplify the task of creat-
ing complex and robust robot behavior across a wide variety of
robotic platforms [19]. A system executed in a ROS environment
consists of several processes, called nodes. Such nodes can be im-
plemented in different languages such as C++, Python, Octave, or
Java [11]. The nodes communicate with each other via publish/-
subscribe mechanisms on top of the TCP or UDP protocol. Besides
unidirectional message exchanges via topics, there are also services.
A service works like a remote procedure call. It consumes a request
and returns a response. The structure of both messages are as well
specified in service definitions. Furthermore, ROS has an extensive
naming feature, that allows to group ROS nodes into namespaces
and thus also to control the communication of the ROS nodes by
manipulating the topic and service names without having to adapt
the actual code of the nodes.

3 RELATEDWORKS
There are several works from the area of model-driven development
of CPS with an emphasis on CPS monitoring.

Berrouyne et. al [4] propose a model-driven approach which
uses several DSLs as well as transformations to tackle the issues of
heterogeneity and interoperability of the individual devices in the
IoT. The ThingML [13] language is used to specify the individual
devices in a system whereas State machines are used to describe
the behavior of a thing. Additionally, the network is modeled using
the CyprIoT language.

Vierhauser et al. [23] deal with the critical concerns of CPS in
general and unmanned aerial vehicles (UAVs) in particular. They
use the ReMinds framework [25], which was originally developed
for the monitoring of systems of systems in the domain of au-
tomation software for metallurgical plants, and extend it to meet
requirements for themonitoring of mobile CPS, such as the dynamic
instantiation of multiple instances, the evaluation of constraints,
the simulation of CPSs, and the generation of a monitoring GUI
representing the live state of the CPS [16].

Vierhauser et. al [24] useMDE to automatically generate runtime
monitoring systems based on theModIRMomodel-integrated frame-
work. ModIRMo enables the modeling of the monitored system as
a domain model with a UML class diagram. ModIRMo generates
Monitoring APIs which are responsible for querying the system val-
ues and publishing them to an MQTT message broker. In addition,
a minimal Digital Twin is generated, which receives the real-time
values and validates them using the VIATRA framework [22].

Iglesias-Urkia et. al [15] present TRILATERAL, a model-based
approach to accelerate and simplify the development of Industrial
CPS (ICPS). TRILATERAL is based on EMF and applies the IEC
61850 [21] standard for modeling. Users need to first create an
InformationModel and a Server Model. The former reflects the ICPS
elements to be monitored and the Control Block, which defines
several interaction aspects while the Server Model specifies the
communication. Subsequently, a code generater generates C++ code
for the middleware of the ICPS containing interfaces for querying
and for controlling ICPS elements.



CPSAML : Digital Twin based Monitoring of Mobile Cyber-Physical Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Table 1: A comparison of the works through defined characteristics.

Approach Addressed
Stakeholder Problem Domain Used Modeling

Languages/Frameworks
Codegenerator /
Target Language

Monitoring Modeling
Stage

Constraint
Validation

Degree of
Action GUI

CyprIoT [4] System Engineer,
Network Engineer

Interoperability Problem
of IoT devices

ThingML,
CyprIoT TH-CGEN / C - No Passive No

ReMinds [25] Operator Monitoring Mobile CPS
Requirements
Monitoring Model
DSL

Java Runtime Yes Passive Yes

ModIRMo [24] System Engineer Monitoring CPS
Monitoring DSL,
UML Class Diagram,
VIATRA

EMF / Java Design-time Yes Passive Planned

TRILATERAL [15] System Engineer,
Electrical Engineer

Industrial CPS
Development and IoT
Protocols

IEC 61850 EMF, Xtend /
Java Design-time No Active Planned

Interactive Digital
Twin Cockpit [10]

System Architect,
System Engineer

Digital Twins for
Cyber-Physical
Production Systems

MontiArc,
OCL

MontiGem /
Java Design-time Yes Active Yes

TwinOps [14] Developer,
Operator

DevOps for Model-Based
Development of Digital
Twins

SysML,
AADL

C,
Ada Design-time Yes Passive No

Our Work System Architect,
Operator Monitoring Mobile CPS CPSAML,

SysML 2

Xtend / Java,
Typescript,
Python,
Dockerfile

Runtime Yes Active Yes

Dalibor et. al [10] present a Model-Driven Architecture for the
development of Digital Twins for monitoring and controlling Cyber-
Physical Production Systems (CPPS) based onMontiArc [8]. Through
MontiGem [1], a web-based CPPS Digital Twin is generated.

Hugues et. al [14] introduce TwinOps, a process that combines
DevOps, Digital Twins, and Model-Based Engineering to improve
the development of CPS. Several different approaches are proposed,
where one of them is applied and evaluated by developing a building
monitoring system with multiple sensors. SysML is used to model
requirements, use case, and block diagrams. Subsequently, model
transformations and code generators are applied to generate a
minimal middleware. Monitoring probes are implemented manually
to further process the real-time data of the sensors.

Comparison. Table 1 summarizes the comparison of relatedworks
using a set of characteristics like the addressed stakeholders, the
used modeling languages, and whether an approach is passively
monitoring or also actively controlling a CPS.

Synopsis. The related works, underpinned by related surveys [2,
9] show, that often a combination of different modeling languages is
used to comprehensively represent a CPS including its monitoring
and communication. We believe SysML 2 offers the possibility to
model many of these aspects of a CPS. It is possible to formulate the
domain model, its behavior and constraints in a structured way. The
fact that all concepts can be represented in the same model provides
continuous support for the modeler. However, since a system is
first planned on an abstract level, this language is not suitable for
formulating a coarse draft. We therefore want to provide a language
to formulate CPS on an abstract level and then further transform
this model into SysML 2. Through code generation we want to
automate the middleware for communication between components
and a simple digital twin acting as a monitoring application. The
generated components should follow a system architecture that
fulfills the special requirements of mobile CPS.

The presented works use text-based modeling languages to for-
mulate rules at runtime. These languages are quite complex and

do not provide intuitive support for the modeler with respect to
the domain model. As mentioned in [23], it is important that rules
for CPSs can be adapted at runtime, since their behavior is often
only revealed at runtime. Since the monitoring application is used
by the operator, we want to design it accordingly to her/his needs
and requirements. In doing so, the formulation of rules should be
simple and intuitively supported by graphical elements at runtime.

4 APPROACH
We present an MDD pipeline for modeling and developing systems
containing several different mobile CPS elements. As a part of
this pipeline, code generators are applied to produce code for a
distributed system. The architecture of this distributed system aims
at overcoming well-known challenges of mobile CPS elements, such
as the loose coupling of individual CPSs or the dynamic mounting
and unmounting of CPSs at runtime. One of the components in this
architecture is the Cockpit application. It is used for monitoring, as
well as for interacting with the system and the CPS entities acting in
it. In the following, we will discuss in more detail the architecture
and the communication schema used, the pipeline including its
steps, the transformation between them, the languages used, and
the addressed stakeholders.

One of the most important requirements for the CPS system
is that it is possible to dynamically add and remove CPS entities
from the system at runtime. For this reason, the system architecture
must be designed in such a way that this can be done without any
difficulties. This also brings the challenge of ensuring that there are
no problems if a certain CPS entity is not reachable any longer. In
Figure 1, we can see the system architecture of our approach. This
consists basically of three layers. For communicating between the
layers, message brokers and topic-based messaging are applied to
decouple the message exchange from the various components.

The bottom layer contains the (mobile) CPS entities. There can
be an arbitrary number of these entities at any point in time. CPS
entities publish data messages at periodic intervals. Such messages
contain sensor data as well as calculated values or states of the CPS



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andreas Fend and Dominik Bork

Figure 1: CPS system architecture

entities. Data messages are published to a CPS entity independent,
but CPS type specific topic. This allows other components to con-
sume messages from CPS entities of this type without knowing
the exact identity of these CPS entities. In addition, CPS entities
consume action messages. Action messages describe actions to be
performed by the CPS entities. Unlike data messages, action mes-
sages are always addressed to a specific CPS entity. If the message
is not received, for example, because the CPS entity is not available
at that moment, the message expires.

The System-wide Digital Twin (SDT) is located in the middle
layer of the architecture. There is only a single instance of it. The
SDT subscribes to all CPS topics known in order to be able to receive
data messages from every active CPS entity. Thus it holds a global
system snapshot, including all components data. One of the SDT’s
tasks is to detect new CPS entities as well as CPS entities that are
no longer accessible. The aggregated system snapshot is as well
published in a periodic interval as data message. Additionally, the
SDT consumes action messages. The actions described in these
messages can either be addressed to specific CPS entities or they
can describe CPS entity-independent actions. In both cases, the SDT
is responsible for publishing the corresponding action messages to
the appropriate CPS entities.

The cockpit consisting of a backend and a frontend is located on
the top layer. The backend subscribes to the SDT topic in order to
consume data messages describing system snapshots. The cockpit
can be configured at runtime by dashboard concepts. Through
these configurations, the received data is appropriately prepared
and processed before it is then graphically displayed in the frontend.
With these dashboard concepts it is possible to display live data in
different representations, apply metrics, define rules the snapshots
are validated against, describe events that check for certain changes,
and actions to trigger predefined actions in the system. When such
an action is started in the frontend, the backend publishes the
corresponding action message to the SDT.

Note that data messages always flow from bottom up, while
action messages always flow from top down. Furthermore, commu-
nication between components can only take place between adjacent
layers. Different CPS entities, for example, cannot communicate
directly with each other. This approach prevents possible conflicts
when receiving and processing multiple action messages from dif-
ferent senders.

The goal of our work is to design a method for developing a
distributed system with mobile CPS according to the architecture
described above, addressing the requirements and needs of identi-
fied stakeholders. To this end, we use MDD and present a pipeline

Figure 2: MDD Pipeline

that fulfills this challenge. The pipeline, shown in Figure 2, consists
of several steps, each of which involves a certain stakeholder.

The pipeline starts with the system architect that has a certain
vision of the system to be developed. This includes the different
CPS types to be used, their functionalities, and more complex func-
tionalities in the system that cannot be executed by a single CPS
entity. This vision is usually rather abstract and does not yet contain
any technical implementation details. For exactly this viewpoint
of the system architect we have designed the CPS Architecture
Modeling Language (CPSAML) using Xtext. CPSAML allows the
system architect to formulate that abstract vision of the system in
a textual model. This model is then transformed into a SysML 2
model. SysML 2 offers system engineers the possibility to extend
the system to be developed from a far more technical point of view.
SysML 2 can be used to define parameters of actions, to integrate
types and units, to formulate constraints, or to describe the behavior
by means of state machines.

In order to reuse as much information as possible from the SysML
2 model, we use code generators in the pipeline in a next step. These
produce code in different languages for the components presented
in the architecture. Including source code files in Python, Java, or
Typescript, but also other files like Dockerfiles or ROS configuration
or message exchange files. This code is maintained in different
projects, and is extended by the software developers. The concrete
communication with the hardware or the logic of actions to be
executed by the system is thereby implemented.

In a final step, the implemented projects are containerized using
Docker. This allows the system administrator to deploy and config-
ure the images as easily as possible on the corresponding hosts or
devices.

A major contribution in our work is the CPS Architecture model-
ing language. It fulfills the following six requirements, we derived
from the interests of the system architect:
R1 Definition of the types of CPSs occurring in the system.
R2Multiplicity specification of the CPS types.
R3 Description of the CPS elements functionalities.
R4 Specification of the CPSs hardware components in form of

sensors and actuators that interact with the physical envi-
ronment.

R5 Description of the hardware elements functionalities.
R6 Specification of system-wide functionalities that are not di-

rectly related to a specific CPS entity.



CPSAML : Digital Twin based Monitoring of Mobile Cyber-Physical Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 3: CPSAML metamodel.

Since the language is only intended to fulfill the above-mentioned
requirements, it is kept rather simple, as can be seen from the few
concrete classes in the metamodel in Figure 3 (visualized using
yellow background color). Each concrete class from the metamodel
extends the abstract DescribedNamedElement class, which is not
included in the figure for reasons of better readability. This class
contains the attribute name and the optional attribute description,
that can be used to describe an element in more detail.

The root element of the CPSAML metamodel is the CpsSystem.
It contains all CPS types that occur in the system. In addition,
CPS entity independent commands are defined here. A Command
represents an operation that triggers one or more actions in the
system or for specific CPS entities. Such a command is not specified
in more detail in CPSAML, since this is usually not in the interest
of the system architect.

A Cps element describes a certain CPS type as well as its multi-
plicity in the sysem. A distinction is made between SingletonCps
andMutliCps. SingletonCps occur only once in the system.MultiCps
occur either with an exact number or with an arbitrary number in
the system. Describing the exact number makes sense, for example,
when it is known that exactly two robot arms are used in the system
to perform certain tasks, and it is important to distinguish between
them. To do this, the exact names of these entities are specified in
the instances array of the MultiCps. For mobile CPSs, it is often not
known exactly how many entities will be in use, or this can change
frequently at runtime. For this second case, the instances array is
left empty, meaning that any number of such CPS entities can exist.

The data published by Cps are represented as resources. Resources
are represented in CPSAML also only very superficially without
any type specification. In addition, the commands the CPS entities
can process are described in the CPS. Finally, the hardware compo-
nents used in a CPS type are also specified. Since it is necessary to
determine the number of times a certain hardware component is
used in the CPS, the hardware class extends the abstract SpecificIn-
stancesElement class. However, the use of the instances attribute
contained therein behaves differently here than it does with the
Cps class. Since it makes no sense to use an uncertain number of a
particular hardware component, an empty instances array means
that the component is installed only once in the CPS. Otherwise,
each installation is noted with the exact identifier in the instances
array. For hardware, a distinction is made between sensors and ac-
tuators. Sensors specify resources that can be used, while actuators
specify commands that can be executed.

By satisfying R2, we tried to design the language in a way that
the definition and usage of Cps or hardware components are not
separated to avoid unnecessarily confusing or complex concepts.
This resulted in the approach with SingletonCps and MultiCps, as
well as the concept with the instances array for Cps and hardware
components. This also brings drawbacks, e.g., hardware that is used
by several different Cps must be specified multiple times.

In the course of our work, we have developed a concrete textual
syntax for CPSAML that aims to allow system architects to use the
language as easily as possible.We decided upon a textual rather than
a graphical syntax for reasons of a simpler prototyping but nothing
would generally stand against a graphical syntax for CPSAML.

4.1 CPSAML to SysML transformation
The fact that CPSAML is a rather simple language leads to its limits
being reached very early on. For example, it is not possible to formu-
late data types of resources more precisely or to specify parameters
for commands. However, during the development of the system
even more technical questions arise, which are no longer in the
interest of the system architect but rather in the interest of the soft-
ware engineer. It is not only about the data types of the resources
or the parameters of an action, but to describe the CPS system on a
more technical level. Since CPSAML does not offer this possibility
and it does not make sense from our point of view to adapt the
language in this way, we have decided to use a transformation to
SysML 2.

We decided to transform to SysML 2 because the language, with
its extensive and above all very technical concepts, is ideally suited
for making further specifications for the CPS system. These include
language features such as the separation of definitions and usages,
utilization of units and definition of new complex data types, an-
notations, compositions, actions, state machines, and constraints.
Since SysML 2 is a predominantly textual language, we decided to
use Xtend for the transformation, to ensure that the output models
directly have our preferred structure.

During the transformation, a minimal SysML 2 library provided
by us is included, containing attribute definitions for the use of
annotations and constraints. These are very useful for certain use
cases and facilitate further modeling with SysML 2. In addition,
some annotations are essential for further code generation, as they
serve as markers.

Basically, the transformationmaps each element from the CPSAML
language to one definition and at least one usage in SysML. A visual
representation of the transformation can be seen in Figure 4. The
blue blocks are representing CPSAML elements, while the closed
arrows with the diamonds show their containments. Red blocks
represent SysML 2 definition elements and the open arrows show
the usages between them. The striped arrows demonstrate the
transformation of the elements.

Resources are mapped to attribute definitions, Commands to ac-
tion definitions. Hardware elements are mapped to part definitions,
whereby these are tagged with the @RosNode annotation. This in-
dicates the code generator later that this part is to be translated
into an own ROS node component. The contained Resources of the
Sensors and the contained Commands of the Actuators are used in
the respective part definition as usages of the attributes and the



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andreas Fend and Dominik Bork

Figure 4: CPSAML to SysML 2 transformation.

actions. For Cps also part definitions are created. These contain
the action usages of executable Commands, attribute usages for the
publishing Resources, and part usages for the installed Hardware
components. In case a Hardware component occurs multiple times,
indicated by the identifiers in the instances array, a part usage is
created in the Cps part definition for each of these occurrences.
In addition, the Cps part definition is provided with the @Cps an-
notation. This indicates to the code generator that the complete
CPS should be translated into a dedicated ROS package. Finally, the
CpsSystem root element is mapped to a part definition, provided
with the @System annotation. In this part definition any CPS part
usages are included, depending on their multiplicity. If there is an
arbitrary number of a certain CPS, it is declared as an unbounded
array usage. In addition, the system-wide Commands are used as
action usages within that part definition.

It is important that any information from the CPSAML model is
transferred to the SysML 2 model during the transformation, since
the CPSAML model has no further application in our pipeline. The
result of the transformation offers a good separation of the different
components by the package concept of SysML 2. In order to be
able to use the code generator of our pipeline, it is necessary to
follow certain guidelines during the modeling. This includes the
explicit use of the annotation definitions provided by us according
to certain criteria, or also restrictions against action parameters
and their typification.

4.2 SysML to ROS transformation
After modeling the system in SysML 2, code generation follows
in our pipeline. In this step, ROS packages are generated for the
modeled CPSs. Thus, the code for each CPS is in an independent
project and can be further implemented, tested, and built separately
from the other projects.

For any attributes used in @RosNode or @Cps annotated Part
definitions, ROS message files are created. In addition, ROS service
files are created for any actions used in the same part definitions.
These files define the data structures of messages, as well as requests
and responses for services. When building the ROS package, Python
files with the corresponding data classes for messages, requests and
responses are generated from these files.

Each @RosNode annotated part definition is translated to a ROS
Node component. Thereby three Python files are created. A base
class, that implements the entire ROS communication, an empty

Figure 5: ROS node components of a CPS package

sub class, that extends the base class and must be implemented
by the software developers afterwards, and a client class, that can
be used by other ROS components in order to communicate with
that component easily over method calls. Thus we create a good
separation of the actual logic and the communication to other ROS
components.

In the base class, a ROS topic is created for each attribute usage.
This topic is used to publish the latest value of this attribute at
periodic intervals. Additionally, a service is registered for each
action usage and an empty handler method is created for that
service. This method can be overwritten by the sub class in order
to be able to implement the logic for the action.

For each CPS package a local CPS Digital Twin (DT) component
is generated, executed as ROS Node. This DT holds the aggregated
state of the CPS entity. It is also the only component that commu-
nicates to the outside via the message broker. It publishes the latest
entity snapshot at periodic intervals. Incoming action messages are
processed and the corresponding ROS services are invoked. As with
the @RosNode annotated part definitions, a base class is generated
for the local CPS DT, providing all boilerplate code for external and
internal communication, and an empty extending sub class, that
must be further implemented after the code generation.

Finally, a launch file is generated for the package, specifying
the configuration for the correct execution of the ROS package. To
ensure the proper communication between the nodes, it defines
which and how many ROS nodes will be started, their names, and
namespaces. The architecture of that resulting ROS package can be
seen in Figure 5.

4.3 Code Generation
In addition to the ROS packages, the SDT and the cockpit are gener-
ated during code generation. The SDT is being realized as a Maven
project in Java and is based on the Spring Boot Framework. For
each CPS type a message listener is created, listening for incoming
data messages from the corresponding CPS entities. Additionally,
service classes are created for each CPS type, responsible for pub-
lishing action messages. An additional message listener is created
for consuming action messages. Such messages are processed and
either forwarded to the appropriate CPS entity, or in the case of a
system-wide action, the corresponding generated method is called.
For each of these system-wide actions, one such stub method is
generated in a separate service. The snapshots of the CPS entities
are stored in repositories for a limited time. If a snapshot expires
before a new snapshot of the same entity is received, the entity is



CPSAML : Digital Twin based Monitoring of Mobile Cyber-Physical Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

considered offline. At a periodic interval, the SDT publishes an ag-
gregated snapshot that includes the latest CPS entity snapshots as a
data message. Finally, a Dockerfile is generated, for containerizing
the SDT as a Docker image. This image can then be easily deployed
on a powerful machine, e.g., in the cloud.

In contrast to the SDT, the Cockpit project consists to a signifi-
cant degree of static code. The main components required by the
Cockpit are the data structures of the data messages published by
the SDT, the executable actions of the CPS entities and the SDT, as
well as the constraints of attributes and action parameters.

4.4 Cockpit Dashboards
The front-end of the cockpit composes a Config Mode and an Op-
erator Mode. In Config Mode, the cockpit can be fully configured
at runtime, whereas these configurations are applied in Operator
Mode. Dashboards are created to configure the cockpit. A dashboard
defines a CPS type for that dashboard concepts are configured.
Optionally, a dashboard can be assigned to a specific CPS entity.
Otherwise, the rendered dashboard includes a dropdown element in
Operator Mode to switch between all active and offline CPS entities.
Dashboard concepts include monitors, events, checks, and actions.

Monitors are used to display live data of the system. The data
can be displayed in different ways, like simple text, range or dia-
gram. In addition, operations can be applied to these values, such
as aggregation functions on lists. To make the values easier to in-
terpret, metrics can be defined for monitors. Logical expressions
are formulated to map the value of the monitor to the colors green,
orange, or red. Since we wanted to ease the development of such
monitors for operators, we generate also a simple and intuitively
usable logic tree-based configuration (see Figure 6) at runtime.

Figure 6: Logic tree-based configuration of monitors at run-
time

Figure 7: Roomba case study setup

Events are used to compare changes in two successive snapshots.
If the condition of the event specification is satisfied, the event
is logged together with the snapshot. In Operator Mode, an event
log is displayed for this purpose. When selecting an event in the
event log, the corresponding snapshot is displayed in the dashboard
instead of the live data.

Checks formulate rules about assumptions that are made. These
are automatically evaluated for each new snapshot. If the rule of
a check fails, it will be highlighted in the Operator Mode and a
notification will be sent to the operator, either via email or SMS.

Actions are tools for executing CPS and system-wide actions. For
example, predefined parameter values can be specified. In Operator
Mode, a block is displayed for each action containing the arguments
to be defined as input fields and a button that initiates the execution
of the action.

5 CASE STUDY
In our case study we want to realize an Indoor Transport System
(ITS). In this ITS, the goal is to transport small items inside a build-
ing. We therefore need only one CPS type for this case study that
is able to move around in a building and carry additional items.
While there are some industrial transport robots that have been de-
veloped specifically for this task, we decided to use iRobot Roomba
650 Create1 vacuum cleaner robots, further referred to as Roomba.
These are much cheaper, have a large number of different sensors,
actuators, as well as a clearly defined API that allows controlling
them.

The Roomba is controlled by a Raspberry Pi 4 model B2 that
is placed on top of the Roomba and connected via USB. It runs
the Raspberry Pi OS3 and has Docker Desktop 3.4.04 installed.
Additionally, a powerbank is placed on the Roomba. This serves
as power supply for the Raspberry Pi. In Figure 7 we can see the
Roomba with the Raspberry Pi and the powerbank.



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andreas Fend and Dominik Bork

Using the ITS, it should be possible tomanually control a Roomba,
have a Roomba perform a list of tasks, and have a specific as well
as any idle Roomba navigate to a specific location.

5.1 ITS.cpsaml
In a first step we modeled the ITS using CPSAML. We defined the
system-wide command Request and the MultiCps Roomba. The
Roomba CPS is able to execute the commands Drive, Turn, and
Stop for manual controlling, Stack, Start, and Clear for giving
the Roomba tasks, execute them and clear them, as well as the
commands Dock and Navigate for driving into the docking station
and autonomous navigation.

Listing 1: The ITS modeled using CPSAML.
1 /*
2 * Indoor Transport System
3 *
4 * CPS system for transporting little objects within
5 * a building using mobile roombas.
6 */
7 cps−system ITS :
8
9 /*
10 * To request an arbitrary idle roomba to
11 * a specific place.
12 */
13 command Reques t
14
15
16 cps Roomba {
17
18 ∗ ∗ ∗
19 Manual Dr i v ing
20 ∗ ∗ ∗
21 command Drive
22 command Turn
23 command Stop // stops all current activites
24
25 ∗ ∗ ∗
26 Tasks Dr i v ing
27 ∗ ∗ ∗
28 /*
29 * Adds a task to execute on a stack
30 */
31 command S t a ck
32 command S t a r t // Starts executing the stack
33 command Clea r // Clears the Stack
34
35 ∗ ∗ ∗
36 Autonomous Dr i v ing
37 ∗ ∗ ∗
38 /*
39 * Drives the roomba to its docking station
40 * for loading the battery.
41 */
42 command Dock
43 command Nav iga t e
44
45 sensor Ba t t e r y {
46 /*
47 * The amount of energy
48 */
49 produces energy
50 produces docked // flag if the roomba is in its docking station
51 }
52
53 sensor Bumper {
54 produces pushed
55 }
56
57 actuator Wheel
58 instances l e f tWhee l , r i gh tWhee l {
59 command Drive
60 command Stop
61 }
62
63 }

The Battery sensor provides information about the power level
of the Roomba, as well as whether the battery is charging. The
Bumper sensor only provides the information if it is pushed. There
is a leftWheel and a rightWheel instance of the Wheel actuator.
Both can execute the Drive and Stop commands, where Drive spec-
ifies a speed at which the motor should rotate and Stop makes the
motor stop. The complete CPSAML model can be seen in listing 1.

5.2 SysML 2 Modeling
After transforming the CPSAML model into an initial SysML 2
model, we extended this model by specifying technical details. We
first defined custom units, like RPM (rounds per minutes), Second,
Percentage and Degree, and specified bound constraints for them.
Afterwards we added parameters to the already existing actions. We
therefore added a speed parameter to the Drive actions and typed
it as RPM, an angle parameter for the Turn action of type Degree,
a target parameter for the action Navigate of type string and
finally the parameters speed, time, and angle of types RPM, Second,
and Degree for the Stack Action.

Next, we added type information for the published sensor data.
The energy attribute of the Battery is of type Percentage while
the docked attribute is just a simple Boolean flag, just like the
pushed attribute of the Bumper. We additionally added a speed
attribute to the Wheel definition, to indicate the current speed of
the motor.

Finally, we modeled a state machine for the Roomba, including
the states IDLE, MANUAL, TASK, SEEKING, DOCKED, and NAVIGATING,
to specifies some high-level behavior.

5.3 Cockpit
After the code generation phase and implementing the missing
logic as well as the concrete communication to the hardware com-
ponents, we built the software, containerized it using the provided
Dockerfiles and deployed it on the corresponding machines. As
there are functional requirements for ITS, we also formulated some
requirements from the operator’s point of view.

Thereby we want to see in the cockipt any live data of the
Roomba, have a metric displayed for the battery level, and make
sure that a Roomba is not driving anymore if it collided with an
object. Additionally, some specific events should get recognized and
logged, like object collision, the Roomba gets lifted or put down, or
the task list or navigation completed successfully.

We tested different scenarios to evaluate if the cockpit with all
defined dashboard concepts fulfills the desired functionalities. We
have tested scenarios to check if the systems recognizes newly
added Roombas as well as Roombas going offline. We also tested
scenarios to check, if all the actions are invoked accordingly, both
system-wide as well as entity-specific actions. One scenario was
about event detection and if they get logged accordingly, and in the
last scenario we manipulated the behavior of the Roombas to see
weather alerts are risen in case of rules of checks get violated.

In each of those scenarios the ITS worked as expected as well as
all the requirements on the Cockpit were fulfilled. Figure 8 shows
the Cockpit in Operator Mode after applying the EVENTS scenario.

On top we can see the two specified dashboards Roomba and
ITS, whereby the first one is selected. As no specific Roomba entity
is bound to that dashboard, a dropdown is displayed, listing all
Roomba entities. Within the dashboard we can see the live data in
the monitors on the left side of the screen, actions to invoke for the
Roomba entity in the middle of the screen and the event log as well
as the assured checks on the right side of the screen. The Speed as
well as the Powermonitors use a range representation, while all the
other monitors use simple textual representations. Additionally, the
Powermonitor includes a metric, that is displayed as the horizontal



CPSAML : Digital Twin based Monitoring of Mobile Cyber-Physical Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 8: Roomba dashboard in Operator Mode with the selected R1 entity.

traffic light element. For each action parameter a corresponding
input component is used to specify its value before invocation.
Numerical parameters have sliders together with a number input
field, while textual parameters have a small input text field. Actions
without any parameters do not have additional input elements, like
the Stop, Dock, Start, and Clear action. The checks are listed in
the top console. As long as the rule of the check is ensured, the
check is displayed green, otherwise it turns red. In the event log
we can see all the occurred events for the selected entity. Each log
entry contains an icon, indicating the type of event, the timestamp
of the event as well as a message.

6 DISCUSSION
We were able to show that the MDD approach presented in our
work is applicable to the development of the ITS. Using the CPSAML
language we developed, we were able to express the aspects of
the system architect, such as the commands, cps, and hardware
parts in a simple textual form. The subsequent transformation to
SysML 2 has adopted all the modeled elements of the CPSAML
model, saving a lot of work in SysML 2. SysML 2 turned out to
be a very suitable modeling language here. The many different
concepts of the language enabled the formulation of structures,
behavior, constraints as well as metadata. With the subsequent code
generation, over 9000 lines of code, contained in 155 classes, could
be generated. The complete middleware for the communication of
the different software components was generated thereby. Table 2
shows for each project of the ITS how many lines of code as well
as classes were generated and how many lines of code and classes
had to be implemented manually afterwards.

By running the above scenarios, we could not only show that
the presented architecture is well suited for mobile CPS as well as
the special requirement of dynamically adding and removing CPS
entities at runtime. We were also able to show that through the
different dashboard concepts, any requirements also work in their
entirety and deliver the desired result.

Of course, this research is not free from limitations and threats
to validity [26], the most severe one is the fact, that we were only

Roomba SDT Cockpit

GeneratedManual GeneratedManual GeneratedManual

Classes 17 3 18 0 120 1

LoC 582 359 677 12 7867 36

Table 2: Generated and manually implemented source code.

able to evaluate our approach in one concrete case, the indoor
transportation system. Future research needs to apply the approach
in further cases and we believe the modeling languages and code
generators are likely to be adpated throughout this process. Still,
the case we chose is realistic and uses real sensor data of real mobile
CPSs. As such it serves the feasibility study. Given the very positive
results with respect to the different evaluation scenarios and the
extent to which we were able to automatically generate code, we
believe this research establishes meaningful first contributions that
future work can build upon.

Another focus of future research is on empirically evaluating
the perceived usefulness of the CPSAML modeling language and
the model-driven approach it is integrated in. We want to quantify
and qualify the benefits of using the higher-level language CPSAML
instead of directly starting modeling the CPS with SysML.

7 CONCLUSION
Monitoring of mobile CPS is important to ensure their correct be-
havior and to detect potential errors and apply corrective actions as
early as possible. The development of such monitoring applications
is not trivial, since the structures and behavior of the CPS must
be taken into account, as well as the interests and aspects of the
operators using these applications.

In our approach, we use an MDD pipeline to drive the devel-
opment of such systems using multiple modeling languages, with
each language focusing on the requirements and needs of a specific
stakeholder. With code generation, we enable the generation of
large pieces of code. The thereby completely generated cockpit



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andreas Fend and Dominik Bork

combines four important concepts for monitoring and interacting
with the system. By applying the pipeline to our use case of the
indoor transport system, we were able to show that our approach
allows to create a fully operational system and a suitable monitor-
ing application, thereby saving costs by generating code that would
otherwise have to be implemented manually.

The source code accompanying this research is available here1.
We are currently working on integrating sensor data streams from
real cyber-physical production systems in the Austrian Center for
Digital Production. We want to extend our framework such that is
can cope with industrially standardized sensor streams and auto-
matically generate the models and the monitoring dashboard.

ACKNOWLEDGMENTS
This research has been partly funded by the Austrian Research
Promotion Agency (FFG) via the Austrian Competence Center for
Digital Production (CDP) under the contract number 854187.

REFERENCES
[1] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2019.

Enterprise Information Systems in Academia and Practice-Lessons learned from
a MBSE Project.. In EMISA Forum: Vol. 39, No. 1. De Gruyter.

[2] Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink, Hans
Vangheluwe, and Andreas Wortmann. 2021. Multi-paradigm modelling for cyber-
physical systems: a descriptive framework. Softw. Syst. Model. 20, 3 (2021),
611–639. https://doi.org/10.1007/s10270-021-00876-z

[3] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-based
monitoring of cyber-physical systems: a survey on theory, tools and applications.
In Lectures on Runtime Verification. Springer, 135–175.

[4] Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer, and Mas-
simo Tisi. 2020. A Model-Driven Approach to Unravel the Interoperability
Problem of the Internet of Things. In Advanced Information Networking and
Applications. 1162–1175.

[5] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. 2018. Systematic analysis
and evaluation of visual conceptual modeling language notations. In 2018 12th
International Conference on Research Challenges in Information Science (RCIS).
IEEE, 1–11.

[6] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. 2020. A survey of
modeling language specification techniques. Inf. Syst. 87 (2020). https://doi.org/
10.1016/j.is.2019.101425

[7] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software
engineering in practice. Synthesis lectures on software engineering 3, 1 (2017),
1–207.

[8] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2017.
Architectural programming with montiarcautomaton. ICSEA 2017 (2017), 224.

[9] Giuseppina Lucia Casalaro, Giulio Cattivera, Federico Ciccozzi, Ivano Malavolta,
Andreas Wortmann, and Patrizio Pelliccione. 2022. Model-driven engineering
for mobile robotic systems: a systematic mapping study. Softw. Syst. Model. 21, 1
(2022), 19–49. https://doi.org/10.1007/s10270-021-00908-8

[10] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas
Wortmann. 2020. Towards a Model-Driven Architecture for Interactive Digital
Twin Cockpits. In International Conference on Conceptual Modeling. Springer,
377–387.

[11] Pablo González-Nalda, Ismael Etxeberria-Agiriano, Isidro Calvo, and Mari Car-
men Otero. 2017. A modular CPS architecture design based on ROS and Docker.
International Journal on Interactive Design and Manufacturing (IJIDeM) 11, 4
(2017), 949–955.

[12] Yanxiang Guo, Xiping Hu, Bin Hu, Jun Cheng, Mengchu Zhou, and Ricky YK
Kwok. 2017. Mobile cyber physical systems: Current challenges and future
networking applications. IEEE Access 6 (2017), 12360–12368.

[13] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. 2016.
ThingML: a language and code generation framework for heterogeneous targets.
In Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. 125–135.

[14] Jerome Hugues, Anton Hristosov, John J Hudak, and Joe Yankel. 2020. TwinOps-
DevOps meets model-based engineering and digital twins for the engineering

1Source code repository: https://github.com/me-big-tuwien-ac-at/cpsaml

of CPS. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings. 1–5.

[15] Markel Iglesias-Urkia, Aitziber Iglesias, Beatriz López-Davalillo, Santiago Char-
ramendieta, Diego Casado-Mansilla, Goiuria Sagardui, and Aitor Urbieta. 2019.
TRILATERAL: A Model-Based Approach for Industrial CPS–Monitoring and
Control. In International Conference on Model-Driven Engineering and Software
Development. Springer, 376–398.

[16] Lisa Maria Kritzinger, Thomas Krismayer, Michael Vierhauser, Rick Rabiser, and
Paul Grünbacher. 2017. Visualization support for requirements monitoring in
systems of systems. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 889–894.

[17] John Mylopoulos. 1992. Conceptual modelling and Telos. Conceptual modelling,
databases, and CASE: An integrated view of information system development (1992),
49–68.

[18] Object Management Group. o.J.. SysML V2, OMG SysML. URL: https://www.
omgsysml.org/SysML-2.htm. [Accessed: 14.12.2020].

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[20] Ed Seidewitz. 2021. Intro to the SysML v2 Language-Textual Notation. https:
//github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc.

[21] IEC TC. 2003. 57," Communication networks and systems in substations–Part 7-4:
Basic communication structure for substation and feeder equipment–Compatible
Logical Node Classes and Data Classes. International Electrotechnical Commission,
Geneva, Switzerland, Draft Standard (2003), 61850–7.

[22] Dániel Varró and András Balogh. 2007. The model transformation language of the
VIATRA2 framework. Science of Computer Programming 68, 3 (2007), 214–234.

[23] Michael Vierhauser, Jane Cleland-Huang, Sean Bayley, Thomas Krismayer, Rick
Rabiser, and Pau Grünbacher. 2018. Monitoring CPS at runtime-A case study in
the UAV domain. In 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 73–80.

[24] Michael Vierhauser, Hussein Marah, Antonio Garmendia, Jane Cleland-Huang,
and Manuel Wimmer. 2021. Towards a Model-Integrated Runtime Monitoring
Infrastructure for Cyber-Physical Systems. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: New Ideas and Emerging Results. 96–100.

[25] Michael Vierhauser, Rick Rabiser, Paul Grünbacher, Klaus Seyerlehner, Stefan
Wallner, and Helmut Zeisel. 2016. ReMinds: A flexible runtime monitoring
framework for systems of systems. Journal of Systems and Software 112 (2016),
123–136.

[26] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1016/j.is.2019.101425
https://doi.org/10.1016/j.is.2019.101425
https://doi.org/10.1007/s10270-021-00908-8
https://github.com/me-big-tuwien-ac-at/cpsaml
https://www.omgsysml.org/SysML-2.htm
https://www.omgsysml.org/SysML-2.htm
https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc
https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc

	Abstract
	1 Introduction
	2 Background
	2.1 Model-Driven Development
	2.2 SysML 2
	2.3 Robot Operating System (ROS)

	3 Related Works
	4 Approach
	4.1 CPSAML to SysML transformation
	4.2 SysML to ROS transformation
	4.3 Code Generation
	4.4 Cockpit Dashboards

	5 Case Study
	5.1 ITS.cpsaml
	5.2 SysML 2 Modeling
	5.3 Cockpit

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

