Accepted for MODELS 2025. This is the camera-ready author version of the paper, the final version
is accessible via the IEEE Xplore digital library.

A Model Cleansing Pipeline for Model-Driven
Engineering: Mitigating the Garbage In, Garbage
Out Problem for Open Model Repositories

Andela Delic

Syed Juned Ali

Charlotte Verbruggen

TU Wien, Business Informatics Group TU Wien, Business Informatics Group TU Wien, Business Informatics Group

andjela.djelic@tuwien.ac.at

Julia Neidhardt
TU Wien, CDL RecSys
julia.neidhardt@tuwien.ac.at

Abstract—In data-driven research within Model-Driven En-
gineering (MDE), the extraction of conceptual models, such as
UML diagrams, from software repositories is a crucial step for
analyzing software design, evolution, and quality. However, these
extracted models often contain inconsistencies, redundancies, and
noise because most model repositories are not curated. Without
effective data cleansing, the reliability of empirical and machine
learning (ML)-based MDE studies working with these reposito-
ries is seriously threatened. This paper proposes a data cleansing
pipeline designed to effectively cleanse model repositories. Our
approach systematically addresses common data quality issues by
offering a sequence of automated pre-processing, validation, and
filtering steps based on rule-based heuristics and ML techniques.
By integrating conceptual modeling-specific data cleansing tech-
niques into an automated pipeline, our approach reduces manual
intervention, enhances reproducibility, and supports scalable
analysis of model repositories. In an experimental evaluation
of open-source UML diagram repositories, we demonstrate the
effectiveness of our method in cleansing models. In two repro-
ducibility studies, we further show the statistically significant
effect the use of our MCP4CM pipeline has on downstream tasks.

Index Terms—Model-driven engineering, Model repositories,
Open models, Machine learning, Data cleansing, UML.

I. INTRODUCTION

Model-Driven Engineering (MDE) has established itself
as a fundamental paradigm for managing the complexity of
software systems by leveraging high-level abstractions through
models [1]]. There exists a growing interest in applying data-
driven and machine learning (ML) techniques to MDE, aiming
to (semi-)automate modeling tasks such as model transforma-
tion, repository management and clone detection [2]]. ML for
MDE (ML4MDE) publications have tripled in the last five
years [3]]. Recently, advanced Al-based approaches such as
Deep Learning (DL) and Natural Language Processing (NLP)
have been applied for conceptual modeling to support Partial
Model Completion (PMC) [4]]-[6], automated domain model
extraction [7]], [8], model transformation [9]], [10]], metamodel
classification and clustering (MCC) [11]], [12]]. A recent sur-
vey [13] indicated the emerging role of AI in modeling.

syed.juned.ali@tuwien.ac.at

charlotte.verbruggen @tuwien.ac.at

Dominik Bork
TU Wien, Business Informatics Group
dominik.bork @tuwien.ac.at

However, realizing such applications critically depends on the
availability of high-quality datasets of conceptual models that
accurately reflect real-world software design.

In contrast to traditional ML domains where structured and
curated datasets are readily available (e.g., ImageNet [14],
UCI ML Repository [15[]), the modeling community lacks
large-scale, high-quality model datasets suitable for empirical
and ML-based studies. Several efforts have emerged to mine
software modeling artifacts from online repositories such as
GitHub, GenMyModel [16]-[19], or other model-sharing plat-
forms. While these repositories can potentially serve as a rich
source of models for MDE research, they are predominantly
uncurated, noisy, and inconsistent, and frequently contain
models that are syntactically valid artifacts yet semantically
meaningless, incomplete, or redundant.

Poor model quality poses a major challenge, as ML tech-
niques are highly sensitive to input data. Using models
extracted from public repositories “as-is” without adequate
cleansing and validation, the results of any subsequent data-
driven downstream tasks become unreliable. This undermines
both the validity and reproducibility of ML-based MDE re-
search. Surprisingly, despite the criticality of this issue, little
attention has been paid to this problem, particularly in the
context of preparing such data for ML applications.

As the modeling community increasingly embraces data-
driven approaches, the need for robust and scalable model
cleansing techniques becomes ever more pressing. We propose
an automated Model Cleansing Pipeline for Conceptual Mod-
els (MCP4CM) to empirically evaluate this claim, combining
general and modeling language-specific heuristics to ensure
the cleansed model datasets are semantically meaningful. We
reproduce two ML-based MDE studies to show the statistically
significant effect of using MCP4CM on downstream tasks
such as model domain classification. This paper addresses
the following research question: What is the effect of model
cleansing on downstream MIAMDE tasks?

In the remainder of this paper, Section [lI| discusses relevant

https://orcid.org/0009-0004-5666-6810
mailto:andjela.djelic@tuwien.ac.at
https://orcid.org/0000-0003-1221-0278
mailto:syed.juned.ali@tuwien.ac.at
https://orcid.org/0000-0003-0418-2633
mailto:charlotte.verbruggen@tuwien.ac.at
https://orcid.org/0000-0001-7184-1841
mailto:julia.neidhardt@tuwien.ac.at
https://orcid.org/0000-0001-8259-2297
mailto:dominik.bork@tuwien.ac.at
Dominik Bork
Accepted for MODELS 2025. This is the camera-ready author version of the paper, the final version is accessible via the IEEE Xplore digital library.

background and related works. Section [III| then introduces our
novel model cleansing pipeline. In Section[IV] we evaluate the
necessity and performance of our pipeline using reproducibil-
ity studies, where we show the effect of model cleansing
on downstream ML4MDE tasks and respond to our research
question. A comprehensive discussion of key findings and
implications of our work is presented in Section [V] before we
conclude this paper in Section

II. BACKGROUND AND RELATED WORKS

The subsequent section provides the background informa-
tion necessary for our model cleansing pipeline and its empiri-
cal evaluation. Firstly, an overview of the current landscape of
publicly available model repositories is provided, along with
an outline of works that utilize these repositories for ML-based
tasks in the MDE domain. We also examine prevalent data
quality issues encountered in model repositories, as well as
how these issues are usually addressed. We outline the typical
ML tasks and training strategies used in this context. Since
one of our reproducibility studies involves explainable ML,
the relevant explainability techniques are briefly reviewed as
well (see Fig. [3).

A. Model Repositories and Usage

Numerous open model repositories have been proposed in
various modeling languages such as ArchiMate [20] (977 mod-
els), Petri Nets [21]] (664 models), BPMN [22]] (174 models)
[23]] (25,866 models) [24] (25,590 models), Ecore [25] (555
models), OntoUML [26] (185 models) and UML [18]] (10,586
models) [17] (93,000 models). From these, only [18], [23]
and [25]] provide a labeled model dataset where each model
is tagged with relevant tags e.g., for the domain.

B. Related Works

Several works have used model datasets to train ML models
for modeling tasks. Ali et al. [6] use the OntoUML dataset
for training ML models to predict ontological stereotypes.
Lopez et al. [12], [27] have used UML and Ecore model
datasets [[18]] for modeling tasks such as domain classification,
model clustering, and model completion. Alcaide et al. [28]]
have also used the ModelSet dataset to apply explainability
techniques to interpret the predictions made by a trained ML
model for the tasks of dummy detection, domain classification,
and multi-label prediction. The following related works have
proposed dummy detection and duplicate removal (or clone
detection) techniques for data cleansing.

1) Dummy Filtering: A problem often encountered in
model repositories is the presence of numerous non-
informative models, e.g., trivial or placeholder diagrams, and
example models auto-generated by modeling tools. These ‘toy’
or ‘dummy’ models usually represent noise for ML models and
can affect their quality. In most MLAMDE applications (e.g.
Al-assisted modeling environments), they are not meaningful
data that ML models should learn from. However, in some
applications (e.g., dummy detection), the user might decide
to keep the dummy models in the model dataset. The threat

of training an ML model on low-quality data resulting in
the ML model learning non-meaningful patterns motivates
researchers to find ways to flag these trivial models. One
way to do this is by defining heuristics that detect noisy data
by focusing on the models’ content. This has been done for
BPMN models in [23]]. Alternatively, ML models for binary
classification can be trained to detect dummy models using
a labeled model dataset as training data, as demonstrated
in [28]. However, an ML-driven dummy detection approach
faces several challenges. It requires a labeled model dataset,
which leads to a chicken-and-egg problem whereby a clean
model dataset is needed to train an ML model to clean a model
dataset, and the trained ML model may not generalize well to
new models and overfit for a specific set of models.

2) Duplicate Filtering: Allamanis [29] has reported that
code repositories from sites such as GitHub contain substan-
tial amounts of duplicated code which can accidentally split
between training and test set, leading to inflated ML model
performance. Problems related to code clones, such as quality
degradation and maintenance issues, have been noted in the
MDE domain as well [30]. Nikoo et al. [31] and Babur et
al. [32]] propose four types of clones, characterized by varying
degrees of similarity. Model clone detection refers to the pro-
cess of identifying these duplicate or highly similar models (or
model fragments). In the context of ML-based MDE methods,
(near) duplicate samples in the model dataset can lead to
data leakage and overly optimistic results. Consequently, clone
detection in modeling has been explored in various modeling
languages like UML [30], BPMN [31], Simulink [33]], and
metamodels [32]]. Proposed techniques for model clone detec-
tion often fall into one of the following categories: structural-
based approaches, lexical-based approaches, or a combination
of the two.

3) Language Filtering: A model dataset can have models
created with element names in different languages. Non-
English element names can be considered noise for text-based
ML models, especially those trained largely on English text.
Therefore, filtering a model dataset based on language can be
a meaningful step. ModelSet [18|] provides a language tag,
allowing users to filter out all non-English models. However,
since most other model datasets do not have a language label,
automatic language detection is needed, as is done in [23]].

C. ML Tasks and Training

Model Encoding. Models need to be transformed into
suitable encodings for ML. These can include vector rep-
resentations (e.g., frequency counts or embeddings) based
on model elements such as names, types, and attributes.
Common enconding techniques include ¢) bag-of-words that
creates vectors of the size of the vocabulary with all the
indices of the terms present in the model, i7) term frequency-
inverse document frequency (TF-IDF) matrix, or i) word
embeddings, which is a representation of text where each word
has an associated vector and words with similar meanings have
similar vectors [34]).

ML Model Training. Model encodings are used to train ML
models for task-specific predictions. For dummy detection,
the ML model predicts whether the encoding corresponds
to a dummy model. For domain classification, it predicts
the correct domain class. For multi-label classification, it
predicts a probability matrix indicating the belonging of each
label to a model. Common classifiers are Feed-Forward Neu-
ral Networks (FFNN), Support Vector Machines (SVM), K-
nearest Neighbours (KNN), Naive Bayes (NB), and Random
Forest (RF). NB, a probabilistic classifier that assumes feature
independence, includes variants such as Gaussian NB (GNB)
for continuous data, Multinomial NB (MNB) for word counts,
and Complement NB (CNB) for imbalanced data.

Explainability. Alcaide et al. [28] provide an approach to
explain results based on feature importance using existing
explainability approaches. Global explainability approaches
help understand how a model makes decisions across the entire
dataset. A common method is Permutation Feature Importance
(PFD) [35]], which measures the drop in performance when
feature values are randomly shuffled. Larger performance
drops indicate more important features. Local explainability
approaches focus on individual predictions. Local Interpretable
Model-agnostic Explanations (LIME) [36] creates a simple
model (e.g., linear regression) to approximate how the complex
model behaves for one specific prediction by slightly tweaking
the input. SHapley Additive exPlanations (SHAP) [37] uses
game theory to fairly distribute ‘credit’ among all input fea-
tures, giving a solid but sometimes computationally expensive
explanation. Breakdown [38] works similarly to SHAP but
evaluates features step-by-step, making it faster but slightly
more order sensitive. Lion Forests (LF) [39] extracts knowl-
edge from Random Forests to provide local explanations.

D. Synopsis

While approaches for data cleansing exist, to the best
of our knowledge, there is no comprehensive, extensible,
and configurable automated pipeline specifically targeting the
cleansing of conceptual models for the purpose of enabling
ML or large-scale empirical research in MDE. Our work fills
a fundamental gap by systematically identifying data quality
challenges in model datasets and offering a scalable solution
tailored to the unique characteristics of MDE.

III. THE MCP4CM MODELS CLEANSING PIPELINE

In the following, we introduce MCP4CM, our model dataset
cleansing pipeline illustrated in Fig. [I} The top part of the
figure shows the steps involved in the model cleansing process
where the input to the pipeline is a model repository and
the output is a cleansed dataset of models. To implement
the entire cleansing process, MCP4CM involves three compo-
nents, namely, Model Dataset Parsing, Model Dataset Loading,
and Model Dataset Filtering. Below we discuss the core data
classes for each component. Fig. [I] also has classes with
‘X’ prefixed. These classes underpin the extensibility support
our pipeline offers such that it can be extended with further
data cleansing features and parsers for different modeling

languages. Duplicate detection and language detection are
dependent only on the list of names (and types) of model
elements extracted from XMI files. These can be configured
for any modeling language, using a proper parser for extracting
element names. Heuristics for dummy detection are similarly
applied to the list of names, however, they were drafted
for UML specifically. They could still be applied to other
modeling languages with small adjustments (e.g., different
stopwords). The user can adjust heuristics’ hyperparameters or
add custom heuristics. All existing thresholds are configurable
by the user depending on how rigorous the filtering should be.

A. Model Dataset Parsing

The model parser processes a dataset of model files of a
given modeling language in one of the serialization formats
using the method parse_model. The ModelParser class
is an abstract class that can be extended by the parsers of any
modeling language. Currently, our pipeline supports a parser
for UML that takes a model file in XMI format and returns an
object of a UMLMode1 class. To filter the models based on the
extracted data, the data is standardized by applying splitters
such as camel case and snake case. This filtering splits the
terms into individual lowercase terms.

B. Model Dataset Loading

To avoid reading and parsing the model from a file for every
operation, MCP4CM stores the model in memory. We store
the model and corresponding dataset in a data structure as
shown in the Model Dataset Loading step of Fig.[I] In general,
a model has five attributes, including an identifier (id) and
name. The names attribute stores the names of all elements
in the model, e.g., any element like a Class or a Relationship
that has the name attribute. We store the JSON or XMI serial-
ization of the model as well in the Model object. UMLMode 1
specializes Model and adds UML-specific properties such
as diagram_type (e.g., Activity Diagram and Sequence
Diagram) and names_with_types, which stores the names
of the elements along with their type information in the format
type:name e.g., for a Student class, the name would be
“class:Student”. A ModelDataset class is the general class
for loading and storing model datasets. Our pipeline currently
implements UMLDataset that extends ModelDataset. In
some cases, UML datasets can be of different types, e.g.,
an Ecore-based metamodel that supports only class diagrams
being used in ModelSet [40] or the complete UML metamodel
that supports different diagram types.

C. Model Dataset Filtering

Once we have a model dataset loaded, the core step of our
pipeline is model filtering. To make our pipeline extensible,
we created a general class ModelCleansingFilter. In
general, a dataset cleansing filter has a name and the attribute
key (model_key) on which the filter will be applied since
different types of filters will require different model informa-
tion. E.g., the dummy removal filter can require just the names
of the model elements, in which case we would only need

MCP4CM Pipeline -
model XM ————= Reference
o — —
parsing Models Dataset Filtered Models Dataset JSON
Models Repository applying cleansing filters Cleaned Models Repository > Composition
Models Dataset Parsing
ol XParser W ModelParser ~ UMLParser
|+parse7u del(modelFile): XModel N + parse_model(modelFile): Model g + parse_model(modelFile): UMLModel || | ----- Extensibility Support
Models Dataset Loading -
ModelDataset
9 +id: str —> Specialization
+ name: str
[. - o |tname:str l]-----
' + models: List{Model] [» '
') - List[JSON] + json: str '
E + to_json(): List[, + xemi: str : Abstract Class
: + names: List[str : + attribute: data type
' . * method(args): return
H L
! UMLModel XModel
XDataset UMLDataset i :
. T | p——— +d|agram7t:r:e. str Jistrst Concrete Class
+ type: ["Ecore" | "Gen odel" + names_with_types: list[str]
=entys + attribute: data type
thod| : ret
Models Dataset Filtering — + method(args): return
e ModelCleansingFilter
g UMLCleansingFilter B
+ name: str uses’ { S
An A
del_key: st S
+ Moce” Xoy: o1 UML Data Cleaning Knowledge Store 3 0y E
| | 1
I I 1 UMLLanguageFilter UMLDummyFilter UMLDuplicationFilter Model Cleansing Filter
XDuplicationFilter| | XDummyFilter | [XLanguageFilter + match_pattern: str =| | + match_pattern: str || + duplication_type:
model.language = 'en' | | = 30% dummy str = 'HASH' | 'TF-IDF'

Fig. 1: MCP4CM Overview

the model.names attribute, whereas a filter based on the
model elements’ type information requires the model_key
to be names_with_types. Different types of filters can be
implemented for a given modeling language. In MCP4CM, we
currently support three kinds of filters: i) Dummy Filtering, ii)
Duplicate Filtering, and iii) Language Filtering.

1) Dummy Filtering: For developing the heuristics, two
modeling experts collaboratively defined a set of character-
istics indicative of a dummy UML model (e.g., few elements
or short element names, similar to the heuristics introduced in
[]2;3[]). Then, we verified and refined these characteristics by
manual inspection of a large sample of the ModelSet models
that were detected as dummy by the initial heuristics. The
heuristics were iteratively improved until all detected models
are considered dummy models. For the detection of dummy
models, we defined the following four heuristics. The user can
choose to select a subset or all of them.

« Name length < MEDIAN_NAME_LENGTH (default value
=4) OR MIN_NAME_LENGTH_THRESHOLD% (default
value = 30%) of the names of elements in a model
with string length < MIN_NAME_ LENGTH (default value
= 2). This heuristic is aimed at selecting models with
meaningful element names and avoiding models that have
many elements names following patterns as ‘al’, ‘b2’, ‘x

>

y’.
Dummy class names - dummy models often have ele-
ments with names like ‘class1’, ’class A’, ‘my class’. We
put a threshold DUMMY_CLASSES_THRESHOLD (de-

fault value = 0.3) on the fraction of such names a model
can have to be considered a valid model.

Stopword keywords - Based on manual inspection, we
curated a list of frequent UML keywords, e.g., ‘control
flow’, ‘opaque action’. If the fraction of element names
that are stopwords exceeds STOPWORDS_THRESHOLD
(default value = 0.4) of names that are dummy exceeds,
we consider the model as a dummy model.

General Pattern - Users can define their own regex pat-
terns along with a GENERIC_PATTERN_THRESHOLD
(default value = 0.3) that can be used to filter out dummy
models. E.g., there are several models with names ‘attl’,
‘attrl’ therefore we added a pattern that detects such cases
as an instance of a general pattern.

Note that multiple heuristics can be applied together. There-
fore, there can be an overlap. Furthermore, it is crucial to
note that our set of heuristics is specific to UML models
as they were curated by manual inspection and exploration
of UML models. Therefore, while users can directly use
these dummy detection heuristics, they are not exhaustive.
MCP4CM encourages users to define their own heuristics for
dummy filtering based on their dataset and its inspection.

2) Duplicate Filtering: As described in Section[[l] a dataset
can contain a lot of duplicate models, therefore, duplicate fil-
tering is a crucial step. Currently, two techniques of duplicate
filtering are implemented in MCP4CM.

« Hash-based Duplicate Filtering - this approach enables

exact matching of models based on the hash of the data

TABLE I: Cleansing results of each MCP4CM technique
applied to ModelSet

Type Technique #Detected %Detected
Dummy Filtering Name Length Filter 188 3.67%
Dummy Class Names 288 5.62%
Dummy Keywords 111 2.16%
General Pattern Filter 176 3.43%
Duplicate Filtering Hash 2043 39.90%
TF-IDF 3754 73.32%
Language Filtering Exclude Non English 677 13.22%

extracted from the model_key of a model.

« Vector-based Duplicate Filtering - this is an ad-
vanced vector-based similarity approach for perform-
ing duplicate filtering. Similar models are identified
by the cosine similarity between their TF-IDF vectors.
Two models with a similarity score greater than a cer-
tain threshold TFIDF_SIMILARITY_THRESHOLD (ad-
justable, default value = 0.8) are considered duplicates.

3) Language Filtering: For language detection, we used the
python library langdetectﬂ Since type names in the original
XMI files are set by the modeling tool, they are often in
English regardless of the language(s) of the model. Therefore,
only the element names are used in this step.

Note that all the parameters (e.g., MIN_NUM_ELEMENTS,
TFIDF_SIMILARITY_THRESHOLD) in the ﬁ]tering steps
are configurable parameters in MCP4CM that users can easily
change based on their requirements and needs. The default
thresholds balance the trade-off between identifying problem-
atic models and avoiding false positives (e.g, a non-dummy
model can have a few short element names like ‘TV’).

IV. EVALUATION

In the following, we present an empirical evaluation of our
framework. First, we evaluate the effectiveness of MCP4CM in
cleansing the ModelSet [40] dataset. Afterward, we underpin
the necessity of our pipeline by evaluating its impact in the
context of two reproducibility studies that largely rely on
manually assigned labels to filter out noisy data. For this
purpose, two MLAMDE studies from the related literature that
also utilize the ModelSet dataset were selected ([27], [28]).
A reproducibility package for all experiments is provided as
supplementary material for this paper ﬂ

A. Dataset Description

ModelSet is a labeled dataset of 5,466 Ecore meta-
models and 5,120 UML models, specifically created to en-
able ML research in the MDE domain. The models were
collected from GitHub and GenMyModel and labeled using
the semi-automated Greedy Methodology for Fast Labeling
(GMFL) [18]. Each UML model is assigned a category
(main label) that represents the domain of the model. There
are two special cases within the category label: ‘unknown’,

Uhttps://pypi.org/project/langdetect/
Zhttps://doi.org/10.5281/zenodo. 15877865

—=— Number of Duplicate Groups

g g H

Number of Duplicate Groups

5
g

—e— % Near Duplicates Relative to Similarity Threshold o

00 02 04 06 08 10 00 02 04 06 08 10

similarity Threshold similarity Threshold

Fig. 2: TF-IDF % Near Duplicate and Duplicate Groups vs
Similarity Threshold

used when the category of the model was not identifiable,
and ‘dummy’, representing trivial models. Additional label
tags contain keywords that provide further context to the
main label. ModelSet offers multiple data formats to support
different ML approaches, i.e., raw XMI that preserves a
model’s original structure and metadata, a .txt file that contains
extracted names of the model elements, and a file with a graph
representation of the model. Finally, ModelSet contains a table
with extracted numerical features that represent the number of
times a specific element is present in a particular model.

B. Cleansing ModelSet with MCP4CM

Table [I] shows the result of applying each MCP4CM filter
separately on all the 5,120 ModelSet models. In each case, we
considered the default values of the configuration parameters.
In the case of hash duplicate filtering, which involves an
exact match, we see that around 40% of the models are
exact duplicates. This should be of crucial interest to anyone
interested in using the ModelSet out of the box. We further
see that TF-IDF duplicate filtering with a threshold of 0.8
identifies more than 70% of the models as duplicates. Fig. 2]
shows the duplicates found relative to the chosen similarity
threshold (left) and the number of groups of similar models
(right). The total unique models are the set of models that have
no duplicates and models that represent groups of duplicates.

ModelSet includes manual annotations of which models
are dummy models. We can compare these annotations with
the dummies detected by MCP4CM. Out of the 606 models
that are labeled as dummy in ModelSet, 60 models are not
flagged by the MCP4CM heuristics. Note that these numbers
might contain duplicate models. The heuristics are general
rules, so care should be taken to avoid labeling non-dummy
models as dummy models (minimizing false positives). With
manual inspection of each model, as is done with manual
annotations, this is not an issue. Therefore, the heuristics
may identify fewer dummy models. On the other hand, the
heuristics identify 28 dummy models that are not labeled
as dummy in ModelSet. There are several reasons why the
heuristics identify these models as dummies; some models
were labeled ‘unknown’ in ModelSet, and in other models,
a portion of the elements have dummy names.

ModelSet also contains manually annotated language tags.
Since the model files can contain words in different languages
and each model only gets one tag, we compare the tags to the
language filtering of MCP4CM. 4,497 models were tagged as

https://pypi.org/project/langdetect/
https://doi.org/10.5281/zenodo.15877865

Legend

MS :ModelSet
* : cleansing technique was replaced by
the equivalent technique from MCP4ACM
: cleansing technique from MCP4CM was
added
number of left models in ModelSet after
each step for replication of original
method (#,) and for replication with
MCP4CM (#,)

*%

5120|1355

Numerical
features

ol

Dummy detection ** 11293
Filter: dummy/unknown 4069|995
Filter: categories 2534|627

: 2534|627
|

»
/ MS”,
Dummy detection **
Standardization

5120|1355 - 1293
Filter: tags
_—

5
51|15
] l

Duplicate detection**
Identification of
non-informative features
|
\4
190 Cleansing &

Numerical
features

51|15

MS’
|
| »
T~
Numerical
features

Global explainability metric \;

Importance permutation] 5

3

g

Local explainabilitymetrics [Q

q

g

o

~ Predictions g

3

Global explainability metric §

Importance permutation] §

5

&

Local explainability metrics 2

g

s

~ °
Predictions

L

Iy

Global & Local explainability metric 5';

r? LF 3

——J S

3

=

3

Fig. 3: Methodology for RS,

English in ModelSet and 4,443 English models were identified
by MCP4CM, with a strong overlap of 4,224 models.
Overall, our results show that without systematic data
cleansing, a dataset can contain a large number of models
of at least questionable quality that can severely affect the
training of ML models and, subsequently, the effectiveness of
the ML downstream tasks. To demonstrate the need for and
the effectiveness of MCP4CM, we reproduce the experiments
of two exemplary studies on MLAMDE. Given that the initial
version of MCP4CM contains cleansing techniques for UML
models, we selected studies that use UML data from ModelSet.
First, the experiments are replicated as-is to ensure that the
results of the downstream tasks can be reproduced exactly.
Then we replicate the tasks after applying MCP4CM to
investigate the effect of the pipeline on the final results.

C. RSy: Replication Study 1

Description. In this study, the authors train ML models to
perform three classification tasks on the ModelSet dataset:
Dummy Model Detection (DMD), Model Classification (MC),
and Model Tag Prediction (MTP) [28]]. After training their ML
models, they generate global and local explanations.

Data Cleansing and Model Training. Fig. [3| presents
an overview of the methodology of this study. The authors
perform several data cleansing steps, both in general and
specifically for each task. The general data cleansing consists
of dropping noninformative features based on an exploratory
analysis and a correlation analysis, and standardization of the
numerical features using z-score normalization.

For the DMD task, only general cleansing steps were per-
formed, after which three separate classifiers were built (KNN,
SVC, and RF). For each, hyperparameters were tuned using a
grid search approach with 5-fold cross-validation followed by

global and local explainability approaches (global: permutation
feature importance; local: LIME, SHAP, and Breakdown).

For the MC task, the dataset was further cleansed by filtering
out models categorized as ‘dummy’ or ‘unknown’ and models
that belong to infrequent categories. Then, the same classifiers
and explainability metrics of the DMD task were applied.

The final MTP task is a multi-label classification task where
each model can be associated with more than one tag. To
mitigate low label density, further processing of the dataset
was needed to remove those models that contained no tags, or
only a single tag [28]]. In contrast to the other two tasks, there
are not many explainability approaches supported for MTP. As
aresult, only the RF classifier was built due to its compatibility
with LionForests (LF) which is capable of generating label-
specific explanations for multi-label classification.

After training the classifiers with original data and the data
cleansed after applying MCP4CM, we evaluate the signifi-
cance of the difference in the ML model performance using a
Shapiro test [41] to test for normal distribution in 100 runs. If
the results are not normally distributed, significance is tested
with a Mann-Witney U test [42]. Otherwise, we conduct an
independent t-test to check significance.

Replication Results. We replicate this study by running the
provided replication package and obtained the same results.
Then, we replicate the study again while including techniques
from the MCP4CM pipeline. In particular, we perform du-
plicate filtering for all three tasks and dummy filtering for
the model classification and tag prediction tasks (see Fig. 3).
We do not include the dummy filtering from MCP4CM for
the dummy detection task because this task aims to learn the
dummy detection features from the data itself. Therefore, we
need valid and dummy models in the dataset.

We conduct the experiments 100 times with the best found

TABLE II: Comparison of metrics for the Dummy Detection and Model Classification from the RS; between the original and
MCP4CM cleansed data, averaged on 100 runs. Bold values show statistical significance compared to the original, o = 0.05

Dataset Task Classifier ~ Best params Balanced Precision (Avg Recall (Avg + F1-Score (Avg
Accuracy (Avg + SD) SD) + SD)
+ SD)
Original Dummy svC C: 300, cw: None, ~: 0.1, k: rbf 0.88 + 0.02 0.87 + 0.03 0.77 £+ 0.03 0.82 £+ 0.02
MCPACM Dummy svC C: 1000, cw: None, v: 1.0, k: rbf 0.65 + 0.04 0.44 + 0.09 0.33 + 0.08 0.37 + 0.07
Original Dummy KNN Is: 5, nn: 3, p: 1, w: distance 0.88 £ 0.01 0.89 + 0.05 0.78 4+ 0.03 0.83 £+ 0.03
MCP4CM Dummy KNN Is: 5, nn: 2, p: 1, w: distance 0.68 + 0.04 0.49 + 0.09 0.38 + 0.08 0.43 + 0.07
Original Dummy RF cw: None, md: None, msl: 1, mss: 5, ne: 300 0.88 + 0.01 0.95 £ 0.02 0.78 £ 0.03 0.85 £ 0.02
MCP4CM Dummy RF cw: balanced, md: None, msl: 3, mss: 2, ne: 100 0.70 £ 0.04 0.41 £ 0.09 0.44 £+ 0.09 0.41 £ 0.07
Original Multiclass SvC C: 500, cw: None, ~: 0.1, k: rbf 0.76 £ 0.01 0.79 £ 0.01 0.76 £ 0.01 0.78 £ 0.01
MCP4CM Multiclass ~ SVC C: 10.0, cw: balanced, ~: 0.1, k: rbf 0.29 + 0.03 0.30 £+ 0.03 0.29 + 0.03 0.28 + 0.03
Original Multiclass ~ KNN Is: 50, nn: 3, p: 1, w: distance 0.79 £ 0.01 0.79 + 0.02 0.79 4+ 0.01 0.79 £ 0.02
MCP4CM Multiclass KNN Is: 50, nn: 10, p: 1, w: distance 0.30 £+ 0.02 0.29 + 0.03 0.30 £ 0.02 0.29 + 0.02
Original Multiclass ~ RF cw: None, md: None, msl: 1, mss: 2, ne: 200 0.79 £ 0.01 0.83 £ 0.02 0.79 £ 0.01 0.81 + 0.01
MCP4CM Multiclass RF cw: balanced, md: 10, msl: 1, mss: 3, ne: 100 0.33 + 0.03 0.32 + 0.03 0.33 £+ 0.03 0.32 £+ 0.03
0.6 | SVC Dummy Original RF Dummy Original KNN Dummy Original
SVC Dummy MCP4CM 0l ‘ RF Dummy MCP4CM 0.4 ‘ KNN Dummy MCP4CM
0.57
% 0s
s 5 ¢ |
§ o2 ok § o2 | g o
4 } ‘ 4 o ¢ { | }
Loz l = ool
i1 }‘ - ‘ } o M ‘MW\‘M‘I‘ 1
‘ | | I i ool | { ‘\ ‘H vy of o 00 i
0.0 L b - F v
4§ £ £ 5 % 5 55 2§ & 5 % 4 § £ 2 5 ¢ & § & § & 8 8§ £ 2 5 ¢ & & & % 2
¢ 285 547558 £ 5y R £ 5 y v 5 2 5 ¢ °
z 2 2 5 s z s & =
Feature Feature Feature
(a) PFI with SVC (b) PFI with RF (c) PFI with KNN

Fig. 4: Comparison for global permutation feature importance results of DMD of the RS,

TABLE III: Comparison of the performance metrics for MTP
from the RS; between original and MCP4CM cleansed data
across different classifiers, averaged on 100 runs. Bold values
show statistical significance compared to the original, o = 0.05

Dataset Best params Precision Recall F1-Score
Macro Macro Macro
(Avg+SD) (Avg+SD) (Avg+SD)
Original md: 7, mf: sqrt, b: True, 0.43£0.06 0.4240.08 0.41£0.07
msl: 1, ne: 500
MCP4CM md: 5, mf: None, b: True, 0.3740.11 0.4140.11 0.38+0.10

msl: 1, ne: 10

hyperparameters and the results are averaged to account for
different train-test splits. Table [[I] presents the reproduced
results from the study and the results produced after applying
MCP4CM for the DMD and MC tasks. Table [[IIl shows the
results for the MTP task.

Our results show that for all the trained classifiers, the dif-
ference between not applying and applying the MCP4CM
techniques is significant for DMD and MC tasks. The results
consistently show that the performance of the trained ML
models decreases while using the cleansed dataset. In the case
of MTP, we get significant results except for recall. However,

study with SVC, RF, and KNN

the pattern is still followed, i.e., the scores for the cleansed
dataset drop in comparison to the original dataset. These
results indicate an inflation of results due to data quality, more
specifically data duplication.

We also replicate the explainability approaches as presented
in the original study. Regarding global explainability that
explains the importance of features in a given ML model
performance, Fig. @ and Fig. [5] show the comparison between
the features importance results obtained in the original study
and the ones obtained after applying MCP4CM across all
three classifiers for DMD and MC, respectively. Fig. [6] shows
the same comparison for MTP and RF classifier. The figures
show notable differences in the contribution of the features
between the two setups in each of the three tasks and for
each of the applied classifiers. Fig. fa] shows that when using
the MCP4CM cleansed ModelSet compared to the original
one, not only the individual importance of a given feature
towards F1-score changes (in some cases significantly drops
and in some cases increases) but also the relative importance
of the features changes. For e.g., the features ‘type_Operation’,
‘type_UseCase’, ‘type_Actor’ follow a decreasing order of
relative importance for the original dataset whereas these

SVC Multiclass Original 0.175
SVC Multiclass MCP4CM ‘
0.150

0.125
0.100

0.075 ‘

Mean F1-Score decrease
Mean F1-Score decrease

0.050

o
°
@

0.025

B

0.000

KNN Multiclass Original

RF Multiclass Original
‘ KNN Multiclass MCP4CM

RF Multiclass MCP4CM

Mean F1-Score decrease

=

°
°
8

type_Class
type_Actor
type_State

type_Activity

type_Property
type_Relationship
type_Operation
type_UseCase
type_Component
type_Enumeration
type_Package
type_DataType
type_Transition
type_Property
type_Relationship
type_Package
type_UseCase

Feature

(a) PFI with SVC

Fig. 5: Comparison for global permutation feature importance results

LF Multilabel Original
LF Multilabel MCP4CM

Feature Importance
s @ 3 &

g

type_Property
type_Activity ;
type_UseCase
type_Actor
type_Class |
type_Operation
type_DataType ;
type_Component |

type_Relationship

Feature

Fig. 6: Comaprison for global LF results for MTP of RS;

features follow an increasing order of relative importance
for our cleansed dataset. This indicates the effect of using
MCP4CM on the explainability of the results. In the case of
explainability of the MTP task, we get a similar pattern in
Fig. [6] whereby a cleansed ModelSet leads to a difference in
the individual and relative importance of features.

We also replicated the local explainability results. However,
these are difficult to compare as the cleansing of the dataset
results in different instances being chosen for calculating the
local explanations in each setting. Given that the most frequent
classes are selected for the classification task, cleansing the
dataset changes the distribution of the most frequent classes
as well. Therefore, very different classes are selected in our
case for the classification in the second and third tasks.
Since the results so far already demonstrate the impact of
applying additional cleansing techniques, we do not discuss the
replication of the local explainability results here. Interested
readers can consult the results of this replication study in the
supplementary material for more information

D. RS>: Replication Study 2

Description An overview of different ML models for model
classification is provided in [27]. The authors investigate
the effects of different ML models, different software model

3https://doi.org/10.5281/zenodo. 15877865

type_Operation

Feature

(b) PFI with RF

type_Actor
type_State

type_Class
type_Actor
type_Class

type_Activity

type_Activity
type_Property
type_UseCase
type_Package

type_DataType

type_Enumeration
type_Component
type_Operation
type_Enumeration
type_Relationship
type_Component
type_DataType
type_Transition

Feature

(c) PFI with KNN
of MC of the RS; with SVC, RF, and KNN

encodings, and duplication in ModelSet. The replicated portion
of the methodology of this study is presented in Fig.

Data Cleansing and Model Training. The data cleansing
consists of three steps. The first step is to filter out models
belonging to infrequent categories (with less than seven mod-
els), models of the category ‘dummy’ and ‘unknown’, and
models that are not in English (based on the tags). The second
(optional) step consists of detecting and removing duplicates.
Duplicates are detected by an algorithm adapted from [29]
using the Jaccard similarity to calculate the similarity between
models. In the third step, models that are part of infrequent
categories (with less than 10 occurrences) are removed.

The resulting model dataset is encoded as numerical feature
vectors, and ML models are trained with a 10-fold validation
approach. The analysis is conducted on the Ecore and UML
dataset with and without duplicates. The results show that
FFNN and SVM perform the best in all scenarios. The best-
performing encoding techniques are TF-IDF for Ecore models
and word embedding for UML. Overall, the accuracy of
all methods decreases after dropping duplicate models. The
authors suggest that detecting and removing duplicates is an
important avenue for future work in MLAMDE.

To demonstrate the effect of the MCP4ACM cleansing tech-
niques, we replicate the portion of this study that works
with the TF-IDF and word embeddings of the deduplicated
UML ModelSet and obtain the same results. Then, we repli-
cate the study with following alterations to the methodol-
ogy: we substitute the original duplicate detection algorithm
with that of MCP4ACM and replace tag-based language fil-
tering with MCP4CM’s language detection to filter out non-
English models. Additionally, dummy models are filtered
using MCP4CM’s dummy detection, and all models labeled as
‘dummy’ or ‘unknown’ in the original ModelSet are excluded
to avoid leftover classes irrelevant for model classification.
We train the ML models as provided in the original study
with the cleansed ModelSet as shown in Table For this
study, we conducted the experiments 30 times with the best
hyperparameters. The difference in the number of runs for RS
and RS» comes from the fact that training of neural networks

https://doi.org/10.5281/zenodo.15877865

Legend

MS :ModelSet
-&n Dummy detection ** 1293 * :cleansing technique was replaced by the
g Filter: non-English models** 971 equivalent technique from MCP4CM
E Filter: dummy/unknown 868 ** :cleansingtechnique from MCP4CM was added
(z) Duplicate detection* Filter: categories 733 # :number of left models in ModelSet after each step
N [
;
5120 1355 . 733 FENN
= Cleansing MS” Cleansing MS]
MS _—
SVM)
Text
TF-IDF NN)
£]JJ
Filter: non-English models Naive Bayes models
Filter: dummy/unknown
Filter: categories Duplicate detection Filter: categories FENN]
I | |
S0 .
£ 5120 i 3768 v 1437 v 1317 Word Embeddings SVM]
S Cleansing Cleansing Cleansing
g MS |—— | M8 |—— | M8 [———— [MS” KNN]
E Text
5
O

Fig. 7: Methodology for RS,

(as done in RS7) requires more time than training of traditional
ML models (as done in RS;). Having in mind that statistically
stable results can be expected after 30 runs [43]], we consider
this sufficient.

Replication Results. The original study already notes that
accuracy drops when duplicates are removed, compared to
when they are retained. Table [[V] compares RS, performance
on original vs. MCP4CM-cleansed data across classifiers,
showing significant performance changes across all ML mod-
els except KNN and GNB. It also highlights the original
ranking of each ML model and how these rankings change
with MCP4CM cleansing.

It is interesting to note that the accuracy increases on the
MCP4CM-cleansed dataset compared to the original. One
potential explanation is that applied cleansing procedures
result in a dataset with fewer trivial or noisy models, which
can benefit representation learning techniques. TF-IDF and
word2vec embeddings derived from less noisy and more
consistent input data have the potential to improve the per-
formance of downstream models. In contrast to RSy, where
numerical features may insufficiently capture model semantics,
RS; relies on embeddings that can benefit more directly from
the quality of input data. In general, the findings of RS,
demonstrate that cleansing techniques used in a project can
significantly impact the results of the model classification task.

V. DISCUSSION

In this paper, we identified a research gap in the do-
main of ML4AMDE. In this domain, ML models are ap-
plied to model datasets. These model datasets, albeit their
wide adoption, come with an untested overall quality. While
MLAMDE has gained interest in the last years, the reported
preprocessing is usually limited to a specific project. A
comprehensive overview of general and modeling-language-
specific data cleansing approaches for model datasets is lack-
ing. We propose the first iteration of MCP4CM with three
components: Model Dataset Parsing, Model Dataset Loading,
and Model Dataset Filtering. Currently, the components of

MCP4CM have been implemented for UML models. However,
the pipeline is constructed to be highly extensible and is
released open source. It provides support for extending the
implementation for other modeling languages in the futureE]
In RS;, we demonstrated the importance of removing dupli-
cate models from an existing model dataset (ModelSet) before
training ML models, as this may lead to data leakage and
inflate the results. As reported in related work by Nikoo et
al. [31]] and Babur et al. [32], model clones are not only models
that are exact matches but also models that have a high degree
of similarity. Additionally, the same model can be collected
from repositories from different modeling tools that each add
different meta-data in the XMI files. The MCP4CM duplicate
detection algorithms take all of these concerns into account.
The replication study shows a significant drop in evaluation
metrics for all classifiers in all three tasks, demonstrating the
impact of removing duplicate models. This leads to our first
implication - Model Cleansing has a significant impact on the
ML model performance in MLAMDE tasks. Our results show
the impact of cleansing not only on the model performance
but also the explainability of the results. The results show that
depending on the data quality, an ML model can prioritize dif-
ferent sets of features while classifying a model into a specific
class. This result is crucial in underpinning the importance of
model cleansing in ML4AMDE tasks. This leads to our second
implication - Model cleansing has a remarkable impact on the
ML model’s performance explainability in MLAMDE tasks.
RS2 demonstrates how different implementations of cleans-
ing techniques can significantly affect the accuracy of the
ML models. We replicated a subset of the ML models
from the study, first with the original cleansing methods and
then with the MCP4CM cleansing methods. Our replication
study showed consistently significant results, thereby provid-
ing further empirical evidence supporting the claim that model
cleansing has a significant impact on ML models’ performance
in MLAMDE tasks. Furthermore, RS, provided a counterintu-

“Duplicate detection and language detection depend only on the model
element names (and types) and can be configured for any modeling language.

TABLE IV: Comparison of the performance metrics for RS, between the original and MCP4CM cleansed data across different
classifiers, averaged on 30 runs. Bold MCP4CM values are significantly different from the original, o = 0.05

Model Encoding Original Acc. MCP4CM Acc. Original Best hyper. MCP4CM Best hyper. Original MCP4CM
Rank Rank
FFNN TFIDF 0.758409 £ 0.034741 0.782893 + 0.031025 hidden layer = 50 hidden layer = 200 1 3
FFNN WordE 0.750704 £ 0.025532 0.791098 + 0.034357 hidden layer = 150 hidden layer = 200 2 1
SVM WordE 0.738369 £ 0.032936 0.790480 + 0.038238 kernel = rbf, C = 100 kernel = rbf, C = 10 3 2
SVM TFIDF 0.730103 + 0.030521 0.772314 + 0.038073 kernel = linear, C = 10 kernel = linear, C =10 4 4
CNB TFIDF 0.692885 £ 0.031471 0.747527 + 0.035903 alpha = 0.1 alpha = 0.1 5 5
KNN TFIDF 0.674414 £ 0.030267 0.721247 + 0.035361 k=1 k=5 6 6
KNN WordE 0.667139 £ 0.037451 0.684065 4+ 0.045898 k=1 k=4 7 8
GNB TFIDF 0.618875 4+ 0.038091 0.636232 + 0.039672 - - 8 9
MNB TFIDF 0.616596 £ 0.021059 0.713169 + 0.041369 alpha = 0.1 alpha = 0.1 9 7

itive result that removing duplicates increased classification
accuracy when the intuitive assumption would be that the
presence of duplicates inflates accuracy and, thereby, as seen in
the results of RS, the performance should decrease. However,
we get an increase in performance. This can be explained
by the impact of data quality on data representation, i.e., the
model encodings in the form of TF-IDF or Word Embeddings
that are generated using better quality data and thus form
the input data for the ML model to perform classification.
Data of better quality can provide better distinguishing signals
to an ML model and thereby increase its performance. This
result is also consistent with the existing studies [44], [45]
that investigate how factors like accuracy, completeness, and
consistency in training and test data are crucial for developing
reliable models and show that data quality, rather than quantity,
play a more significant role in enhancing model accuracy.
This result provides us with our third implication - Model
cleansing has a remarkable impact on the model encoding, i.e.,
its vector representation using TF-IDF or Word Embeddings.
The quality of vector representations subsequently impacts the
performance of the ML model in downstream ML4AMDE tasks.

Together, the two replication studies answer our research
question. Both studies show (mostly) significantly different
results with the MCP4CM pipeline. We did not investigate the
individual importance of each cleansing filter. It is therefore
not possible to explain how different cleansing techniques af-
fect the accuracy of ML techniques solely based on the repro-
ducibility studies we performed. Further research is required
to identify causalities and formulate concrete guidelines.

Threats to Validity. There are several factors that may
impact the validity of our findings. i) Conclusion Validity:
The effectiveness of our cleansing pipeline is contingent on the
quality of the initial datasets. We noted that around 40% of the
models were exact matches, which may not be true for differ-
ent datasets and thereby can indicate a potential overestimation
of our results, ii) External Validity: The generalizability of our
pipeline to entirely new domains, e.g., models in the medical
domain, remains uncertain. Further validation is necessary to
confirm its efficacy across broader applications and real-world
scenarios and i) Conmstruct Validity: Performance metrics
used to evaluate the effect of our cleansing pipeline may
not fully capture all dimensions of model improvement and
therefore, additional assessments that capture the causality of

our results may be required to obtain a holistic understanding
of the benefits of our work.

VI. CONCLUSION

In this paper, we introduced MCP4CM, a comprehensive,
out-of-the-box usable and highly configurable model cleansing
pipeline aimed at enhancing the quality of model repositories
used to train ML models and thereby enhance the reliability of
ML models. By implementing a systematic approach to data
cleansing by means of dummy filtering, duplicate removal,
and language-based filtering, MCP4CM ensures robustness in
several downstream MLAMDE tasks such as dummy model
detection, domain classification, and tag prediction. Our ex-
periments demonstrate a significant impact not just on the ML
model’s accuracy but also a clear difference in explainability.
Therefore, our results underscore the necessity to mitigate the
garbage in, garbage out problem. It is important to note that
the objective of our work was not to show our approach
outperforms existing works or to even discredit the works
we reproduced. Instead, our focus was to show that model
cleansing has a measurable impact on MLAMDE research.

Overall, there are many avenues for future work in this
domain. In the general domain of ML, there has been research
on the effect of data quality and preprocessing on the results of
ML approaches [46]. In the domain of ML4MDE, similar re-
search efforts should be made to identify model dataset quality
characteristics and cleansing practices. MCP4CM establishes
a first step toward a comprehensive, open pipeline of model
dataset cleansing. Such a pipeline would facilitate research
convergence, enable benchmarking and comparability of ML-
and data-driven MDE research. We release MCP4CM open
source for researchers to use and extend it Fl

ACKNOWLEDGEMENTS

This study was supported by the TU Wien Career Grant
‘Recommender Systems in Model-driven Engineering’. J. Nei-
dhardt gratefully acknowledges financial support from the
Austrian Federal Ministry of Labour and Economy, the Na-
tional Foundation for Research, Technology and Development,
and the Christian Doppler Research Association.

Shttps://github.com/junaidiiith/model-cleansing/

https://github.com/junaidiiith/model-cleansing/

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

N. Bencomo, J. Cabot, M. Chechik, B. H. Cheng, B. Combe-
male, S. Zschaler et al., “Abstraction engineering,” arXiv preprint
arXiv:2408.14074, 2024.

M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1-207, 2017.

A. C. Marcén, A. Iglesias, R. Lapefa, F. Pérez, and C. Cetina, “A
systematic literature review of model-driven engineering using machine
learning,” IEEE Trans. Software Eng., vol. 50, no. 9, pp. 2269-2293,
2024.

M. B. Chaaben, L. Burgueiio, I. David, and H. A. Sahraoui, “On the
utility of domain modeling assistance with large language models,”
CoRR, vol. abs/2410.12577, 2024.

M. Weyssow, H. Sahraoui, and E. Syriani, “Recommending metamodel
concepts during modeling activities with pre-trained language models,”
Software and Systems Modeling, vol. 21, no. 3, pp. 1071-1089, 2022.
S. J. Ali and D. Bork, “A graph language modeling framework for
the ontological enrichment of conceptual models,” in International
Conference on Advanced Information Systems Engineering. Springer,
2024, pp. 107-123.

C. Arora, M. Sabetzadeh, S. Nejati, and L. Briand, “An active learning
approach for improving the accuracy of automated domain model ex-
traction,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 1, pp. 1-34, 2019.

R. Saini, G. Mussbacher, J. L. Guo, and J. Kienzle, “Domobot: A
modelling bot for automated and traceable domain modelling,” in 2021
IEEE 29th International Requirements Engineering Conference (RE).
IEEE, 2021, pp. 428-429.

L. Burgueiio, J. Cabot, and S. Gérard, “An Istm-based neural network
architecture for model transformations,” in 22nd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and
Systems, MODELS 2019, Munich, Germany, September 15-20, 2019,
M. Kessentini, T. Yue, A. Pretschner, S. Voss, and L. Burguefio, Eds.
IEEE, 2019, pp. 294-299.

K. Lano, S. Kolahdouz-Rahimi, and S. Fang, “Model transformation
development using automated requirements analysis, metamodel match-
ing, and transformation by example,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 2, pp. 1-71, 2021.
P. T. Nguyen, D. Di Ruscio, A. Pierantonio, J. Di Rocco, and L. Iovino,
“Convolutional neural networks for enhanced classification mechanisms
of metamodels,” Journal of Systems and Software, vol. 172, p. 110860,
2021.

J. A. H. Lépez, J. S. Cuadrado, R. Rubei, and D. Di Ruscio, “Mod-
elxglue: a benchmarking framework for ml tools in mde,” Software and
Systems Modeling, pp. 1-24, 2024.

J. Michael, D. Bork, M. Wimmer, and H. C. Mayr, “Quo vadis
modeling?” Software and Systems Modeling, pp. 1-22, 2023.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.
A. Asuncion, D. Newman et al., “Uci machine learning repository,”
2007. [Online]. Available: https://archive.ics.uci.edu/

J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Collaborative
repositories in model-driven engineering [software technology],” IEEE
Software, vol. 32, no. 3, pp. 28-34, 2015.

G. Robles, T. Ho-Quang, R. Hebig, M. R. Chaudron, and M. A. Fernan-
dez, “An extensive dataset of uml models in github,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 519-522.

J. A. H. Lépez, J. L. C. Izquierdo, and J. S. Cuadrado, “Modelset:
a dataset for machine learning in model-driven engineering,” Softw.
Syst. Model., vol. 21, no. 3, pp. 967-986, 2022. [Online]. Available:
https://doi.org/10.1007/s10270-021-00929-3

J. A. H. Lépez and J. S. Cuadrado, “An efficient and scalable search
engine for models,” Software and Systems Modeling, vol. 21, no. 5, pp.
1715-1737, 2022.

P-L. Glaser, E. Sallinger, and D. Bork, “The extended ea modelset—a
fair dataset for researching and reasoning enterprise architecture mod-
eling practices,” Software and Systems Modeling, pp. 1-19, 2025.

L. M. Hillah and F. Kordon, “Petri nets repository: a tool to benchmark
and debug petri net tools,” in Application and Theory of Petri Nets
and Concurrency: 38th International Conference, PETRI NETS 2017,

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]
[42]

[43]

Zaragoza, Spain, June 25-30, 2017, Proceedings 38. Springer, 2017,
pp. 125-135.

F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi et al., “Reprosi-
tory: a repository platform for sharing business process models.” BPM
(PhD/Demos), vol. 2420, pp. 149-153, 2019.

M. Saeedi Nikoo, S. Kochanthara, O. Babur, and M. van den Brand,
“An empirical study of business process models and model clones on
github,” Empirical Software Engineering, vol. 30, no. 2, p. 48, 2025.
I. Compagnucci, F. Corradini, F. Fornari, and B. Re, “Trends on the
usage of bpmn 2.0 from publicly available repositories,” in International
Conference on Business Informatics Research. Springer, 2021, pp. 84—
99.

Onder Babur, “A labeled ecore metamodel dataset for domain
clustering,” Mar. 2019. [Online]. Available: https://doi.org/10.5281/
zenodo.2585456

P. P. E Barcelos, T. P. Sales, M. Fumagalli, C. M. Fonseca, I. V.
Sousa, E. Romanenko, J. Kritz, and G. Guizzardi, “A fair model catalog
for ontology-driven conceptual modeling research,” in International
Conference on Conceptual Modeling. Springer, 2022, pp. 3-17.

J. A. H. Lépez, R. Rubei, J. S. Cuadrado, and D. di Ruscio, “Machine
learning methods for model classification: a comparative study,” in
Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems, ser. MODELS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 165-175.
[Online]. Available: https://doi.org/10.1145/3550355.3552461

F. J. Alcaide, J. R. Romero, and A. Ramirez, “Can explainable artifi-
cial intelligence support software modelers in model comprehension?”
Software and Systems Modeling, pp. 1-26, 2025.

M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in Proceedings of the 2019 ACM SIGPLAN
international symposium on new ideas, new paradigms, and reflections
on programming and software, 2019, pp. 143-153.

H. Storrle, “Towards clone detection in uml domain models,” in Pro-
ceedings of the Fourth European Conference on Software Architecture:
Companion Volume, 2010, pp. 285-293.

M. S. Nikoo, O. Babur, and M. van den Brand, “Clone detection for
business process models,” PeerJ Computer Science, vol. 8, p. el1046,
2022.

O. Babur, L. Cleophas, and M. Van Den Brand, “Metamodel clone
detection with samos,” Journal of Computer Languages, vol. 51, pp.
57-74, 2019.

M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for simulink models,”
in 2012 28th IEEE international conference on software maintenance
(ICSM). 1EEE, 2012, pp. 295-304.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32,
2001.

M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135-1144.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

M. Staniak and P. Biecek, “Explanations of model predictions with live
and breakdown packages,” arXiv preprint arXiv:1804.01955, 2018.

1. Mollas, N. Bassiliades, I. Vlahavas, and G. Tsoumakas, “Lionforests:
local interpretation of random forests,” arXiv preprint arXiv:1911.08780,
2019.

J. A. H. Lépez, J. L. C. Izquierdo, and J. S. Cuadrado, “Using the mod-
elset dataset to support machine learning in model-driven engineering,”
in Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, 2022,
pp. 66-70.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591-611, 1965.
P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini
encyclopedia of psychology, pp. 1-1, 2010.

A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”

https://archive.ics.uci.edu/
https://doi.org/10.1007/s10270-021-00929-3
https://doi.org/10.5281/zenodo.2585456
https://doi.org/10.5281/zenodo.2585456
https://doi.org/10.1145/3550355.3552461

[44]

[45]

[46]

in Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 1-10. [Online]. Available:
https://doi.org/10.1145/1985793.1985795

A. Kariluoto, J. Kultanen, J. Soininen, A. Pirninen, and P. Abrahamsson,
“Quality of data in machine learning,” in 2021 IEEE 21st international
conference on software quality, reliability and security companion (QRS-
C). IEEE, 2021, pp. 216-221.

L. Budach, M. Feuerpfeil, N. Ihde, A. Nathansen, N. Noack, H. Patzlaff,
F. Naumann, and H. Harmouch, “The effects of data quality on machine
learning performance,” arXiv preprint arXiv:2207.14529, 2022.

J. Garcia-Carrasco, A. Maté, and J. Trujillo, “A data-driven methodology
for guiding the selection of preprocessing techniques in a machine
learning pipeline,” in Intelligent Information Systems, C. Cabanillas and
F. Pérez, Eds. Cham: Springer International Publishing, 2023, pp. 34—
42.

https://doi.org/10.1145/1985793.1985795

	Introduction
	Background and Related Works
	Model Repositories and Usage
	Related Works
	Dummy Filtering
	Duplicate Filtering
	Language Filtering

	ML Tasks and Training
	Synopsis

	The MCP4CM Models Cleansing Pipeline
	Model Dataset Parsing
	Model Dataset Loading
	Model Dataset Filtering
	Dummy Filtering
	Duplicate Filtering
	Language Filtering

	Evaluation
	Dataset Description
	Cleansing ModelSet with MCP4CM
	RS1: Replication Study 1
	RS2: Replication Study 2

	Discussion
	Conclusion
	References

