

On Developing and Operating GLSP-based Web Modeling

Tools: Lessons Learned from BIGUML

Haydar Metin and Dominik Bork

To appear in:

Proceedings of the 26th International Conference on Model Driven

Engineering Languages and Systems, (MODELS 2023)

© 2023 by IEEE.

Final version available soon:

www.model-engineering.info

http://www.model-engineering.info/

On Developing and Operating GLSP-based Web
Modeling Tools: Lessons Learned from BIGUML

Haydar Metin
Business Informatics Group, TU Wien, Vienna, Austria

haydar.metin@tuwien.ac.at,

Dominik Bork
Business Informatics Group, TU Wien, Vienna, Austria

dominik.bork@tuwien.ac.at,

Abstract—The development of web-based modeling tools still
poses significant challenges for developers. The Graphical Lan-
guage Server Platform (GLSP) reduced some of these challenges
by providing the necessary frameworks to efficiently create web
modeling tools. However, more knowledge and experience are
required regarding developing GLSP-based web modeling tools.
This paper discusses the challenges and lessons learned after
working with GLSP and realizing several GLSP-based modeling
tools. More concretely, experiences, concepts, steps to be followed
to develop and operate a GLSP-based web modeling tool, and
the advantages and disadvantages of working with GLSP are dis-
cussed. As a proof of concept, we will report on the realization of
a GLSP-based UML editor called BIGUML. Through BIGUML,
we show that our procedure and the reference architecture we
developed resulted in a scalable and flexible GLSP-based web
modeling tool. The lessons learned, the procedural approach, the
reference architecture, and the critical reflection on the challenges
and opportunities of using GLSP provide valuable insights to the
community and shall ease the decision of whether or not to use
GLSP for future tool development projects.

Index Terms—Modeling tool, GLSP, web modeling, lessons
learned, LSP, eclipse

I. INTRODUCTION

Modeling tools assist users in efficiently creating models of
high quality by following standards like UML or ER. Today,
model engineering has many different tools at its disposal.
Most of these tools are mature applications that have been
actively worked on over a relatively long period but have
barely evolved in recent years [1]. Their functionalities are
often built on older technology stacks, i.e., they are not
compatible with state-of-the-art web technologies [2], [3].
Aside from a tool’s functionalities, a well-designed, modern,
and responsive graphical user interface is crucial for efficient
and enjoyable use [4]. However, current tools are often labeled
as not very useful [1], [5]. Tool development is therefore
denoted as an essential part of enterprise information systems
engineering and software engineering [6]–[8] research.

Historically, IDEs were developed as rich clients with built-
in support for all the necessary language handling. Recently,
the trend moved to separate the client from the language-
specific parts using the Language Server Protocol (LSP). This
change allowed small clients focusing on responsive and mod-
ern UIs to be hosted on the web being connected to a language
server as the backbone which is doing the heavy lifting on the
language smarts. As more editors utilize web technologies, we
now see similar possibilities arising for modeling tools, i.e.,

web modeling tools. However, the development of web-based
modeling tools still poses significant challenges for developers.

The Graphical Language Server Platform (GLSP) [9] aims
to fill that gap by allowing users to develop modeling tools
similar to other LSP-based editors [10], [11]. Yet, GLSP is
relatively new. Documentation and a few examples already
exist but as with every new framework, there is a lack
of reported lessons learned, experiences, best practices, and
discussions about using those. Consequently, researchers and
developers aiming to create new web modeling tools face the
challenge of making an informed decision about whether or
not to adopt new frameworks like GLSP. Relevant information
with respect to such decisions is missing e.g., what features
such a technology provides, which prerequisites need to be
fulfilled, what effort is attached to the development, how the
development should be conducted, and what its limitations are.

In the paper at hand, we bridge that gap by sharing our
experience of realizing several web modeling tools with GLSP.
We share our lessons learned and reflect on the strengths and
weaknesses of GLSP as well as the prerequisites for realizing
modern web modeling tools with GLSP. As the modeling
community is increasingly interested in the development of
web modeling tools (cf. [2], [10], [11]), we believe, with our
paper, we can make an original contribution that is of value for
researchers and software engineers, who consider developing
such a tool or migrating an existing standalone tool (e.g, EMF-
based) to a web modeling tool.

In the remainder of this paper, Section II first introduces
GLSP before we move to the development and deployment of
GLSP-based web modeling tools in Section III. A reference
architecture is presented in Section IV and its instantiation
in the BIGUML proof-of-concept modeling tool is described
in Section V. We close this paper with a comprehensive
discussion of our lessons learned, a critical reflection, and
some recommendations for prospective GLSP tool developers
in Section VI and concluding remarks in Section VII.

II. GRAPHICAL LANGUAGE SERVER PLATFORM

The Graphical Language Server Platform (GLSP) is an ex-
tensible open-source framework for building custom diagram
editors based on web technologies [9]. The realized editors can
be easily integrated into plain web applications but also into
tool platforms such as Eclipse Theia and VS Code, and even
in traditional Rich Client Application platforms like Eclipse

https://orcid.org/0009-0000-1328-4119
https://orcid.org/0000-0001-8259-2297

RCP. GLSP is an open-source project hosted at the Eclipse
Foundation on GitHub1. GLSP is under active development by
the community, with the next major release v2.0.0 expected
for July 2023.

Generally, GLSP adopts the basic protocol structure and
way of working as introduced by the Language Server Protocol
(LSP) [12], [13]. GLSP extends LSP to account for the specific
challenges coming with graphical models (compared to textual
documents). These challenges include e.g., moving from a
two-dimensional (document row, character position) to a three-
dimensional space (elements occupy a geographical area and
can compose child elements); moving from plain editing
operations that boil down to character edits to complex editing
operations like creating a relationship between two nodes in
a diagram, constraining the allowed connections, etc. In its
current version, GLSP-based web modeling tools are built on
the following types of essential components (cf. Fig. 1):

Fig. 1. GLSP Architecture

• Server framework. Used to build particular GLSP dia-
gram servers for e.g., UML or a domain-specific graphical
modeling language;

• Client framework. Used to build a particular GLSP
graphical modeling language client including e.g., ren-
dering styles and user interaction;

• Protocol. The messages that can be exchanged between
the GLSP clients and servers are specified in a flexible
and extensible GLSP protocol which extends LSP to
being able to handle graphical diagram editing operations;

• Platform integration. Reusable platform integration
components that take an implemented GLSP diagram
client and integrate it seamlessly into e.g., Eclipse RCP,
Atom, or VSCode.

• Source Model. The source which contains the model e.g.,
a UML model.

With these components, GLSP enables the development of
web-based diagram clients whereas the front-end is focused
on rendering and user interaction and all the language smarts,
language implementation, model management, model valida-
tion, model manipulation, etc. are encapsulated in a diagram
server. This separation of concerns, which is already seeing
great adoption and success in the LSP, enables high flexibility
and interoperability. [14] Similarly to the idea behind LSP,
GLSP allows the implementation of the language smarts in a

1https://github.com/eclipse-glsp, last visited: 06.04.2023

client-agnostic way which fosters reuse and flexible integration
of the editor in arbitrary client frameworks as long as they
’speak’ the same language, i.e., they communicate via the
standardized and extensible protocol. What is left to be done to
achieve such multiple-client support is to customize the user
interaction and the look-and-feel using the client’s API and
the platform integrations offered by GLSP2.

Other tools also enable the construction of graphical editors
by utilizing web technologies such as SiriusWeb3. SiriusWeb
is a low-code platform to create and deploy diagram editors.
On the other hand, GLSP focuses on providing the necessary
means to develop the whole editor from scratch. The target
audience and how the editor is built is different. Both enable
the users to create powerful editors while following a separate
path. The feasibility of the approach taken by GLSP is also
visible in the implemented solutions industrially4 and in the
open-source community5 having different business domains.

III. DEVELOPING GLSP-BASED WEB MODELING TOOLS

GLSP provides an extensible client-server framework to de-
velop web modeling tools6. This extensible framework offers
the developers different implementation options. Currently, the
following options for the implementation can be decided by
the developers [14]:

1) GLSP-Server. It is possible to implement the server
with Java or TypeScript with NodeJS.

2) Source Model. The way of saving the source models
can also be chosen. GLSP allows accessing the models
in different formats or even remotely. The framework
provides base modules for common choices like EMF,
EMF.cloud, or saving the GModel (i.e., graphical ele-
ments) directly.

3) Tool Platform. GLSP allows the developers to employ
any web-based client, and use the editor in a web app
or as a standalone application. Client integrations exist
for easier usage for platforms such as Eclipse Theia, VS
Code, and Eclipse RCP.

These options allow different combinations. Fortunately,
GLSP offers flexible getting-started templates for quickly
setting up the development environment for common combi-
nations. Nevertheless, developers are not constrained to them
but can create their solutions without using those templates
just by using the framework directly. Notably, these options
and the freedom provided by GLSP require the developers
to determine the modeling tool’s scope and usage/integration
scenarios before starting the development.

In the following, we will focus on those open questions the
developers need to answer and provide a GLSP development
and operation process (illustrated in Fig. 2) to structure the

2The interested reader is referred to [14] for a comprehensive discussion
of the flexibility enabled by GLSP-based web modeling tools.

3https://www.eclipse.org/sirius/sirius-web.html, last visited: 05.07.2023
4https://blogs.eclipse.org/post/paul-buck/theia-adopter-story-logicloud-

modern-engineering-platform-industrial-automation, last visited: 05.07.2023
5https://github.com/imixs/open-bpmn, last visited: 05.07.2023
6https://www.eclipse.org/glsp/documentation, last visited: 13.04.2023

https://github.com/eclipse-glsp
https://www.eclipse.org/sirius/sirius-web.html
https://blogs.eclipse.org/post/paul-buck/theia-adopter-story-logicloud-modern-engineering-platform-industrial-automation
https://blogs.eclipse.org/post/paul-buck/theia-adopter-story-logicloud-modern-engineering-platform-industrial-automation
https://github.com/imixs/open-bpmn
https://www.eclipse.org/glsp/documentation

Defining
Tool Scope

Defining
Technology Stack Planning

Ex
te

nd
in

g
So

ur
ce

 M
od

el

Implementation

R
ev

ie
w

Integration

Preliminary
Phase

Development
Phase

Integration
Phase

Deployment
Phase

Deployment

Tool Server Source

Fig. 2. Development and operation process for GLSP-based web modeling tools.

realization of GLSP-based web modeling tools. The process
consists of four phases. The Preliminary phase focuses on the
tasks necessary before developing the modeling tool. Impor-
tant questions related to the scope and the technology stack of
the modeling tool need to be answered here. Afterward, the
Development phase follows. Here, the modeling tool is iter-
atively realized. After reaching a stable version, integrations
to the targeted (optional) tool platforms are required, which
is realized in the Integration phase. Finally, the Deployment
phase is concerned with deploying the modeling tool. The
phases will be explained in greater detail in the following.

A. Preliminary Phase

The preliminary phase sets the scope and the technology
stack for the modeling tool project. Consequently, its decisions
should be stable over time as changes to these decisions likely
have far-reaching effects on all subsequent phases.

1) Defining Tool Scope: Before deciding on the technology
stack and starting to develop, knowing what goal the tool
should fulfill is crucial. GLSP is language-agnostic and only
provides the foundation to abstract the protocol and the
interactions away. Consequently, the developers need to decide
the language-specific parts, like which elements (e.g., nodes,
edges) the diagram consists of or how to interact with the
elements. Moreover, GLSP provides only the basic features
(e.g., CRUD operations, tool palette). Still, the extensibility of
GLSP allows for providing custom features (e.g., a property
palette or a diagram outline). Therefore, the resources required
to implement those custom features must also be considered.
Additionally, tools can support single or multiple diagram
types. A modeling tool that only interacts with a single
diagram type requires a different approach than one that
supports various diagram types.

2) Defining Technology Stack: The technology stack must
be determined depending on the developers’ experience and
the tool’s scope for the GLSP-Client and GLSP-Server.

• Client. The GLSP-Client is developed with TypeScript
and can be extended or modified depending on the
tool scope. Necessary knowledge of SVG to render the
diagram elements is required. Knowledge about browsers
or tool platforms (e.g., VS Code, Eclipse Theia) is helpful
for more complex custom features.

• Server. The server can be implemented in Java or Type-
Script. Custom support for other languages would be

possible due to the open protocol. It can be beneficial to
have the full stack in the same language (e.g., TypeScript)
as the TypeScript version of the GLSP-Server is aligned
with the Java version.

The GLSP-Client and GLSP-Server can be reused for
all of the tool platforms which enables cross-platform in-
teroperability for the same diagram-specific features. Only
the platform-specific features must be implemented for each
platform separately. Aside from the programming language
and tool platforms, how the source model should be managed
is essential. As the EMF.cloud has integrations for GLSP, it
would be possible to reuse all of the Ecore functionality for the
GLSP-based web modeling tool. However, GLSP also supports
other formats for the source model like XML and JSON.

B. Development Phase
This phase focuses on realizing the modeling tool. Here,

new features are iteratively developed and tested. Integrations
to the different tool platforms are separate from this phase
because GLSP works outside of tool platform-specific features
the same way for all platforms. Generally, two ways to
realize new features can be distinguished: feature-oriented and
architecture-oriented.

• In feature-oriented development, the goal is to develop
a single feature through all components of the GLSP
architecture before starting another feature. The feature
is implemented from the source model to the GLSP-
Client or the other way around. This approach allows
the incremental implementation of new features by dif-
ferent developers without influencing other developers.
However, the developers need experience and be aware
of all the coding guidelines in all components for this
approach to work properly.

• In architecture-oriented development, multiple features
are developed for a single component of the GLSP
architecture. This approach is better suited for an or-
ganization with multiple teams. Different teams can be
responsible for different components and provide the nec-
essary functionality. This approach allows better isolation
between the components and the teams but requires more
organizational overhead as specific teams are responsible
for everything on a specific component.

Both approaches have advantages and disadvantages. It
depends on the experience and organizational structure of

the project at hand to select the best suitable option or a
combination of them. Feature-oriented development is more
suited for smaller teams and for small to medium-sized
modeling tools. In contrast, architecture-oriented development
better aligns with medium to larger-sized tools. The latter is
significant if, besides GLSP, different other services are used
in the architecture. Independently from the chosen approach,
the following steps should be followed.

1) Planning: After declaring the tool scope and the tech-
nology stack, the tool should be iteratively extended. Every
iteration should have clear goals and features that should be
introduced or extended. The planning also includes definitions
of how the tasks should be reviewed and tested. Moreover,
depending on the tasks, the client and server parts could be
affected together. For this reason, a bottom-up approach is
recommended. The source model is available through all the
components in the back end, and it is essential to update it
first to access it correctly. Afterward, depending on the tasks,
the GLSP-Server and the GLSP-Client must be updated.

2) Extending Source Model: Adding new nodes or edges
to the editor requires updating the source model. If the source
model management is outsourced, for example, to a model
server, then necessary changes to those services are needed.

3) Implementation: This phase focuses on providing the
functionality. The developers will implement the features
either in a feature-oriented or architecture-oriented approach
in the different components. Regardless of the approach,
the expected result is the functionality implemented for all
components of the GLSP architecture.

4) Review: Every iteration ends with the review step. An
iteration can affect multiple components. Thus, the changes
should be adequately tested as defined in the planning step.

C. Integration Phase

The GLSP-Client works cross-platform. Any web-based
platform can utilize it. However, if tool platform-specific
features (e.g., I/O, Context Menu) will be used, then the GLSP-
Client cannot use those independently. In that case, additional
integrations are necessary to connect the GLSP-Client with
those. Those integrations are per tool platform. Thus, a cus-
tom integration will be required for every aimed platform.
Consequently, utilizing tool platform-specific features require
additional work.

It is also possible to move the integration phase into the
development phase. However, not all modeling tools support
different tool platforms. The tools also only sometimes use
platform-specific features. For this reason, this phase is op-
tional for most features and is, as a consequence, separated
from the core editor development phase.

D. Deployment Phase

After reaching a stable version, the modeling tool can be
released. Different steps are necessary depending on the scope
and supported tool platforms. For feasibility, we assume that
the repository uses a continuous integration (CI) / continuous
delivery (CD) system to support DevOps. We further assume

that the CI is triggered after a merge and that all the compo-
nents are built, tested, and used by the CD system to deploy it.
Depending on the organization, different environments (e.g.,
registry, production, staging) can exist as a deployment target.
Due to the flexibility of GLSP, there exist multiple deployment
options [14]. Every part of the architecture can be deployed
independently. The servers can also be deployed in containers
(e.g., Docker) on different machines. In the following, we list
some of the common GLSP deployment options [14], [15]:

• Integrated Server. The GLSP-Client and the GLSP-
Server are deployed together on the same machine.

• Separated Server. The GLSP-Client and the GLSP-
Server are deployed and run on different machines.

• Multiple Servers. In the case of multiple different
servers, they can be hosted on different machines.

• No Server. It is possible that the GLSP-Client has no
necessity for a GLSP-Server and the GLSP-Client has all
the necessary knowledge.

There is no best option. The servers’ deployment depends
on the developers and the tool’s scope and needs to be
individually decided. The following list describes the most
common deployment scenarios, which can also be combined:

• Registry Scenario. Framework developers can release
the sources and builds of their modeling tool to a registry
(e.g., NPM, Maven), to make it publicly accessible. This
approach allows other developers to reuse the released
code in their modeling tools.

• Standalone Scenario. In this case, a web application
should utilize the GLSP-Client part of the modeling tool.
The GLSP-Client can be released to any internal or online
registry (e.g., NPM) and be loaded from there like any
other library in the web application. The server can be
hosted like any other server instance (e.g., container,
locally).

• Eclipse Theia Scenario. The GLSP integration for Theia
is used, and the Eclipse Theia instance is afterward
hosted. In this case utilizing a container (e.g., Docker)
is recommended. The previously built integration can
be started with the other servers in the container and
accessed from the browser. This approach has the benefit
that it is possible to create new clean instances for every
user dynamically, which is especially useful for staging
and testing environments.

• VS Code Scenario. The VS Code integration cannot be
used or hosted directly after building it. It needs to be first
packaged into a .vsix file. Afterward, it can be installed
on any VS Code instance locally or uploaded to the
marketplace. Moreover, packaging the servers together
with the extension and starting them when the extension
starts are recommended.

IV. REFERENCE ARCHITECTURE

GLSP provides the flexibility to design the tool’s architec-
ture as the developers wish. GLSP uses dependency injection
with slim abstractions and direct access to the underlying

technologies to allow the developers the same power as the
framework developers. Yet, if some patterns are ignored, it
could negatively affect code maintainability, stability, and
scalability. Consequently, to overcome those problems, the
reference architecture which is derived from our experience of
developing several GLSP and Sprotty-based modeling tools as
well as the extensive collaboration and knowledge exchange
with EclipseSource7 utilizes the following patterns:

• Separation of Concerns (SoC). GLSP consists of mul-
tiple components (cf. Fig. 1), like the client and server.
The complexity rises further if additional services like a
model server and ECore are introduced. For this reason,
the architecture should be split into distinct sections to
address particular concerns. Concerns can be general
as ”the model server manages the source models”, or
as specific as ”model mappers create the graphical
models”. By following SoC, modularity can be reached.
This approach makes the code simpler, maintainable, and
easier to reuse and allows the module to be independently
developed.

• Single Source of Truth (SSoT). The model should
be only modifiable and readable from a single place.
Otherwise, invalid modifications could make the source
model erroneous, or the services could have outdated
data. Therefore using a model server can improve the
scalability and decouple the source models from GLSP,
thereby allowing multiple GLSP clients to connect to the
same server and perform model updates.

• Single Responsibility Principle (SRP). Every compo-
nent should only focus on one single responsibility be-
cause testing and maintaining a component with multiple
responsibilities is cumbersome and prone to error. This
principle can be applied to different architectural levels,
from the implementation level to the server operation.

A. Concepts

Dependency injection allows developers to modularize and
loosely couple their code and thus improve the separation
of concerns. It is a core concept used in every aspect of
GLSP. Building upon the flexibility provided by dependency
injection, we further differentiate between implementation
features to further improve loosely coupled modules for: core
features, tool features, and diagram features.

Core features work with the server directly (e.g., GLSP,
model server). They provide the necessary server functionality
and provide entry points to the other features. Nevertheless,
core features have no language-specific information. The goal
is to provide the necessary glue code between the server and
the other features, load the other feature modules, and manage
the server application. As already mentioned, the GLSP frame-
work is still under active development. Those factors have been
taken into account while designing the architecture. The core

7EclipseSource (https://eclipsesource.com/) is specialized in the develop-
ment of GLSP-based modeling tools for industrial customers and one of the
driving forces behind the further development of GLSP.

module enables the developers to react to introduced changes
by the underlying framework in a centralized place.

Tool features provide new functionality by reusing core
and diagram features. Those tool features provide distinct
functionality not currently supported by the server (i.e., tool)
framework and thus depict new functionality like a custom
diagram outline, copy-paste, or auto-complete functionality.

Diagram features provide language-specific functionality
and have access to the source model. They provide the nec-
essary CRUD operations to the other features to interact with
the source model. Other features are not allowed to modify or
read the source model directly. Otherwise, the source model
could be modified wrongly.

With this feature separation, we will now provide the
concepts allowing the developers to have a scalable, extensible,
and maintainable architecture.

1) Contributions & Manifests: The architecture needs to
define clear structures between the modules based on the fea-
ture categorization to achieve clear separation. Every feature
module isolates a specific functionality and needs to interact
with other modules by means of Contributions and Manifests.

• Contributions. Core features and tool features provide
interfaces called Contributions. Those Contributions are
used in places in a feature to delegate the execution logic
to other features. For example, delegating the GLSP-
create operations to the diagram features or allowing
new operations from tool features. The core feature uses
Contributions to allow other features to extend or override
default framework functionality. In contrast, tool features
reuse those core contributions to either extend a specific
core functionality or to realize something new. As tool
features are language-agnostic, they can also provide
contributions that the diagram features can implement to
allow access to the source models from the tool features.
Contributions introduce a system where different features
are loosely coupled and allow communication only over
well-defined interfaces. Technically, Contributions expose
operations to allow other modules to register their im-
plementation to specific injection points utilized by the
module by following the dependency injection pattern.

• Manifests. Every tool and diagram feature has a Mani-
fest. A Manifest defines all the contributions the feature
module wants to make. Consequently, features can only
provide functionalities to the application by using the
previously defined Contributions. Thus, the Manifest is
the glue code that fulfills the Contribution requirements
by connecting it to an implementation. It is done by using
the exposed operations in the Contribution to register the
implementation to the dependency injection container.

Contributions and Manifests work together to loosely couple
feature modules. Contributions define the requirements, and
Manifests use those Contributions to fulfill those requirements.
Consequently, modules that provide Contributions can be sure
that their needs will be fulfilled if used. This approach allows
the application to load separated, maintainable, extensible,
modular functionality.

https://eclipsesource.com/

2) Source Model Representation Separation: The source
models of diagrams can be similar, but different interactions
can be possible depending on the currently active diagram
representation. A node element could allow modifying it in a
specific source model representation. In contrast, a different
representation could not allow the same interaction. Conse-
quently, diagram features must respect the currently active
representation of the source model in the modeling tool.

The knowledge about the current representation needs to
be available all the time to overcome this problem. The
representation should be a unique identification to be able to
differentiate. Moreover, this approach allows the core module
to load only the current representation’s supported feature
modules with this information.

3) Model Server: It is possible to allow GLSP to manage
the source models; however, allowing that would make the
GLSP-Server carry multiple concerns. For small modeling
tools, this drawback can be neglected. Still, with increasing
complexity and the requirement to connect the source models
with other services, this decision can negatively impact the
whole architecture. Therefore, using a model server improves
flexibility. In this case, the source models are managed outside
the GLSP-Server in a model server. Outsourcing helps to have
a single source of truth, and modifying the source models
would be the sole responsibility of the model server to prevent
invalid states. Additionally, connecting other services aside
GLSP to the model server would be possible to allow a
different view of the source model aside from a graphical
(e.g., form-based or text-based) one to support blended mod-
eling [16], [17] with GLSP.

4) Flow Similarity: In most cases, apart from necessary
validation, the only difference in creating two distinct elements
in the source model by a modeling tool is the modification
done to the source models. The elements are semantically
different, but until modifying the source model, the flow is
similar. Simply, the user needs to trigger the create operation,
which needs to be handled by the GLSP-Server; finally, either
the source models are modified by the GLSP-Server or a model
server. A generic functionality can be provided for similar
flows, where only the modifications to the source models
differentiate. Deciding how to implement generic approaches
in the modeling tool is up to developers. Regardless, introduc-
ing such approaches helps the developers to maintain more
readable, maintainable, and extensible code and allows easier
fixes, as the interactions follow a similar pattern.

B. Architecture

In Fig. 3, we present the reference architecture composed
of the previously mentioned concepts. The architecture ap-
plies to the GLSP-Server and the model server. We have a
single-core module. The core module aims to manage the
whole application and the underlying framework. It makes
the framework and core functionality accessible by defining
Contributions for the other modules. Moreover, it also loads
the other feature modules by using their Manifest definitions

Core

Tool Features

Module 1

Module 2

Manifest Contribution ...

Manifest Contribution ...

Diagram Features

Feature 2

Representation
Handling

Contribution ...

Feature 1 Contribution ...

Framework (e.g.,
GLSP, ModelServer)

Flow
Generalization

Instance
Management

Module 1 Manifest ...

Module 2 Manifest ...

Contribution

Module

Fig. 3. Reference Architecture

for the application. The core module also needs to handle the
different representations to load the correct diagram module.

The tool features have, for every feature, their own module.
The modules are isolated from each other, and no direct
communication is allowed. All communication between fea-
tures needs to be done through well-defined interfaces and
Contributions. The core module needs to provide the necessary
Contributions so that the feature module can provide new
custom functionality. If the framework functionality is not
accessible because a Contribution from the core module is
missing, then the core module needs to provide a workaround
(i.e., by defining a new Contribution). Outside of the core
module, no module is allowed to use the framework directly.
Moreover, tool modules can make use of language-specific
functionalities by defining new Contributions which need to
be implemented by the diagram modules.

Diagram features provide the necessary language-specific
implementation. They have the knowledge required to work
with the underlying source model. They cannot define new
Contributions because circular dependencies could arise. Dia-
gram modules use their Manifest and the Contributions from
the other features to provide for those features language-
specific functionality. Those can be, for example, mapping the
source model into a structure required or updating the source
model as requested from a feature.

This approach decouples the modules and enforces the
use of well-defined interfaces if a module wants to modify
functionality from another module, which is done by using
the Contribution in the Manifest. Further, this approach allows
easier testing and maintaining of the code, as the communica-
tion only happens through the interfaces, and the module can
be internally changed without influencing the outside.

V. PROOF-OF-CONCEPT: THE BIGUML TOOL

By following the development and operation process de-
scribed in Section III (cf. Fig. 2) and the reference architecture
in Section IV (cf. Fig. 3) a GLSP-based UML modeling
tool called BIGUML was developed9. Software engineers,
architects, business users, and more utilize UML regularly.
The UML specification consists of multiple diagrams which
increases the challenges of developing good tool support. A
further challenge arises from the possibility of visually ren-

dering the same source model element differently in different
UML diagram representations. The constraints regarding e.g.,
the allowed relationships between nodes also vary depending
on the diagram representation.

Given the noted specific challenges, and the community
experience in how difficult it is to provide rich modeling
support for UML [18]–[20], we believe the UML case is
an excellent candidate to thoroughly test the strengths and
weaknesses of GLSP on the one side and our proposed
development and operation process as well as our reference
architecture on the other. In the following, we will discuss
our realization of BIGUML in detail.

A. Realization

We followed the feature-driven development approach to
implement the features. In every iteration, one feature was
implemented through the architecture from the model server
to the clients bottom-up. This approach allowed us to see faster
results, detect limits of the current architecture, and rework it
accordingly to exploit the improved architecture for the next
features. Moreover, Eclipse Theia and VS Code integrations
were developed to test different tool platforms for BIGUML.

As UML consists of multiple diagram types and represen-
tations, it was essential to have a scalable, maintainable, and
extensible architecture. Consequently, we used the introduced
concepts and instantiated the reference architecture. An exem-
plary overview of how the BIGUML architecture is applied
to the reference architecture can be seen in Fig. 4. In the fol-
lowing, we will share more architectural and implementation
aspects of BIGUML.

Core

Tool Features

Outline

Property
Palette

Manifest
Outline

Generator
Contribution

...

Manifest
Element
Property
MapperC

...

Diagram Features

UmlToolPalette
ItemProvider

Representation
Handling

ToolPalette
ConfigurationC. ...

UmlCreate
OperationHandler

DiagramCreate
HandlerC. ...

Framework (e.g.,
GLSP, ModelServer)

Flow
Generalization

Instance
Management

Class
Diagram Manifest ...

Communication
Diagram Manifest ...

Contribution

Module

Fig. 4. BIGUML architecture

1) Contributions & Manifests: The core module provides
11 distinct Contributions used by diagram modules and three
general Contributions usable by all modules realized as Java
interfaces. The diagram-specific Contributions from the core
allow the diagram modules to handle or override the GLSP-
specific functionality, like CRUD operations or overriding the
tool palette. Three tool feature modules exist: Outline, Editor
Panel, and Property Palette. Only the Outline and Property
Palette features provide Contributions that diagram modules
can use. Those Contributions allow the diagram modules to
update the behavior of those features or provide the necessary

language-specific logic. An excerpt of the contributions can
be seen in Table I. Due to this clear separation between the
modules, the feature modules can be developed in isolation
or in parallel. This approach allowed completely updating
features without modifying other modules as the interfaces
stayed the same.

2) Source Model Representation Separation: Together with
the source models, the representation of the diagram is saved
to the file system. The model server provides the representation
to all read requests to differentiate between the different
diagram types. With that information, the GLSP-Server loads
the correct language-specific diagram module to interpret the
source model. Afterward, the interpreted source model and
the active representation are provided to the GLSP-Client to
render it. The GLSP-Server can then redirect any successive
requests based on the representation to the correct diagram
module to handle it for the specific diagram.

With the separation between the source model and the rep-
resentation, the BIGUML modeling tool can provide different
diagram types with similar source models that do not influence
each other. This approach allows having different diagram
types with different rules and visual representations.

3) Model Server: We are using the EMF.cloud model
server8 that allows using the Eclipse Modeling Framework
(EMF) in the cloud. With this approach, managing the source
model in a central place and independently from GLSP is
possible. By doing this, only the model server can modify
the model files, and the outside has only read access. For the
source models, we are using the EMF-based implementation
of the UML metamodel for the Eclipse platform, and for the
graphical elements, we are using a customized version of the
ECore notation models provided by the used model server.
The notation model has information like the bounds of the
UML element in the diagram. Moreover, GLSP can access
the UML metamodel and the notation for semantic information
regarding the graphical element. This knowledge allows GLSP
to allow or restrict specific user actions or to execute different
actions depending on the case.

4) Flow Similarity: While developing BIGUML we noticed
multiple similar flows. For example, all CRUD operations can
be generalized. To accomplish this, we needed to general-
ize two parts. First, the GLSP framework handlers had to
be overridden to respect the different diagram modules and
representations. Afterward, we provided abstract base classes
for every CRUD handler in the diagram modules. Those base
classes hid the complexity required from the architecture and
allowed the language-specific handler to focus only on the
necessary semantic modifications. As a result, adding new, for
example, create handlers for different elements in the UML
model, just required reusing the base class and providing the
semantic modification as the base class would handle the
required other parts. Aside from the CRUD operations, the
same approach of using base classes has been applied to the
mapping from the semantic model to the graphical model and

8https://github.com/eclipse-emfcloud/emfcloud-modelserver

https://github.com/eclipse-emfcloud/emfcloud-modelserver

TABLE I
CONTRIBUTIONS AVAILABLE IN BIGUML AND WHERE IT IS USED

Contribution Provided by Used by Description

ActionHandlerContribution Core Tool Used to override GLSP actions handlers

DiagramCreateHandlerContribution Core Diagram Allows diagram modules to provide language-specific create handlers

DiagramLabelEditMapperContribution Core Diagram Allows diagram modules to edit the label of an element

DiagramLabelEditValidatorContribution Core Diagram Used to validate label edit operations

GModelMapperContribution Core Diagram Allows diagram modules to map the semantic element to a GModel

OverrideOperationHandlerContribution Core Diagram / Tool Used to override GLSP operation handlers

OperationHandlerContribution Core Tool Allows tool modules to provide new operation handlers

OutlineGeneratorContribution Outline Tool Diagram Allows diagram modules to customize the generated outline

other parts. Those base classes allowed us to only focus on
the necessities without worrying about how the architecture or
framework handles them in the background.

By using representation separation, contributions, and base
classes, we were able to generalize the necessary GLSP
actions, operations, and default implementations to allow
language-specific handlers without the architecture overhead.
Table II lists an excerpt of the common implementations in
GLSP with a similar flow that can be generalized and the
necessary complexity hidden using the approach.

TABLE II
GLSP IMPLEMENTATIONS THAT CAN BE GENERALIZED

GLSP Implementation Description

CreateOperationHandler Handles create operations

DeleteOperationHandler Handles delete operations

ApplyLabelEditOperationHandler Handles label edit operations

ToolPaletteItemProvider Provides tool palette items

DiagramConfiguration Provides diagram configuration

B. Application

BIGUML is inspired by Eclipse Papyrus [20]. However, it
aims to use the newest technologies to provide good usability
and experience. Further, it aims to be accessible anytime
offline and online. The initial release v0.2.1, already fully
supports the UML Class diagram, while further UML diagram
types will be added in the coming weeks and months. Inter-
nally, BIGUML already supports other UML diagrams besides
the class diagram; however, those diagrams are currently not
accessible as they are not finalized. The current version already
supports a Property Palette and CRUD operations for all
elements of Class diagrams.

We released BIGUML openly as an extension to the VS
Code marketplace9 and online by Eclipse Theia. This com-
bination allows the users to decide how they want to use it.
However, by bringing UML support to the EMF.cloud model
server, other developers can implement their solutions based
on the work already done. The reference architecture can also

9https://marketplace.visualstudio.com/items?itemName=
BIGModelingTools.umldiagram

be taken as a blueprint that developers can easily extend to
support other language-specific features for other modeling
languages by only changing or extending the diagram modules.

VI. DISCUSSION

In the following, we discuss our experience of developing
several GLSP-based modeling tools, including BIGUML. The
discussion covers the effort involved, the lessons learned,
a critical reflection, and finally some recommendations for
potential future GLSP developers.

A. Development Effort

Now we will discuss the effort required to work with
GLSP. There are different getting-started templates provided.
They only differ in the used technologies like Java or Node
and the usage of a model server and the tool platform.
Those templates enable a fully running instance that can be
customized according to the developer’s preferences and goals.
Accordingly, the necessary project structure, dependencies,
and execution are already addressed. With those templates,
the developers can focus on implementing their editor based
on the existing structure.

The time spent and, consequently, the effort required can be
split into the area that will be extended. The developers will
mainly focus on the following tasks:

• Extending the source model. Defining the source mod-
els directly in GLSP or outsourcing the model is also
possible. The templates already provide ways to save
the models as JSON or to use an EMF-based approach.
That means it is possible to define the models from
scratch, reuse some existing ECore models, or use a
different server to manage the data. The selected approach
determines the initial effort needed. Afterward, extending
the source models and introducing the means to modify
them can be done without any issues.

• Defining the graphical model. To visually display source
model elements, they need to be mapped to corresponding
elements in the graphical model. The graphical model
serves as a description that can be easily transmitted and
understood by the client. The level of effort needed for
this mapping depends on the complexity of the graphical

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram

Fig. 5. BIGUML VS Code Extension (available via: shorturl.at/sAX23)

element. Representing a basic node is simpler compared
to an element with multiple parent-child connections.

• Customizing the rendering. The client renders the re-
spective graphical models using SVGs and CSS. For
this reason, implementing the correct design can be
time-consuming. GLSP already provides basic graphical
elements, for example, labels and nodes; regardless, more
unique representations require customized implementa-
tion from the developers.

GLSP only provides a small set of user-facing editor tool
features (e.g., tool palette). It is possible to customize those
features, but implementing new editor features from scratch is
something potential tool developers need to be aware of. GLSP
has been designed to be fully customizable and extensible.
Introducing new features can be done on the client and the
server side with the help of the low-level means offered by
GLSP. The GLSP-Client allows to add new user interfaces
(i.e., views). Unfortunately, no commonly known frontend
framework (e.g., React, Lit) is used for this part, yet. As a
result, plain JavaScript (particularly TypeScript) functionality
is employed to manage user interactions and build user in-
terfaces. Still, it is possible to generically use such frontend
frameworks to ease the development, but it requires initial
work from the developers. Hence, it is crucial to acknowledge
the importance of implementing customized tool functionality
and the associated effort it entails.

Lastly, the discussion of how the reference architecture
aligns with the aforementioned points. GLSP offers the es-
sential features required for constructing editors. Yet, it grants
developers the flexibility to design the architecture according
to their specific needs and requirements. It is possible to
develop a functional diagram editor without adhering to a
specific schema, but as the complexity increases, maintaining
the code becomes more challenging. The reference architec-
ture addresses this by initially separating the tool features,

diagrams, and the core functionality of the editor. While this
separation introduces additional overhead, such as defining
manifests and contribution points, it also provides clear defini-
tions of how the various modules interact through well-defined
interfaces. By adopting this approach, the responsibilities of
different modules are clearly defined, allowing for independent
extension and customization. This leads to a codebase that is
both extensible and maintainable, which ultimately outweighs
the initial effort required.

B. Lessons Learned

The BIGUML modeling tool has already gone through
multiple iterations and architecture changes to accomplish the
requirements better. Initially, the most significant problems
were the Separation of Concerns, the Single Responsibility
Principle, and Source Model Representation Separation. They
were not respected and the implementation took multiple
responsibilities. This caused different unexpected behavior
while using the modeling tool. Consequently, it was necessary
to re-design the whole architecture to have a well-defined
architecture. Clear architecture and introducing coding guide-
lines made extending the modeling tool faster and easier and
reduced unexpected behavior.

The lessons learned from using initial versions of BIGUML
also in university Master courses on advanced model en-
gineering helped us further to improve the genericity and
extensibility of the architecture. While the initial architecture
was feature-wise working mostly stable, the feedback gained
from the students—who mostly have already several years of
industrial software engineering experience—and monitoring
their progress showed use the flaws with respect to clarity.
This is why we abstracted and introduced the architectural
concepts of Separations of Concerns, the Single Responsibility
Principle, and Source Model Representation Separation into
our reference architecture. Using this new architecture clearly

shorturl.at/sAX23

showed huge improvements in the effectiveness and quality of
the student GLSP development projects.

Another aspect we learned is that the different technologies
and the deployment also have side effects with respect to the
runtime requirements for running the GLSP-based modeling
tools. In cases where the GLSP-Server or the model server
is realized with Java, a JRE dependency materializes to run
the tool. This also applies to the VS Code-based integration
of the tool. As one cannot expect a JRE in a specific version
to be installed on the client, this imposes some minimal re-
quirements on the runtime environment which should be taken
into account in the preliminary phase of the development and
operation process. With the release of the purely TypeScript-
based GLSP-server this issue, and the respective JRE runtime
requirement, is already mitigated.

Eventually, it needs to be stated that GLSP is still under
very active development by the community. This is good and
bad at the same time. When using earlier versions of GLSP,
we faced several bugs and instability issues. The feedback
from our students and other developers helped to increase the
maturity and stability of GLSP dramatically. When developing
a GLSP-based modeling tool one should always monitor
the development of the base frameworks and make sure to
develop the language-specific components in a way that base
framework updates can be easily integrated. This is another
reason why we developed our architectural concepts.

C. Critical Reflection

Having multiple programming languages in the technology
stack makes it also necessary to know about DevOps for those.
Depending on the experience, that knowledge can vary. Thus
having the same programming language (e.g., TypeScript) for
the client and server can help the development and deploy-
ment experience. Also, not all programming languages work
efficiently with the Contribution and Manifests system. The
system allows flexibility but introduces some overhead if used
with Java.

Consequently, the decisions on the technology stack need
to carefully balance the experience of the development team.
Moreover, experts in e.g., Java could focus on the model server
while TypeScript experts could focus on e.g., the GLSP-Client.
Obviously, still, the technology does not only add flexibility
and richness in creating modern web modeling tools with
advanced user interaction and model representation function-
ality [2], [3] (a gallery of examples is provided online10) it
also introduces challenges for the development team. This is
in contrast to e.g., pure EMF-based modeling tool development
where one can solely utilize Java.

From our point of view, the flexibility of GLSP and the
modern, feature-rich, cross-platform web modeling tools that
one can develop with it clearly outperforms the challenges
discussed at the outset. Our experience is that as soon as
modelers start working with a GLSP-based editor they do not
want to return to full-fledged stand-along modeling editors.

10https://www.eclipse.org/glsp/gallery/

The responsiveness of these new breeds of modeling tools is
outstanding and will hopefully help elevate modeling tools
to the level users are used to working with in other web
applications.

D. Recommendations

GLSP fundamentally changes the development of modeling
tools by bringing them into the cloud. GLSP is powerful and
flexible, but knowing the modeling tool’s scope is crucial
before deciding which technologies should be used. GLSP runs
on the browser and browser-like applications (e.g., Electron)
which constrains its use. Currently, it has no direct support for
using it natively on a platform (e.g., Android, iOS, Windows).
However, this constraint can be overcome easily as most
platforms already provide web views or panels where the
GLSP-Client can run, like in the case of the Eclipse IDE
integration. We thus recommend really put attention to the
Preliminary phase of our development and operation process
(see Fig. 2). Aside from the browser constraint, GLSP works
for small and large modeling tools. Yet, depending on the size,
the architecture needs to be minded to scale efficiently. The
overhead of using a model server benefits the architecture in
the long term, but for small modeling tools, which will never
use additional services, using it can cause more drawbacks.

VII. CONCLUSION

The development of web-based modeling tools still poses
significant challenges for developers. In this paper, we reported
our experience in developing web modeling tools with the
Graphical Language Server Platform (GLSP). Moreover, we
propose a development and operation process, a set of architec-
tural principles, and a reference architecture for GLSP-based
web modeling tools. As a proof of concept, we reported on our
endeavors toward realizing a GLSP-based UML editor called
BIGUML. BIGUML is released as a VS Code extension11 and
currently supports the Class diagram of UML. We show, that
GLSP is a powerful framework and provides a foundation that
developers can use to implement modern web modeling tools.

We believe this paper is of interest to all researchers and
software engineers interested in the development of modern
web modeling tools. Our critical reflection and lessons learned
should help making an informed decision about whether or
not to use GLSP. Moreover, the development and operation
process as well as the reference architecture should facilitate
knowledge transfer and enable others to benefit from our
lessons learned during their tool development.

In the future, we hope to see more successful GLSP tool
developments to form a repository of GLSP tools. The commu-
nity could clearly learn from one another and the technology
stack of GLSP also allows a much easier integration of generic
solutions that were provided by others. From a research per-
spective, we aim to investigate migration strategies, automated
if possible, to enable the vast amount of community-driven
EMF-based modeling tools to evolve into GLSP-based tools.

11https://marketplace.visualstudio.com/items?itemName=
BIGModelingTools.umldiagram

https://www.eclipse.org/glsp/gallery/
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram

ACKNOWLEDGMENTS

Part of this research was funded through the FFG Innova-
tionsscheck entitled ’Automatisiertes End-to-End-Testen von
Cloud-basierten Modellierungswerkzeugen’ (No. 903552). We
further thank EclipseSource Vienna for the close collaboration
regarding GLSP-based tool development in general and the
development of the BIGUML tool in particular. Finally, we
want to thank all students who contributed to the development
of BIGUML and provided us with their feedback.

REFERENCES

[1] J. Gulden and H. A. Reijers, “Toward advanced visualization techniques
for conceptual modeling,” in Proceedings of the CAiSE 2015 Forum, ser.
CEUR Workshop Proceedings, J. Grabis and K. Sandkuhl, Eds., vol.
1367. CEUR-WS.org, 2015, pp. 33–40.

[2] G. D. Carlo, P. Langer, and D. Bork, “Advanced visualization and
interaction in GLSP-based web modeling: realizing semantic zoom
and off-screen elements,” in Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems,
MODELS 2022, Montreal, Quebec, Canada, 2022, E. Syriani, H. A.
Sahraoui, N. Bencomo, and M. Wimmer, Eds. ACM, 2022, pp. 221–
231.

[3] ——, “Rethinking model representation - A taxonomy of advanced
information visualization in conceptual modeling,” in Conceptual Mod-
eling - 41st International Conference, ER 2022, Hyderabad, India,
2022, Proceedings, ser. Lecture Notes in Computer Science, J. Ralyté,
S. Chakravarthy, M. K. Mohania, M. A. Jeusfeld, and K. Karlapalem,
Eds., vol. 13607. Springer, 2022, pp. 35–51.

[4] D. Stone, C. Jarrett, M. Woodroffe, and S. Minocha, User interface
design and evaluation. Elsevier, 2005.

[5] P. Pourali and J. M. Atlee, “An empirical investigation to understand the
difficulties and challenges of software modellers when using modelling
tools,” in Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, MODELS 2018,
A. Wasowski, R. F. Paige, and Ø. Haugen, Eds. ACM, 2018, pp.
224–234.

[6] H. Ossher, A. van der Hoek, M. D. Storey, J. Grundy, and R. K. E.
Bellamy, “Flexible modeling tools (FlexiTools2010),” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010,
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, Eds. ACM, 2010,
pp. 441–442.

[7] K. Sandkuhl, H.-G. Fill, S. Hoppenbrouwers, J. Krogstie, F. Matthes,
A. Opdahl, G. Schwabe, Ö. Uludag, and R. Winter, “From Expert
Discipline to Common Practice: A Vision and Research Agenda for
Extending the Reach of Enterprise Modeling,” Bus. Inf. Syst. Eng.,
vol. 60, no. 1, pp. 69–80, 2018.

[8] U. Frank, S. Strecker, P. Fettke, J. Vom Brocke, J. Becker, and E. Sinz,
“The research field modeling business information systems,” Bus. Inf.
Syst. Eng., vol. 6, no. 1, pp. 39–43, 2014.

[9] Eclipse Foundation, “Eclipse graphical language server platform,” https:
//github.com/eclipse-glsp/glsp, accessed: 13.04.2023.

[10] R. Rodrı́guez-Echeverrı́a, J. L. C. Izquierdo, M. Wimmer, and J. Cabot,
“Towards a language server protocol infrastructure for graphical mod-
eling,” in Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, MODELS 2018,
Copenhagen, Denmark, October 14-19, 2018, A. Wasowski, R. F. Paige,
and Ø. Haugen, Eds. ACM, 2018, pp. 370–380.

[11] ——, “An LSP infrastructure to build EMF language servers for web-
deployable model editors,” in Proceedings of MODELS 2018 Workshops,
ser. CEUR Workshop Proceedings, R. Hebig and T. Berger, Eds., vol.
2245. CEUR-WS.org, 2018, pp. 326–335.

[12] “Microsoft language server protocol specification,” https://microsoft.
github.io/language-server-protocol/specifications/specification-current/,
accessed: 13.04.2023.

[13] “Microsoft language server protocol implementations,” https:
//microsoft.github.io/language-server-protocol/implementors/servers/,
accessed: 13.04.2023.

[14] D. Bork, P. Langer, and T. Ortmayr, “A vision for flexibile
GLSP-based web modeling tools,” CoRR, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2307.01352

[15] Philip Langer, “Diagram editors with GLSP: Why flexibility is
key,” https://www.youtube.com/watch?v=mSTXgUZCBVE, accessed:
14.04.2023.

[16] I. David, M. Latifaj, J. Pietron, W. Zhang, F. Ciccozzi, I. Malavolta,
A. Raschke, J. Steghöfer, and R. Hebig, “Blended modeling in com-
mercial and open-source model-driven software engineering tools: A
systematic study,” Softw. Syst. Model., vol. 22, no. 1, pp. 415–447, 2023.

[17] P. Glaser and D. Bork, “The biger tool - hybrid textual and graphical
modeling of entity relationships in VS code,” in 25th International
Enterprise Distributed Object Computing Workshop, EDOC Workshop
2021, Gold Coast, Australia, October 25-29, 2021. IEEE, 2021, pp.
337–340.

[18] M. Ozkaya, “Are the UML modelling tools powerful enough for
practitioners? A literature review,” IET Softw., vol. 13, no. 5, pp. 338–
354, 2019.

[19] H. Eichelberger, Y. Eldogan, and K. Schmid, “A comprehensive
survey of UML compliance in current modelling tools,” in Software
Engineering 2009: Fachtagung des GI-Fachbereichs Softwaretechnik
02.-06.03. 2009 in Kaiserslautern, ser. LNI, P. Liggesmeyer, G. Engels,
J. Münch, J. Dörr, and N. Riegel, Eds., vol. P-143. GI, 2009, pp.
39–50. [Online]. Available: https://dl.gi.de/20.500.12116/23336

[20] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA,” in Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009). Citeseer, 2009, pp. 1–4.

https://github.com/eclipse-glsp/glsp
https://github.com/eclipse-glsp/glsp
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://doi.org/10.48550/arXiv.2307.01352
https://www.youtube.com/watch?v=mSTXgUZCBVE
https://dl.gi.de/20.500.12116/23336

	Introduction
	Graphical Language Server Platform
	Developing GLSP-based Web Modeling Tools
	Preliminary Phase
	Defining Tool Scope
	Defining Technology Stack

	Development Phase
	Planning
	Extending Source Model
	Implementation
	Review

	Integration Phase
	Deployment Phase

	Reference Architecture
	Concepts
	Contributions & Manifests
	Source Model Representation Separation
	Model Server
	Flow Similarity

	Architecture

	Proof-of-Concept: The bigUML tool
	Realization
	Contributions & Manifests
	Source Model Representation Separation
	Model Server
	Flow Similarity

	Application

	Discussion
	Development Effort
	Lessons Learned
	Critical Reflection
	Recommendations

	Conclusion
	References

