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Abstract—Conceptual models are essential in Software and
Information Systems Engineering to meet many purposes since
they explicitly represent the subject domains. Machine Learning
(ML) approaches have recently been used in conceptual modeling
to realize, among others, intelligent modeling assistance, model
transformation, and metamodel classification. These works en-
code models in various ways, making the encoded models suitable
for applying ML algorithms. The encodings capture the models’
structure and/or semantics, making this information available
to the ML model during training. Therefore, the choice of the
encoding for any ML-driven task is crucial for the ML model to
learn the relevant contextual information. In this paper, we report
findings from a systematic literature review which yields insights
into the current research in machine learning for conceptual
modeling (ML4CM). The review focuses on the various encodings
used in existing ML4CM solutions and provides insights into
i) which are the information sources, ii) how is the conceptual
model’s structure and/or semantics encoded, iii) why is the model
encoded, i.e., for which conceptual modeling task and, iv) which
ML algorithms are applied. The results aim to structure the state
of the art in encoding conceptual models for ML.

Index Terms—Machine learning, Model-driven engineering,
Model Encoding, Systematic Literature Review

I. INTRODUCTION

Conceptual modeling (CM) explicitly captures (descriptive
and/or prescriptive) domain knowledge where a domain, in
an enterprise and information systems engineering context, is
anything that is being modeled, including—but not limited
to—business processes, information structures, business trans-
actions, and value exchanges, enabling domain understanding
and communication among stakeholders [1]. Model-driven en-
gineering (MDE) is a software development approach that em-
phasizes the use of models1 as the primary artifacts throughout
the entire software development lifecycle. These models can be
automatically transformed and refined to generate executable
code, documentation, and other artifacts [2].

Applying Machine Learning (ML) techniques i.e., Deep
Learning (DL) and Natural Language Processing (NLP), on

1Throughout the paper, we will use the term ‘model’ to relate to a
conceptual model and ‘ML model’ to relate to machine learning models.

data provided by conceptual models has gained much atten-
tion in supporting various conceptual modeling tasks such
as intelligent modeling assistants [3], model completion [4],
model transformation [5], metamodel repository management,
and model domain classification [6], [7]. Furthermore, there
is a potential to apply ML to publicly available sources of
high quality (F.A.I.R. principles [8]) models to enable reuse,
adaptation, and (collaborative) learning, as well as empirical
modeling research.

ML on conceptual models aims to “learn” generalized pat-
terns that capture the explicit mapping between the conceptual
model’s elements and the domain concepts represented by
them. In other words, the trained ML model should be able
to answer what the conceptual model represents in terms of
the “meaning” of the domain concepts and model elements.
ML-based solutions for conceptual modeling follow a specific
pattern of first encoding the conceptual model’s semantics in a
representation suitable for training ML models. Then, the ML
models are trained to learn the knowledge encoded in con-
ceptual models to support CM tasks like metamodel element
prediction and domain classification. ML models typically aim
to learn generalized patterns from an input dataset by utilizing
a certain encoding of the knowledge represented by the
conceptual models. Therefore, the encoding constraints what
can an ML model learn from the available knowledge in the
model. The contextual information that captures representative
semantics of the data needs to be accessible to the ML model
during training for the ML model to learn semantically rich
patterns. Current ML-based CM solutions primarily rely on the
lexical terms (i.e., names) used as labels on modeling language
primitives (e.g., classes, relations, attributes) to capture the
models’ contextual semantics. This leads to a situation where
the natural language (NL) semantics of the primitives are
encoded. However, additional sources of semantics such as
structural semantics, the metamodel semantics, and the CM
elements’ ontological semantics are left implicit.

Therefore, various issues arise depending upon the require-
ments that need to be addressed before applying ML to
CM tasks. Firstly, the sources of relevant information need



to be decided, i.e., which information sources need to be
made available to the ML model to learn. The source of
information could be structural, i.e., graph-based properties
of the conceptual model and/or semantic, e.g., lexical terms,
metamodel, and ontological semantics. Secondly, how should
the model structure and semantics be encoded to be used by
the ML model during training? Finally, based on the selected
information for a task and the selected encoding, which ML
model should be used to train on the encoded models? This
topic still needs to be well understood and has not been
explored in depth. Therefore, we conducted a Systematic
Literature Review (SLR) to comprehensively analyze how the
issues mentioned above are dealt with by the state-of-the-art
and find some crucial insights that would allow us to draw
some associations between the different encodings on the one
hand and different purposes, modeling languages, and ML
models used on the other. Finally, we make our complete
results available2, including the links to the model datasets
used.

The remainder of this paper is structured as follows: Sec-
tion II presents the related works. Section III describes our
SLR research methodology, including the research questions
we address. In Section IV we present the responses to the re-
search questions. We discuss our overall findings in Section V
before we concluded this paper with Section VI.

II. RELATED WORK

In recent years there has been a surge in the works of
combining AI with conceptual modeling. Based on a study [9],
machine learning has been the area of artificial intelligence
most applied with conceptual modeling. These works focus on
using AI to do conceptual model processing, i.e., automated
processing of the information present in a conceptual model
to assist the modeler in modeling tasks.

Lopez et al. [7] present a comparative study of different
ML classification techniques that automatically label models
stored in model repositories. They compare different ML
models (e.g., Feed-Forward Neural Networks, Graph Neural
Networks, and K-Nearest Neighbors) with varying model
encodings (TF-IDF, word embeddings, graphs, and paths).
However, several differences to our work need to be pointed
out. Firstly, they do not discuss the source of information,
i.e., which information is made accessible to the model,
and do not differentiate how the structure and semantics
of the model are encoded. In our work, we separate the
source of structural and semantic sources of information
and subdivide the semantic sources further into linguistic,
metamodel, and ontology-based sources. Secondly, their study
focuses on model domain classification applications, which
do not comprehensively understand the relationship between
the encoding and the applications requiring model encoding.
E.g., they report that even though structural encoding schemes
based on graphs should be superior based on the rationale
that they are a good match for the graph-based nature of

2https://goo.by/HEA7D

software models, simpler encodings that do not require graph-
based encoding perform better. However, it is not surprising
that domain classification would not require model structure
information because the lexical terms of the model sufficiently
capture the information required for the domain classification
task. Therefore, the choice of encoding is task-dependent and
encodings should be selected based on the task details.

The research area of ML4CM and model-driven engineering
(MDE) is still recent. Therefore, there is a lack of related
work. Many papers pragmatically use ad-hoc model encodings
specific to their application requirements, often lacking a
systematic and comprehensible elaboration on the encoding
choice and its alternatives. For e.g., Clariso et al. [10] present
graph kernels as a generalized model encoding for cluster-
ing software modeling artifacts and improve the efficiency
and usability of various software modeling activities, e.g.,
design space exploration, testing, verification, and validation
but without a systematic review of other encodings. It is
important to note that our study is not a comparative study of
encodings. Instead, with our SLR, we aim to provide a better
understanding of the literature in relation to model encoding
such that researchers and practitioners interested in applying
ML to conceptual models can make an informed decision for
encoding their models depending on the task they need to
solve.

III. RESEARCH METHOD

Our Systematic Literature Review (SLR) followed the re-
search method introduced by Kitchenham and Charters [11].
The SLR aims to analyze the state-of-the-art in the context of
model encodings in ML4CM. In the remainder of this section,
we will describe the steps involved in our SLR.

A. Defining the research scope

The paper at hand aims to respond to the following main
research questions: RQ1: Which information present in the
conceptual model is used for ML training?; RQ2: How is the
information encoded for ML training?; RQ3: How does the
ML purpose correlate with the used encoding?; and RQ4: How
does the ML model correlate with the encoding?

In responding to RQ1, we will investigate which information
provided by a conceptual model (e.g., structural, semantic)
is incorporated in current ML4CM approaches and which
sources of relevant data are used during ML training. For
responding to RQ2, we zoom-in on the different encodings
available to represent the model information in a format suit-
able for ML. RQ3 is responded to by separately investigating
the correlation between the purpose i.e., the CM task to be
solved, and the encoding and modeling language used. RQ4
is responded to by determining how the choice of ML models
relates to the purpose and the chosen encoding.

B. Conduct Search

We conducted a larger and much more generic and inclusive
Systematic Mapping Study (SMS) about Conceptual Modeling
and Artificial Intelligence (results are reported in [9]) using



the following logically structured search query in eq. (1).
Instead of starting from scratch and developing a separate
query, we filtered out the documents relevant to our study
from the SMS. We understand that this approach can be seen
as a limitation. However, we chose this alternative for two
reasons: i) our query in the SMS is very inclusive (see eq. (1)),
and ii) we had already done a detailed review and were able
to easily exclude papers which had the contribution in the
direction of AI towards CM (AI4CM). Note that due to the
nature of our query, we do not include the works that do not
apply ML in their approach. This implies that the works that
e.g., propose non-ML-based similarity metrics based on the
structural features of the model graph or the semantics of the
model elements are not within the scope of this work. We aim
to conduct a broader review to cover such cases in the future.

Q = (∨CMi) ∧ (∨AIj),where (1)
CMi ∈ {“conceptual modeling”,“metamodel”,“meta-model”

“domain specific language”,“modeling formalism”,
“modeling tool”,“modeling language”,“modeling
method”,“model driven”,“model-driven”,“mde”}

AIj ∈ {“artificial intelligence”,“ai”,“machine learning”,
“ml”,“deep learning”,“dl”,“neural network”,
“genetic algorithm”,“smart”,“intelligent”}

C. Screening papers

After executing the query on January 16, 2023, we followed
the steps shown in Fig. 1 to screen the papers relevant to
our study. The top portion of Fig. 1 shows the screening
steps of the SMS. We got 647 relevant papers with mappings.
In the current work, we focus on the literature that encodes
models for applying ML methods. We applied four exclusion
criteria for further filtering: exclude papers that EC-1: con-
tribute from CM to AI; EC-2: focus the conceptual model
creation using text-to-model, image-to-model transformation
approaches because we need the model as the starting artifact
for model encoding; therefore, this excludes papers that, e.g.,
apply NLP to generate domain-specific models from text; EC-
3: involve “genetic algorithms” because genetic algorithms do
not learn from the models’ data unlike ML approaches; and
EC-4: did not report any model encodings-related information.
Furthermore, we ensured we did not miss important papers by
doing a forward/backward search. After the screening, we had
37 remaining relevant papers.

D. Search for keywords in abstracts

After filtering the 37 papers, we carefully reviewed all the
papers and applied a classification over several attributes of our
RQs. Table I shows all the attribute dimensions for classifying
papers and describes each attribute with its possible values. A
conceptual model captures information in its structural and
semantic data3. We consider that the structural and seman-
tic data can be encoded explicitly or implicitly depending
on the encoding. For example, N -grams encoding, specific

3We refer to semantics as non-structural data like lexical terms in the model

Fig. 1: SLR relevant papers screening

metrics such as the number of classes, and the number of
cyclic dependencies in a model, can implicitly encode the
model structure [12] without explicitly encoding the graph
as a network of nodes and edges. Similarly, metrics related
to the semantic data, e.g., type of model elements like the
number of relations of type generalization, can implicitly
capture the semantic information [13]. Therefore we classify
the model structure and semantic data in the encoding as
explicit, implicit, and not encoded. The source of structural
data is the model’s graph structure; however, semantic data
comes from the lexical terms associated with the model’s
elements (entities, relationships, attributes) in natural language
and from external sources. We restrict the external sources to
a model’s metamodel (e.g., EClassifier, EAttribute for ECore,
Aspect, Layer for ArchiMate models) and external domain
ontology (e.g., WordNet), and foundational ontology (e.g.,
UFO). Furthermore, in Table I, we show the classification of
ML models based on different types of ML models. However,
we focus on individual models as well in our data analysis
(see Section IV-C). Based on our classification scheme, Fig. 2
shows the overall CM encoding process. We aim to get insights
into this process using our SLR.

Fig. 2: Steps involved in ML4CM



TABLE I: Classification scheme keywords description

Attribute Description Values

Model Structure If the model’s graph structure is encoded or not. Explicit, Implicit, Not Used

Structural Encoding The model structure encoding type. Raw Graph, Tree-based, Graph Kernel, Bag of Paths, Axiomatic, N-grams, Manual
Metrics

Semantic Data If the semantic data in the model is encoded. Explicit, Implicit, Not Used

Metamodel Semantics If the metamodel semantics are captured in the encoding. Yes, No

Ontological Semantics If the model terms are annotated with ontological semantics
and further used in model encoding.

Yes, No

Semantic Encoding The model semantics encoding type. BoW Word Embeddings, BoW TF-IDF, Raw BoW, One-hot, Raw String, Manual
Metrics

Modeling Purpose The ML-based application for which the model is encoded. Analysis, Classification, Completion, Refactoring, Repair, Transformation

ML Model The ML model used in the paper to train on the encoded
models’ data.

Classical Machine Learning, Deep Learning without Graph, Deep Learning with
Graph, Reinforcement Learning

IV. FINDINGS

In the following, we present the results of our data analysis
and in effect, respond to the RQs defined above.

A. Response to RQ1 – Which information present in the
conceptual model is used for ML training?

In Fig. 3 we show which model information is used to en-
code models. The figure shows that using explicit information
sources, i.e., the lexical terms of the model elements and the
model structure are most commonly used to encode models.
Several works also encode metamodel information (10 papers)
and ontological semantics (5 papers) explicitly. We see that
the natural language lexical terms of model elements have the
highest contribution to the semantic data (26 papers), followed
by metamodel-based semantics (11 papers, 10 explicit, and
1 implicit), and the least used are ontological semantics (6
papers, 5 explicit, and 1 implicit). Some works use metamodel-
level information, e.g., element types like EPackage, and
EClassifier, but in most cases, the ML model does not use the
metamodel information. The model’s labels are user-defined
labels not rooted in any domain or foundational ontology.
Rooting the model in an external ontology requires ontology
alignment, which requires additional effort. Therefore, these
aspects are consistent with the results in Fig. 3.

Only a few cases are implicitly encoded, i.e., using met-
rics and keywords. Four papers implicitly encode the model
structure and only two implicitly capture the metamodel and
ontological semantics. Encoding the graph structure directly
allows ML models to jointly consider global and local struc-
ture [14] rather than using selected metrics focusing only on
global graph structural information. Similarly, using lexical
terms directly seems logical over using a manually curated
set of metrics. ML models can capture the latent correlations
between model elements’ terms that a manually curated set of
metrics might miss. Fig. 3 also shows that the literature fo-
cused on the model’s semantics because the model’s structure
is not used in a model’s encoding in almost half the cases (15
papers) whereas only five papers lack semantic data encoding.

Fig. 3: Data source distribution for model encoding

B. Response to RQ2 – How is the model information encoded?

In the following, we zoom-in into how the model’s structure
and semantic data are encoded. After classifying all the papers
with the corresponding structural and semantic encoding,
we found seven different types of structural and semantic
encodings as shown in Fig. 4.

1) Structural Encodings: – Graph structural, i.e., encodings
that explicitly capture the model’s structure using the graph
structure information (cf. Fig. 4a) include: i) Raw Graph;
ii) Tree-based encoding where each model is represented as
an independent tree, the root contains the keyword MODEL,
and its children are the model elements, which can be either
OBJECTSs, ASSOCIATIONs [5]; and iii) Bag of Path (BoP)
where the paths of fixed lengths capturing the nodes and edges
between two nodes of the model graph are stored [15]. The
implicit encodings include i) manually selected metrics de-
pending on the user requirements; ii) n-grams, which captures
the sequence of vertices’ labels in the model of length n-1 [12];
iii) Axiomatic representation which represents the model in
terms of a set of axioms [16]; and iv) Graph kernels to embed
sub-structures of models into some features [17].

2) Semantic Encodings: – Semantic data encodings are
visualised in Fig. 4b. The lexical terms of the models are en-
coded in the following ways: i) Model serialization which uses
the model directly in its XML format; ii) One-hot encoding
where each lexical term in the encoding is represented in the
form of a fixed-sized vector with all zeros except a single one



(a) Structural Encodings (b) Semantic Encodings

Fig. 4: Visualization of different model encodings

corresponding to the lexical term, where the size of the vector
is the total size of the vocabulary; iii) Raw Bag-of-words
(BoW) where the model is represented as a vector containing
all lexical model terms; iv) Term Frequency-Inverse Document
Frequency (TF-IDF) vector where the term frequency along
with inverse document frequency of the lexical terms is
calculated and then the model is represented with the TF-IDF
value of each lexical term in the model; v) BoW embeddings
where each word is represented in the form of a fixed-sized
vector of arbitrary length where the values in the vector for
each word are produced by a language model pre-trained on
a general or domain-specific data corpus; vi) manual metrics
that use some specific keywords (e.g., keyword “set”, “get”
in the model serialization) metrics to implicitly capture the
model semantics; and vii) Axiomatic representation, which is
the same as in the case of structural encoding.

3) Encodings’ usage analysis: – We show the analysis
of the different encoding pairs used in both the structural
and semantic dimensions in Table II. We note several key
things from the table. Firstly, the “No Encodings” for the
model structure column has the most papers. This is consistent
with the fact that 15 out of 37 papers did not include
structural encodings (see Fig. 3) and only used semantic
data encoding, with TF-IDF as the most common encoding.
BoW word embeddings and TF-IDF are vector-embeddings-
based encodings and are the most common choice to embed
the semantic data (19 out of 37). This choice seems logical
because if one needs to capture the correlations between the
lexical terms of the model, its metamodel, and any ontological
semantics associated with the model, then techniques like TF-
IDF and pre-trained language models (LM) can capture these
correlations more effectively as these techniques learn (in case
of LMs), compute (in case of TF-IDF) these word embeddings
over a large vocabulary, thereby providing a more contextual
encoding. Several works apply NLP normalization techniques
like stop word removal, stemming, and lemmatization before
encoding the lexical terms with TF-IDF or LMs. Interestingly,
we found that some works do not even apply NLP techniques
while using lexical terms. There are different reasons for this,

such as i) using string comparison metrics like Levenshtein
Distance4; ii) defining own metrics for calculating the simi-
larity between labels of elements [27], [28] which does not
require any normalization using NLP; iii) renaming all the
tokens that are not keywords to a closed set of words (for
instance, classes’ names are A, B, C, ..., attribute names are
x, y, z, ..., etc.) [5]; or iv) using only specific keywords as
lexical terms where the NL semantics of the terms are not
relevant [16], [27]. Word embeddings from large language
models (LLMs) (GPT5, BERT6) can encode lexical terms
to get nuanced contextualized word embeddings. Therefore,
several recent works use LLMs-based word embeddings.

Thirdly, the model encoded as a raw graph is the most com-
mon encoding technique for capturing the model’s structural
information. However, the number of works overall is signifi-
cantly less (8 out of 37). Moreover, we see that raw graph as
a structural encoding and BoW Embeddings as the semantic
encoding is a frequent combination. Further analysis showed
that cases that use this combination benefit from capturing
both the structural and semantic information, e.g., learning a
vector representation of a model [44], and characterizing a
model generator [45]. Other path-based encodings, such as
N-grams and Bag-of-Path (BoP), that can encode the model
as a set of paths are not frequent. This seems to be due to
these encodings’ limitation in sufficiently capturing the model
structure. Finally, several works have used manually selected
metrics and axiomatic representation to encode the model’s
structure and semantics. In these cases, authors, instead of
using the ML model, design their task-specific metrics without
applying any encoding.

C. Response to RQ3 – How does the ML purpose correlate
with the used encoding and modeling language?

In the following, we elaborate on the different purposes of
model encodings for ML4CM.

4https://en.wikipedia.org/wiki/Levenshtein distance
5https://openai.com/research/gpt-4
6https://huggingface.co/docs/transformers/model doc/bert



TABLE II: Structural and Semantic Encodings across all relevant papers

Semantic Encoding Structural Encodings

No Encodings Manual Metrics Axiomatic N-grams BoP Graph Kernel Tree-based Raw Graph Total

No Encoding N/A [18] [19] % [20] [17] % [21], [22] 6

Manual Metrics % [13], [23], [24] % % % % % % 3

Axiomatic [16] % % % % % % % 1

Serialized model [25], [26] % % % % % % % 2

Raw BoW [27], [28] % % % % % % % 2

One-hot [29], [30] [31] % % % % % [32] 4

TF-IDF [6], [33]–[37] % % [12], [38] [15] % % [39] 10

BoW Embeddings [40], [41] % % % [42] % [4], [5] [39], [43]–[45] 9

Total 15 5 1 2 3 1 2 8 37

1) Extracted Purposes: After carefully reading the papers,
we classified each paper in one of the following categories: i)
Analysis—if ML is applied to do some model analysis e.g.,
discovering patterns in the model [20], ii) Classification—
if ML is applied to classify the encoded model based on
user-defined model similarity criteria into one of the user-
defined classes e.g., domain classification of metamodels [7],
[34], iii) Completion—if ML is used to autocomplete a partial
model, recommend elements to the modeler, e.g., NLP-based
model autocompletion [41], iv) Refactoring—if ML is used
to support model refactoring, e.g., model-driven bug report
visualisation [43], v) Repair—if ML is used to repair a
partially broken model e.g., [16], and vi) Transformation—
if ML is used for model transformation e.g., [5].

2) Purpose Analysis: Fig. 5 shows classification and
completion as the most common ML-based applications to
conceptual models. ML methods can efficiently find patterns
in conceptual models which can be used to characterize and
classify models. Therefore, classification has been applied
for e.g., conceptual model search and automatic metamodel
clustering. In the case of model completion, which involves
predicting the next element given a partial model, BoW
Embeddings is the most used encoding. Model encodings
that capture the contextual information of model elements
and further allow similarity comparison help predict the next
element more accurately due to the available contextual infor-
mation. Word embeddings capture information locally (i.e.,
within the model) and globally across a large dataset of
models, even across domains, acting as a rich contextual data
source. Therefore, it is consistent that most works used word
embeddings to capture semantic data for model completion.
Moreover, structural encoding (as a raw graph) is also mostly
used for model completion. Predicting the next element in a
model involves predicting the next node or edge in the graph.
Therefore it would help the ML model to know the struc-
tural information during prediction. Furthermore, a model-
driven project involves several consecutive transformations,
and automating model transformation operations can reduce
the time-to-market of project development and improve its
quality [5]. This explains the next highest frequency of model
transformation as the ML4CM purpose.

Fig. 5: Relationship of Purpose with model encoding

D. Response to RQ4 – How does the ML model correlate with
the encoding and purpose?

In this research question, we focus on the used ML model
and potential correlations with the model encoding.

1) ML model classification: We divided the ML models
into four classes depending on the type of learning architecture
as follows: i) Classical Machine Learning which do not
involve any Deep Learning architecture, the ML models in
this category include XGBoost7, CatBoost8, Support Vector
Machine (SVM), Random Forest, Apriori association rules,
K-nearest neighbors, Integer Linear Programming, and Naive
Bayes; ii) Deep Learning without Graph which includes
DL architectures that do not explicitly capture the graph
structure of the data with the Transformer9, Long-Short-Term-
Memory (LSTM) and Feed Forward Neural Networks as
ML models; iii) Deep Learning with Graph which includes
DL architectures that capture the graph structure with Graph
Neural Networks (GNN) and Graph-aware Attention Networks
(GaAN); and iv) Reinforcement Learning (RL) which includes
ML models like Markov Decision Process (MDP).

2) ML model usage analysis: Fig. 6 shows the relationship
between the used ML models with the model encodings. Fig. 6
(left) shows the different ML categories and the used models

7https://xgboost.readthedocs.io last accessed 04.07.2023
8https://catboost.ai/ last accessed 04.07.2023
9https://huggingface.co/docs/transformers/ last accessed: 24.08.2023



Fig. 6: Structural (left) and semantic (right) encodings with ML models

to encode the model structure. The plot shows that GNN and
FFNN are the most used models to capture the model struc-
ture. Moreover, GNNs use a raw graph as model encoding,
making GNNs suitable for learning the structural and semantic
information from the conceptual model’s graph encoding. Fur-
thermore, tree-based encodings are used to serialize the model
as a sequence of tokens [4], [5] to make the model encoding
suitable for DL models like Transformers and LSTM (which
do not explicitly capture the model structure) for model com-
pletion and transformation. However, tree-based encodings in
the current works do not capture longer dependencies, i.e.,
exceeding an element’s direct neighbors. In contrast, raw graph
with GNNs allows capturing such information to larger depths,
which explains the higher frequency of the combination of
raw graphs with GNNs. Multiple models are used with Graph
Kernel encoding, where Graph Kernels transform the model
into a set of features and use them to apply graph similarity
metrics with ML models like SVM, Naive Bayes, and Random
Forest. BoP encoding stores the model as a collection of paths
such that the paths (or part of models) thereby allow model
similarity comparisons using different ML approaches like
KNN, Apriori association rules, or even complex DL models
like Transformers as shown in Fig. 6. Note that N-grams are
quite similar to BoP in capturing the sequence of vertices
that can capture relationships but do not capture complex
relationships compared to BoP [46]. However, it is interesting
to note that the N-grams encoding is also used with GaAN,
where GaAN compensates for the limitations of N-grams of
not capturing the complex relationships by capturing longer
graph structural dependencies.

Fig. 6 shows that KNN and GNNs are frequently used
for semantic encoding. KNN seems to be a common choice
due to its simplicity of finding similarity measures of models
where the nearest neighbor of a model is considered a similar
model based on the model encoding. The similarity measure
enables efficient model comparison and thereby, classification.
Furthermore, KNN is most frequently used with BoW TF-
IDF encoding. The common encodings used with GNNs are
BoW word embeddings. This shows that GNNs can capture

structural semantics by encoding the graph’s structural aspects
and semantic data using generalized semantically rich word
embeddings. Moreover, FFNN and KNN are frequently used
as general-purpose ML models to encode semantic data with
different kinds of encodings. Transformers have been used
only with BoW word embeddings because of the Transformer
architecture’s capability of fine-tuning generalized word em-
beddings for a given context. Therefore, the papers that use
Transformers first use the generalized word embeddings from
the pre-trained language models like BERT and then fine-
tune their embeddings for their task [4]. Finally, user and
content-based collaborative filtering (UBCF and CBCF) use
a one-hot encoding for model elements recommendation [30]
and a K-Means with BoW TF-IDF encoding for model
classification [36]. There are other ML approaches such as
Random Forest (RF), Naive Bayes (NB), and Inductive Linear
Programming that are not usually used in ML4CM research.

V. DISCUSSION

This section summarizes our findings, discusses insights,
and reflects on the remaining research gaps we observed.
We see in Fig. 3 that there is a lack of metamodel and
ontological semantics contribution towards the “meaning” of
model elements. We consider this lack a first research gap.
The relationship of the model elements with the domain is
not sufficiently captured by only the lexical terms represented
as BoW, TF-IDF, or word embeddings. Using only the NL
semantics of words leads to missing out on the contextual se-
mantics provided by the model’s metamodel capturing model
elements’ types and ontological semantics capturing domain
concepts. Moreover, providing only type level information i.e.,
an element is a Class or Relationship, not the relationship
between the types on the metamodel level also hides informa-
tion. Without encoding metamodel or ontological semantics,
the ML model misses out on learning type level semantics,
the relationship between types, the properties of types (why
is a class abstract, when does a class need to be abstract),
common software design patterns, what kind of a foundational
ontological stereotype should the class have—all of which



is important information that makes the conceptual model a
semantically rich artifact.

We further see in Fig. 3 and Table II that in many cases
structural encodings are not used. We consider this as a sec-
ond research gap. Moreover, graph encoding techniques like
Graph Kernel, which capture local and global neighborhood
structures, are underrepresented and can be used to add more
structural information to the encoding.

We acknowledge that in our SLR, we have not provided
a performance analysis of each of the encodings related to
different purposes. However, comparative performance evalu-
ation is difficult because of the lack of standardized datasets
for specific purposes and specific modeling languages. There
are further no baselines to test the performance of different
encodings systematically. In our analysis, we found that out of
all the works that make their dataset public, all the datasets are
different except for [47] which shows a lack of standardized
datasets. Recently, Lopez et al. [7] performed a comparative
analysis of ML encodings for the domain classification task.
However, there is a need to do similar studies for other
ML4CM tasks because, as we see from our analysis, the choice
of encoding is task-dependent.

VI. CONCLUSION

In this paper, we provided an SLR-based detailed analysis of
the various encodings used in the context of machine learning
for conceptual modeling (ML4CM) i.e., using ML methods to
support CM tasks. We zoomed into what information from the
model is encoded, i.e., its semantics and/or structure. We then
analyzed how the information is encoded, thereby identifying
14 different encodings for structural and semantic aspects.
Then we analyzed why is the model information encoded,
i.e., to solve what task. Finally, we analyzed the relationship
between the ML models used with the proposed encodings as
well as the purpose in the literature. Based on the findings, as
part of our future work, we plan to do a systematic comparative
study of different encodings for various ML4CM purposes
and use a specific dataset to produce benchmarks for other
researchers to use.
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