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Abstract

Conceptual models are essential for designing, analyzing, and communicating complex systems.
However, traditional modeling languages such as UML, BPMN, and ArchiMate primarily rely
on textual and symbolic representations, which can limit their expressiveness and accessibility,
especially for non-expert stakeholders. To address this challenge, we introduce a framework for
Multimodal-Enriched Conceptual Modeling (MMeCM) that integrates videos, images, and au-
dio directly into model elements. Our approach enables modelers to attach contextual multime-
dia references to processes, entities, and relationships, effectively grounding abstract concepts in
tangible real-world artifacts. We make three key contributions: (1) a quantitative analysis of con-
cept enrichability using the OntoUML/UFO Catalog, identifying which elements benefit from
multimodal representation; (2) the design and implementation of a generalizable framework
for embedding multimodal data across different modeling languages; and (3) a qualitative user
study, grounded in the Technology Acceptance Model, evaluating the perceived usefulness and
usability of multimodal-enriched models, together with a dataset of more than 12K multimodal-
enriched natural language elements found in conceptual models. Our evaluation shows that a
majority of natural language elements in conceptual models can be effectively augmented with
multimedia, and user feedback indicates a strong positive reception of MMeCM.

Keywords: Conceptual Modeling, Multimodal Data, Model Enrichment, Knowledge Repre-
sentation, Interactive Models

1. Introduction
Modeling languages like the Business Process Model and Notation (BPMN) and Unified Mod-
eling Language (UML) have been developed to accommodate different perspectives and gran-
ularities [21]. Such languages, combined with meta-modeling and analytics techniques, help
enterprises adapt to evolving requirements by forming the backbone of strategic planning and
digital transformation initiatives [14]. Yet, most conceptual models still rely on textual or sym-
bolic representations, which may limit their accessibility [23] and expressiveness [4], especially
when dealing with real-world contexts replete with multimedia evidence [12]. Efforts to use
prompting strategies with large language models [5, 19, 22] offer new possibilities for automat-
ing or augmenting modeling tasks, yet most approaches do not systematically incorporate mul-
timodal data such as videos and images.

Our previous work has contributed to bridging this gap by augmenting process models with
extended reality and multimodal evidence [9]. One line of research focuses on discovering and
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annotating event logs with contextual videos and images [10, 12], while another explores tai-
loring these artifacts to specific stakeholder jargon [13], and even interpreting diagrammatic
notations through multimodal references [11]. These approaches align with broader efforts to
improve annotation tools for process information extraction [20] and harness large language
models for advanced process tasks [19]. Yet, the question remains how to fully integrate the
wealth of multimodal data sources–videos, audio, sensor streams–into conceptual models with-
out overcomplicating them and increasing the cognitive load. Recent advancements in multime-
dia technologies [15, 18] have opened the door for a novel form of conceptual model enrichment.
By integrating videos, images, and audio clips directly into modeling elements, it becomes pos-
sible to provide supplementary material that can significantly increase the clarity and fidelity of
models—helping to bridge the gap between the abstract representations found in models and
the physical, tangible artifacts or scenarios they represent. In this paper, we propose and evalu-
ate a new approach to enrich conceptual modeling with multimodal data. This paper focuses on
the following three research objectives (ROs):
RO1: Analyze curated, high-quality conceptual models to understand which natural language
concepts can be clearly represented using multimodal data (such as images or audio), and which
concepts are too abstract and are better conveyed through symbolic representations, like icons.
RO2: Outline and implement a generalizable framework for integrating multimodal data across
different modeling languages, followed by an evaluation of this framework using the high-
quality curated conceptual models as a testbed.
RO3: Conduct a qualitative assessment based on the Technology Acceptance Model to investi-
gate how users would perceive, accept, and potentially adopt multimodal-enriched conceptual
models.

The remainder of this paper is structured as follows. Section 2 outlines our research method-
ology and an illustrative example. Section 3 presents our proposed framework for integrating
multimodal data into conceptual models. In Section 4, we discuss the evaluation of our ap-
proach. Section 5 reviews related work. Finally, Section 6 concludes the paper. The supplemen-
tary material1 contains artifacts, evaluations, and implementation.

2. Methodology: The General Perspective
In this section, we detail the applied research methodology for enriching conceptual models
with multimodal data. The methodology is structured into several subsections that build on
one another: we first formalize the structure of conceptual modeling languages, then provide a
general method for multimodal enrichment of conceptual models, and finally discuss its specific
instantiation for the OntoUML modeling language as a running case.

Figure 1 presents an overview of the methodology for integrating multimodal data into con-
ceptual models. The process spans three interconnected spaces: the Conceptual Model Space,
the Embedding Space, and the Multimodal Data Space. The conceptual model consists of struc-
tured elements, such as kinds, roles, qualities, and relations, which are linked through mediation,
characterization, and inherence relationships. These elements are projected into an embedding
space, where they are transformed into distributed vector representations. Simultaneously, mul-
timodal data—such as images and audio—are encoded into corresponding embeddings. The
embedding space serves as an intermediary, aligning the conceptual structures with multimodal
data representations, thereby enabling enriched semantic connections.

1Supplementary material: https://github.com/aleksandargavric/mm_cm_enrichment.
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Fig. 1. Overview of the methodology for enriching conceptual models with multimodal data. Pat-
terned regions illustrate embeddings. An embedding space is a continuous, high-dimensional
vector space in which discrete data are represented as vectors, such that the spatial relationships
among the vectors reflect meaningful similarities or patterns in the original data.

Preliminaries.

Let L be a set of conceptual modeling languages. For any language ℓ ∈ L, its metamodel is
defined as Mℓ = (Eℓ, Rℓ, αℓ), where Eℓ denotes the set of modeling elements (e.g., classes,
entities, activities), Rℓ denotes the set of relationships (e.g., associations, generalizations), and
αℓ is the set of syntactic and semantic constraints. A concrete model Mℓ conforming toMℓ is
represented as Mℓ = (E∗

ℓ , R
∗
ℓ , α

∗
ℓ ), with E∗

ℓ ⊆ Eℓ, R∗
ℓ ⊆ Rℓ, and α∗

ℓ ⊆ αℓ.
We introduce the concept of multimodal enrichment by extending the conventional model

structure.

Definition 2.1 (Multimodal Data) Let Γ be a finite set of multimedia types,
where Γ = {γ1, γ2, . . . , γm} and each γj represents a distinct media type (e.g., image, audio,
video).

Definition 2.2 (Attachment Function) For a given conceptual model Mℓ = (E∗
ℓ , R

∗
ℓ , α

∗
ℓ ), de-

fine the attachment function Att : E∗
ℓ → 2Γ such that for every element e ∈ E∗

ℓ , Att(e) ⊆ Γ.

Definition 2.3 (Multimodal-Enriched Conceptual Model) A multimodal-enriched conceptual
model is defined as M+

ℓ = (E∗
ℓ , R

∗
ℓ , α

∗
ℓ ,Att), where Att is the attachment function as specified

above.

To instantiate this methodology, we outline the following steps: (1) Extend existing mod-
eling tools to allow each element e ∈ E∗

ℓ to carry an attribute Att(e) that references external
multimedia resources. (2) Define a metadata function µ : Γ →M, where for any γ ∈ Γ, µ(γ)
provides essential metadata such as the URI, file format, and checksum. (3) Ensure that the
enriched model M+

ℓ adheres to the original constraints αℓ by validating Att(e) for all e ∈ E∗
ℓ .

2.1. An Illustrative Scenario

To demonstrate the practical application of our methodology, we present an illustrative scenario
focused on the furniture assembly process. This scenario provides an in-depth view of how con-
ceptual models can be enriched with multimodal data, including visual and auditory modalities,
enabling enhanced semantic representation and reasoning.

Fig. 2 showcases a structured conceptual model of a furniture assembly process, integrating
multiple modalities into an enriched representation. The model consists of key entities such
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Fig. 2. Illustrative scenario: Multimodal enrichment of the furniture assembly process. (If labels are
not readable in print, focus on the layout and structure—refer to the supplementary material
for a high-resolution version.)

as User, Step, Tool, Component, and Material, each categorized under specific con-
ceptual roles (e.g., Action, Instrument, Object, Resource). These elements are inter-
connected through relations, such as performs, uses, and adjusts, forming the structural
foundation of the assembly process.

The conceptual model elements are projected into an embedding space, where each entity
ei is mapped to a corresponding vector representation vi. In particular, let E denote the set
of entities, and let f : E → Rd be the embedding function mapping each entity ei to a d-
dimensional space: vi = f(ei), ∀ei ∈ E . This embedding allows semantic comparisons and
proximity-based retrieval of related concepts.

Multimodal data sources, including visual and auditory signals, are aligned with the con-
ceptual model through their respective embeddings. The embeddings from images (visual
modality) and audio recordings (auditory modality) are extracted via pretrained model,
concretely [15]: v(vis)

j = gvision(Ij), v
(aud)
k = gaudio(Ak), where Ij and Ak denote image and

audio samples, and gvision, gaudio are modality-specific embedding functions.
Each step in the assembly process—such as Unpacking Materials—is documented

through multimodal evidence. The model captures visual cues (e.g., images of screws, planks,
and assembly instructions) and auditory recordings (e.g., the sound of a screwdriver or user
commentary). The embeddings are dynamically updated based on new observations: v(step)

t =

αv
(step)
t + (1 − α)v

(new)
t , where v

(step)
t represents the embedding of an assembly step at time

t, and v
(new)
t is the new multimodal update. The weighting factor α determines the balance

between prior knowledge and new data.
By integrating multimodal embeddings, the model enables richer semantic reasoning. For

example, the action Using Tools is associated with a set of tools (e.g., screwdriver, hammer),
each linked to corresponding embeddings from prior tasks. Given a new tool Tx, similarity-
based reasoning can determine its function by computing its distance to known tool embed-
dings. If sim exceeds a predefined threshold, the model can infer the tool’s function and suggest
appropriate usage instructions.
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3. MMeCM: A Framework for Integrating Multimodal Data into Conceptual
Modeling

In this section, we present our proposed framework for integrating multimodal data into concep-
tual models, producing Multimodal-enriched Conceptual Models (MMeCM). Our framework
consists of three primary stages: (1) extraction of all natural language elements from conceptual
models while preserving their contextual links, (2) computation of multimodal embeddings for
each extracted element, and (3) performing similarity matching between these embeddings and
multimodal data. For a detailed implementation of the MMeCM framework, we invite readers
to consult the supplementary materials accompanying this work1.

In our approach, the similarity matching is facilitated by ImageBind [15], a method that
learns a joint embedding space across six modalities (in particular, images, text, audio, depth,
thermal, and inertial measurement units such as accelerometer and gyroscope). We design our
similarity matching to act as the enrichment step by linking any of these six modalities to the
corresponding natural language elements in conceptual models.

As part of our framework evaluation and to facilitate further research in multimodal con-
ceptual modeling, we contribute the Multimodal-enriched dataset of conceptual models, a cu-
rated dataset comprising natural language elements extracted from the OntoUML models. This
dataset D =

⋃15
i=1Di denotes the complete dataset, where each chunk Di = {(nj , vj) | nj ∈

Ni, vj = F (nj)} consists of a finite set of natural language elements nj and their corresponding
multimodal embeddings vj ∈ Rd computed by the embedding function F . Each nj originates
from a conceptual model element ej ∈ E, preserved through a mapping µ :

⋃
iNi → E.

The embeddings reside in a shared multimodal space Rd such that a similarity function σ :
Rd×Rd → R (e.g., cosine similarity) enables cross-modal comparisons between textual inputs
and elements from other modalities Γ = {image, text, audio, depth, thermal, IMU}. This dataset
supports multiple downstream tasks, such as multimodal retrieval (argmaxx∈D σ(vq, vx) for a
query vq from any modality), semantic clustering over D using embedding topology, or evalua-
tion of alignment functions ϕ : Γ→ N in AI-assisted modeling scenarios.

Prototype Walkthrough.

In our prototype framework, we (1) extract each natural language term from the model, (2)
clean and normalize the extracted term, (3) convert each term into a vector via the multimodal
encoder, and (4) compute similarity scores between vectors to attach matching multimodal data.

3.1. Implementation

Let a conceptual model be denoted as M , which contains a set of elements E and their associated
natural language descriptions. The goal is to extract each natural language description while
keeping track of its original position in M . Let N be the set of all extracted natural language
values, and let µ : N → E be the mapping that associates each natural language description
with its corresponding model element. After extraction, each n ∈ N is transformed into an
embedding v ∈ Rd using a multimodal model. The similarity function σ : Rd × Rd → R
then computes the affinity between any two embeddings, thereby enabling the enrichment with
modalities from the set Γ.

Extraction of Natural Language Elements.

To initiate the enrichment process, we extract all natural language elements from the concep-
tual model while preserving their contextual links. This step lays the foundation for linking
the extracted textual descriptions with the corresponding multimodal data. Alg. 1 outlines the
extraction of these elements from the model.
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Algorithm 1 Extract Natural Language Elements from Conceptual Models

1: Input: Conceptual model M with element set E
2: Output: Set of natural language values N and mapping µ : N → E
3: Initialize N ← ∅ and mapping µ← {}
4: for each element e ∈ E do
5: Identify natural language properties P (e) associated with e
6: for each property p ∈ P (e) do
7: Extract natural language value n from p
8: N ← N ∪ {n}
9: Update mapping µ(n)← e

10: end for
11: end for
12: return (N , µ)

Following the extraction, the set of natural language values N and the mapping µ serve as
the basis for the Embedding and Similarity Matching stage in our pipeline.

Embedding and Similarity Matching for Enrichment.

The framework proceeds to compute multimodal embeddings for each natural language element.
This embedding step leverages a multimodal model to transform natural language into a joint
embedding space, where similarity matching can be performed across different data modalities.
Alg. 2 illustrates how the textual data is preprocessed, embedded, and subsequently aligned with
multimodal data via similarity scoring.

Algorithm 2 Multimodal-enriched Conceptual Models (MMeCM)
1: Input: Set of natural language valuesN (produced with Alg. 1), multimodal model F , and

modality set Γ, batch size B, and conceptual model M
2: Output: Embedding mapping η : N → Rd and similarity matrices for enrichment
3: Partition N into batches {N1, N2, . . . , Nk} of size B
4: for each batch Ni do
5: Prepare a list T containing all values in Ni

6: Transform T using the natural language preprocessing function T ′ = T (T ), in the
context of conceptual model M

7: Compute embeddings: E = F (T ′), where E ⊂ Rd

8: for each embedding ej ∈ E associated with text tj ∈ T do
9: Set η(tj)← ej

10: end for
11: Compute similarity scores matrix S such that for any pair (tj , tk),

Sjk = σ(ej , ek) = softmax(e⊤j ek)

12: Store S and η for batch Ni for further matching with data from any modality in Γ
13: end for
14: return η and all computed similarity matrices

Computation of embeddings using a multimodal model, followed by the construction of
similarity matrices, facilitate matching between the natural language embeddings and the vari-
ous modalities in Γ, thus enabling the multimodal enrichment of conceptual models through a
flexible approach that can be adapted to diverse conceptual modeling languages and extended to
integrate additional modalities as required.
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3.2. Dataset Contribution

To facilitate further research in multimodal conceptual modeling, we contribute the Multimodal-
enriched dataset, a curated dataset comprising natural language elements extracted from ex-
isting conceptual models in the OntoUML/UFO catalogue [1]. The dataset contains 12,300
unique entries that are structured into 15 chunks to support modular experimentation. Each en-
try corresponds to a filtered (i.e., exact duplicates removed) natural language element linked to
a specific OntoUML/UFO modeling construct, maintaining the semantic integrity and contex-
tual role (through preserved model attributes) of the original model element, enriched with a
multimodal embedding computed using ImageBind [15]. This collection reflects a diverse sam-
ple of modeling scenarios and linguistic formulations that appear in OntoUML practices. Each
embedding resides in a joint latent space that supports comparisons across six modalities: text,
image, audio, depth, thermal, and IMU. The dataset thereby enables similarity queries between
natural language model elements and arbitrary modality inputs using standard distance metrics
such as cosine or Euclidean similarity. The resulting representation preserves conceptual mod-
eling semantics for novel cross-modal retrieval tasks and enrichments, laying the foundation for
multimodal reasoning, alignment, and AI-assisted modeling support tools.

4. Evaluation
In this section, we discuss the scalability, performance, cost of operation, security and privacy
concerns, as well as the systematic evaluation of our methodology and framework through both
quantitative and qualitative analyses. We first provide an empirical analysis of the dataset and
retrieval performance through similarity matrices. Then, we conduct a user study to assess
the practical usability and acceptance of our approach using the Technology Acceptance Model
(TAM) [6]. Finally, we outline key findings, limitations, and threats to validity.

Scalability Evaluation.

Our framework is designed with modularity and extensibility in mind, ensuring that it scales well
with increasing dataset sizes and additional modalities. Thanks to the use of chunked processing
and embedding caching mechanisms, performance remains robust even when operating over
tens of thousands of elements. During experimentation, we observed linear growth in both
computation time and memory consumption relative to dataset size, which confirms predictable
scalability for future expansions.

Performance Evaluation.

One of the key strengths of our approach lies in its ability to deliver real-time performance. All
computations, including embedding generation, similarity calculations, and retrieval tasks, are
executed locally without reliance on cloud-based services and APIs. This architecture ensures
minimal latency and allows for instantaneous feedback, making the solution viable for interac-
tive use cases and deployments in latency-sensitive environments such as AR/XR applications.

Cost of Operation.

By eliminating the need for external servers, cloud subscriptions, or internet connectivity during
operation, our solution significantly reduces the cost of deployment and maintenance. The entire
pipeline can be run efficiently on a modern consumer-grade laptop with GPU acceleration (we
used NVIDIA A40 GPU with 48 GB GDDR6 ECC Memory), making it accessible for academic,
industrial, or personal use. This low cost of ownership broadens the framework’s applicability
across institutions with limited budgets.
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Security and Privacy Concerns.

Security and privacy were central considerations in our system design. Since all processing is
performed locally, no sensitive data is transmitted over the internet or stored in third-party ser-
vices. This architecture inherently mitigates risks associated with data leakage or unauthorized
access, ensuring full compliance with privacy regulations such as GDPR (The General Data
Protection Regulation, EU-2016/679). Furthermore, local execution allows users full control
over their data, aligning with privacy-by-design principles.

4.1. Quantitative Evaluation

We have structured our created dataset into 15 distinct chunks, each containing extracted and
filtered natural language elements (with exact duplicates removed) along with their correspond-
ing multimodal embeddings. The dataset distribution across chunks is as follows: 1265, 702,
999, 1562, 571, 612, 691, 821, 627, 499, 981, 458, 843, and 669 elements per chunk, each
corresponding to the number of unique natural language elements found in a 10 model subsets
of OntoUML/UFO Catalogue. As these embeddings allow for similarity comparisons across
six modalities using standard distance metrics such as Euclidean and cosine distance, we pro-
vide in our supplementary material similarity matrices (per chunk, as there are 12,300 entries
in total) where the diagonal represents self-similarity (value of 1), demonstrating consistency in
embedding alignment.

To assess the relevance of multimodal retrievals in real-world scenarios, we consider three
evaluation approaches: (A) domain expert annotations, where experts review real-life concep-
tual model examples and mark potential spots where multimodal data could enrich the model;
(B) large-scale pretrained language model annotation, taking foundational pretrained large lan-
guage model to simulate the annotation process based on approach (A), and finally, (C) data-
driven retrieval assessment, by collecting multimodal data samples and evaluating the retrieval
quality directly. We opt for a combination of (A) and (B). A golden dataset is created through
domain expert annotations identifying multimodal enrichment spots in real-life conceptual mod-
els (through approach A). Since human annotation is time-consuming and susceptible to lapsus
errors, we complement it with a large language model (LLM) generated dataset trained using
golden dataset examples and annotation instructions (which is approach B, yet augmented with
approach A result). For the expert annotation process, we developed an annotation tool as shown
in Figure 3. The tool allows annotators to mark and revise elements within conceptual models
(approach A), specifying whether visual or auditory enrichment is relevant. Its initial sugges-
tions are produced using an open-weight LLM [16] that offers advanced reasoning capabilities
in a more resource-efficient package (approach B). To generate automated annotations, we use
the prompt given in the supplementary material.

4.2. Qualitative Evaluation

To assess the practical usability of our approach, we conducted a user study grounded in the
Technology Acceptance Model (TAM). Originally developed by [6], TAM is a widely adopted
framework in system adoption research, that posits that a user’s acceptance of a technology is
primarily influenced by two core factors: Perceived Usefulness (PU) and Perceived Ease of Use
(PEOU). These, in turn, affect the user’s Attitude Toward Using the system (ATT), which shapes
their Behavioral Intention to Use (BI), ultimately leading to Actual Use.

In our study, we applied this structure to evaluate our approach: Perceived Usefulness (PU)
— “Does MMeCM enhance your conceptual modeling tasks?”; Perceived Ease of Use (PEOU)
— “Is MMeCM intuitive and user-friendly?”; Attitude Toward Using (ATT) — “Would you
consider using MMeCM in your workflow?”; Behavioral Intention (BI) — “Would you recom-
mend MMeCM to colleagues?”. We engaged a diverse group of participants with varying levels
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Fig. 3. Annotation tool used for expert-based multimodal enrichment identification. Its initial sug-
gestions are produced using an LLM as described. The OntoUML that is visualized in the
example is [17].

of expertise in conceptual modeling: (A) two PhD holders in conceptual modeling, (B) three
PhD candidates with over two years of experience in conceptual modeling, and (C) five students
with foundational knowledge of conceptual modeling. Participants responded using a 5-point
Likert scale.

4.3. Discussion: Key Findings, Limitations, and Threats to Validity

Our evaluation yielded several key findings. Quantitatively, the multimodal embeddings demon-
strated consistent alignment in a multimodal embedding space, as evidenced by the similarity
matrices, validating the structural integrity of our dataset and retrieval mechanism. The com-
bined annotation approach—leveraging domain experts and a large language model—showed
that more than 68% of natural language elements in conceptual models can be enriched with
multimodal data. Qualitatively, results from the TAM-based user study revealed a positive re-
ception (4.2/5.0) toward MMeCM, particularly in terms of perceived usefulness and ease of use,
with participants highlighting MMeCM’s potential to improve expressiveness and accessibility
in conceptual modeling tasks.
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Nonetheless, several limitations and threats to validity remain. First, the dataset is built
on a specific modeling catalog (OntoUML/UFO), which may limit generalizability to other
modeling paradigms. Second, while the LLM-assisted annotation complements expert input,
it may introduce subtle biases based on prompt phrasing and training data. Third, the user
study was conducted with a relatively small and academically-inclined sample, which might not
fully represent practitioners in industry settings. Lastly, while MMeCM suggests multimodal
enrichments, the evaluation does not yet measure downstream effects on task performance or
decision-making quality. Further evaluation will address these concerns by expanding domain
coverage, increasing participant diversity, and incorporating longitudinal usage studies.

5. Related Work
A variety of research efforts explore the intersection of conceptual modeling and advanced data-
driven techniques, including machine learning, and multimodal analysis. One notable body of
work uses few-shot prompt learning, which integrate large language models for automating or
assisting modeling tasks, also point to new opportunities for model completion and augmenta-
tion [5].

Beyond AI integration, information visualization and human-computer interaction in con-
ceptual modeling have gained significant attention. One taxonomy details a spectrum of vi-
sualization and interaction techniques applicable to modeling environments, illustrating how
advanced visual concepts might enhance the creation and inspection of models [3]. This aligns
with ongoing work in meta-modeling platforms, where frameworks such as CMAG propose
ways to incorporate generative AI into conceptual modeling [8], and extensions to spatial con-
ceptual modeling investigate how physical locations and augmented reality can be tied to meta-
modeling primitives [7]. Several recent efforts highlighted the promise of enriching event logs
and business process (conceptual) elements with multimodal data for use in process mining
task [10, 12]. Related work focuses on stakeholder-specific representations of such data [13]
and explores AI-driven interpretation of UML diagrams in a multimodal context [11]. Tools for
efficient annotation and extraction of process information further support these new frontiers
[20]. Taken together, these bodies of work motivate the need for a systematic methodology
and infrastructure that can unify textual, symbolic, and multimodal data streams in conceptual
modeling environments.

While modeling languages (i.e. UML, BPMN, and ArchiMate) provide extension mecha-
nisms—such as stereotypes and profiles—used in tools like BizAgi, Visual Paradigm, and Biz-
zdesign to attach multimedia elements, these approaches typically treat such data as abstract
(icon) annotations. The model engineering tradition to express the models and its instances
(e.g., [2]), improve modeling flexibility but fall short in semantically integrating the actual in-
stances of multimodal data. Our approach goes further by directly linking abstract concepts to
instance-level multimodal data, enabling structured interpretation and interaction beyond what
conventional extensions afford.

6. Conclusion
This paper presents a novel approach to enriching conceptual models through the integration
of multimodal data, enhancing their expressiveness and accessibility. By bridging symbolic
abstractions with real-world references, our MMeCM framework demonstrates both technical
feasibility and user acceptance. The results highlight a strong potential for multimodal aug-
mentation in conceptual modeling, with over two-thirds of natural language elements found
suitable for such enrichment. We presented a structured roadmap for advancing a multimodal
and collaborative conceptual modeling framework, emphasizing both technical enhancements
and user-centered design. By prioritizing tasks such as modality expansion, tool integration,
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federated model support, and inclusive usability testing, we aim to foster a more expressive,
scalable, and accessible modeling environment.
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