
Establishing Traceability between Natural
Language Requirements and Software Artifacts

by Combining RAG and LLMs

Syed Juned Ali1 , Varun Naganathan2, and Dominik Bork1

1 TU Wien, Business Informatics Group, Vienna, Austria
{syed.juned.ali, dominik.bork}@tuwien.ac.at

2 Microsoft, India, varun.naganathan@microsoft.com

Abstract. Software Engineering aims to effectively translate stakehold-
ers’ requirements into executable code to fulfill their needs. Traceability
from natural language use case requirements to classes in a UML class
diagram, subsequently translated into code implementation, is essential
in systems development and maintenance. Tasks such as assessing the
impact of changes and enhancing software reusability require a clear link
between these requirements and their software implementation. How-
ever, establishing such links manually across extensive codebases is pro-
hibitively challenging. Requirements, typically articulated in natural lan-
guage, embody semantics that clarify the purpose of the codebase. Con-
ventional traceability methods, relying on textual similarities between re-
quirements and code, often suffer from low precision due to the semantic
gap between high-level natural language requirements and the syntactic
nature of code. The advent of Large Language Models (LLMs) provides
new methods to address this challenge through their advanced capa-
bility to interpret both natural language and code syntax. Furthermore,
representing code as a knowledge graph facilitates the use of graph struc-
tural information to enhance traceability links. This paper introduces an
LLM-supported retrieval augmented generation approach for enhancing
requirements traceability to the class diagram of the code, incorporating
keyword, vector, and graph indexing techniques, and their integrated ap-
plication. We present a comparative analysis against conventional meth-
ods and among different indexing strategies and parameterizations on
the performance. Our results demonstrate how this methodology signif-
icantly improves the efficiency and accuracy of establishing traceability
links in software development processes.

Keywords: Large Language Models · LLM · Requirements Traceability · Re-
trieval Augmented Generation · Requirements Engineering

1 Introduction

Traceability information is a fundamental prerequisite for many essential soft-
ware maintenance and evolution tasks, such as change impact and software

https://orcid.org/0000-0002-0710-8052
https://orcid.org/0000-0001-8259-2297
dominik
Typewriter
 Author pre-print version. Paper accepted for ER 2024.
Final Paper to be published and copyrighted by Springer.



2 S.J. Ali et al.

Fig. 1: Requirements to Code Traceability-based UML Classes Evolution

reusability analyses. Traceability can also help validate that the right system
is being built, effectively meeting user and business needs as specified in the use
case. A traceable relationship between requirements, conceptual design, and im-
plementation helps effective communication about the software across stakehold-
ers. However, manually maintaining traceability is costly and error-prone [14].

Unified Modeling Language (UML) class diagrams are a de-facto standard for
the static structural representation of a system’s design [3]. However, there can
be several reasons for employing traceability from use case requirements to the
classes in source code rather than UML class diagrams and then subsequently
update the UML class diagram such as — i) Readily available and regularly
updated source code particularly those involving legacy systems or open-source
projects whereas UML class diagrams may not be regularly updated or might not
exist at all, especially in agile development settings where documentation might
lag behind code changes, ii) Richness of information in source code especially
the availability of the business logic that the UML class diagram might lack, iii)
Automatic generation of UML diagrams from source code using modern tools and
IDEs (Integrated Development Environments) 3 and iv) Dynamic adaptation to
system changes, thereby keeping the code to UML class diagrams synchronous
with the latest system state.

Given that source code changes more frequently than most other artifacts
during software development, traceability from source code ensures that the de-
rived UML diagrams are kept synchronous with the latest system state and
thereby helps maintain the relevance and usefulness of the UML diagrams as
conceptual models of the system. Figure 1 illustrates the support that traceabil-
ity from requirements to classes in source code provides for the evolution of UML
class diagrams. Therefore, in this work, our approach focuses on improving the
state-of-the-art of use case requirements to source code classes traceability, as a
prerequisite for the approach in Fig. 1.

Automated approaches that utilize textual similarities between artifacts to
establish trace links exist, however, these approaches tend to achieve low pre-
cision at reasonable recall levels, as they are not able to bridge the semantic
gap between high-level NL requirements and code [14]. Recent advancements in
Large Language Models (LLM) have marked a substantial progression in soft-

3 https://staruml.io/, https://pypi.org/project/pyreverse/

https://staruml.io/
https://pypi.org/project/pyreverse/


RAG and LLM-based Requirements to Code Traceability 3

ware engineering. The utilization of LLMs in software engineering can be effec-
tively reframed into data, code, or text analysis tasks. The applicability of LLMs
is particularly pronounced in tasks such as code summarization [35], which in-
volves yielding an abstract NL depiction of a code’s functionality, as well as the
generation of well-structured code [40] and code artifacts like annotations [22].

Despite their ability to interpret the syntax and logic of programming lan-
guages, LLMs face huge challenges in applying this technical understanding to
non-technical, use case-driven code descriptions. Documentation like code com-
ments, while informative, often remains incomplete, overly technical, and de-
tached from the actual code structure, and fails to consider the broader use
case and context of the code’s application. A recent survey on the use of LLMs
in software engineering [15] highlights that LLMs often produce syntactically
correct but functionally inadequate code, compromising the reliability and effi-
cacy of LLM-based code generation. The survey reveals that LLMs are employed
in software development in 58.37% of cases but only in 4.72% of requirements
engineering scenarios. This discrepancy underscores LLMs’ efficiency in generat-
ing syntactically accurate solutions when provided with clear requirements, yet
indicates a gap in addressing ambiguities within requirements engineering.

LLMs are trained on extensive data, limiting their efficacy on tasks requiring
specialized domain knowledge. Retrieval Augmented Generation (RAG) tech-
niques enhance LLM’s performance by utilizing external knowledge sources to
augment the LLM’s inherent data representation. This approach offers notable
advantages over purely generative models: 1) knowledge is not merely encoded
within model parameters but is dynamically incorporated in a scalable, plug-
and-play fashion; and 2) it leverages human-authored texts for response gener-
ation, which simplifies the generation process and may improve output quality.
As highlighted in the survey by Hou (2023) [15], the increasing complexity of
tasks in this field necessitates more advanced, tailored computational strategies.

To address these crucial challenges, we introduce a novel Retrieval Augmented
Generation (RAG)-based approach for code repository-specific Requirements
Traceability (RARTG). Our approach is designed to bridge the gap between
abstract, high-level use-case requirements and their corresponding source code.
By leveraging code comments and the class functions dependency graph as con-
textual anchors for the RAG model, our solution provides an alignment of code
with use-case requirements. The performance of an LLM with RAG depends
on the quality of the RAG index. The RAG index acts as a contextual bridge
between the query and the response from an LLM. The better the context pro-
vided by a RAG index for given requirements in natural language as a query is,
the better an LLM responds by disambiguating the requirements. Therefore, we
aim to study the impact of the quality of RAG index on RT by evaluating the
impact of several parameters influencing the quality of RAG indexes.

In summary, we present our RARTG approach and provide a comprehensive
evaluation of it on four requirements to code alignment datasets from [14] and
provide a comparison of our approach with the existing work [14] (cf. Section 5)
for the natural language requirements for the traceability task. The evaluation



4 S.J. Ali et al.

reveals our method’s capability to outperform the state-of-the-art on the given
datasets. Further our results show the impact of different data sources and the
constructed RAG indexes for traceability, thereby showing that an improvement
in the semantic quality of the RAG index leads to an improvement in require-
ments to code traceability. Finally, we provide the entire source code for the
implementation of our approach.

In the remainder of this paper, Section 2 introduces relevant foundations to
our approach. We present the related work in Section 3. In Section 4, we present
the architecture and details of our RAG-based approach. In Section 5, we provide
the evaluation of our approach. In Section 6 we discuss our results and findings
and provide some insights and finally, we conclude in Section 7.

2 Background
Traceability in software engineering refers to the ability to link and trace the life
of a requirement, forward and backward, throughout the stages of the Software
Development Life Cycle. By establishing a clear and coherent connection between
requirements and their corresponding implementation in the code, traceability
not only supports effective project management but also provides a roadmap
for future maintenance and upgrades. This end-to-end visibility is crucial in
complex software projects, where understanding how each piece of code reflects
specific requirements can significantly improve the efficiency and effectiveness of
the software development process, e.g., connecting requirements to source code
elements provides insight into what has been implemented and where [14].

Large Language Models - In the field of language processing, traditional
Language Models (LMs) have been foundational elements, establishing a basis
for text generation and understanding [28]. Increased computational power, ad-
vanced machine learning techniques, and access to very large-scale data have led
to a significant transition into the emergence of LLMs. Equipped with expansive
and diverse training data, these models have demonstrated an impressive abil-
ity to simulate human linguistic capabilities [15]. The training of LLMs involves
learning patterns and structures in language by analyzing and predicting text
sequences, which enable LLMs to generate coherent and contextually relevant re-
sponses. Their applications are diverse and impactful, ranging from natural lan-
guage processing tasks like translation, summarization, and question-answering,
to more creative uses such as content generation and dialogue systems [13,15].
LLMs have become integral in enhancing user experiences in virtual assistants,
providing support in customer service through chatbots, and even assisting in
writing and educational tools [19].

Retrieval Augmented Generation (RAG) is an approach in natural lan-
guage processing that combines the strengths of information retrieval and lan-
guage generation. In this methodology, a system first retrieves relevant infor-
mation from a large dataset, like a database or the internet, and then uses this
information to generate a response or output. RAG leverages a combination of
information retrieval and neural network-based natural language generation to
vectorize documents. The process involves two main components i.e., a retriever
and a generator. The retriever is responsible for fetching relevant context from



RAG and LLM-based Requirements to Code Traceability 5

a large corpus of documents. The retrieval can be based on classical informa-
tion retrieval techniques such as TF-IDF best matching (BM) algorithm [32],
which is a ranking function used by search engines to estimate the relevance of
documents to a given search query, or advanced vector embeddings-based sim-
ilarity techniques. Vector-embedding-based retrieval techniques vectorize both
the query and the documents as points in a shared continuous high-dimensional
vector space. The embeddings are typically produced by models such as BERT [7]
(Bidirectional Encoder Representations from Transformers) or its variants. These
embeddings aim to capture deep semantic meaning of words and phrases in the
context of the entire document, rather than inisolation. The generator, often an
LLM, then takes the retrieved documents and the original query to generate
a coherent response. The generator has been trained on a vast amount of text
and thus has learned to predict the next word in a sequence, generating human-
like text based on the context it is given. RAG allows the model to access a
wide range of information beyond its training data, enabling it to provide more
accurate, detailed, and contextually relevant responses.

3 Related Work
There has been significant work conducted in the area of applying natural lan-
guage processing (NLP) and machine learning (ML) techniques for software re-
quirements traceability. Several existing systematic literature reviews and map-
ping studies elaborate on the intersection of the RT and NLP or ML [38,31]. Hou
et al. [15] provide a systematic mapping study at the intersection of LLMs and
Software Engineering (LLM4SE). In the following, we first discuss the works
involving traceability in UML models and source code, and then the role of
LLMs in the context of RT. Finally, we discuss the role of context enrichment
in improving RT.

3.1 Requirements Traceability in Models

Mills et al.[26] present an approach that supports the maintenance of traceability
relations between requirements, analysis and design models of a software systems
expressed in UML. Eyl et al. [9] present a metamodel expressing relationships
between requirements and the UML model at the meta-level. For each meta-
requirement, the author adds a ‘REQTYPE’ attribute to decide which UML
diagram shall be used for the traceability. Netaji et al. [30] present a graph-
based information retrieval approach to identify the requirement change impact
on design models. Yazawa et al. [39] present an approach to derive a functional
model from a use case diagram, a structure diagram, and a transition diagram.
By decomposing the existing functional model into model components, trace-
ability links are recovered based on guidelines that allow a mapping of model
components to requirements. Divya et al. [8] present an approach to calculate
the semantic traceability between the use case documentation and the sequence
diagram. Khlif et al. [20] present an approach to support traceability between
design, requirements, and code. Their approach extracts an expanded textual



6 S.J. Ali et al.

description from a natural language text available in UML models in order to
trace between related elements belonging to requirements, design, and code while
using an information retrieval technique.

3.2 Requirements Traceability in Source Code

Hey et al. [14] propose an approach for traceability link recovery by leveraging
fine-grained, method-, and sentence-level similarities between the artifacts using
word embeddings. Guerrouj et al. [12] present a solution that uses deep learning
to incorporate requirements semantics and domain knowledge into the tracing
solution. Tian et al. [34] adapt the word embeddings for traceability recovery
tasks, and handle the out-of-vocabulary words involved in tracing words the
artifacts that might not be in the vocabulary of an embedding model.

3.3 LLM-based Requirements Traceability in Source Code

Anaphoric ambiguity in software requirements arises when a single reader can
interpret a natural language requirement in multiple ways, or different readers
have varying understandings of the same requirement. Unclear and ambiguous
software requirements can lead to suboptimal or even invalid software artifacts
during later development stages. Moharil et al. [27] and Ezzini et al. [10] have
empirically demonstrated the significant role of LLMs such as BERT [7] and
SpanBERT [18] in effectively addressing anaphoric ambiguity. Lin et al. [23]
found that T-BERT can effectively migrate knowledge from code search to NL
artifacts to programming language artifacts traceability, even with limited train-
ing instances. It outperforms existing techniques in accuracy and can be adapted
to different domains without intermediate training for each project, offering a
promising step toward practical, trustworthy traceability. Sridhara et al. [33]
revealed that ChatGPT excels in addressing anaphoric ambiguity in software
requirements. ChatGPT consistently demonstrated its capability to accurately
identify antecedents. These studies assert the valuable role of LLMs like GPT-
4 [2] or the most capable open source LLMs like Llama 3 4 can play in enhancing
the clarity and precision of software requirements, thereby contributing to more
effective software development with minimal interpretational uncertainties.

3.4 Context Enrichment for Requirements Traceability

Chen et al. [5] propose a self-enhanced automatic traceability link recovery ap-
proach based on structure knowledge mining for small-scale labeled data. This
work enhances the semantic representations of artifacts by mining context in-
formation from the code structure. Lin et al. [24] exploit the idea that software
source code contains a large amount of software-specific conceptual knowledge
and semantic relatedness between queries and documents could be measured ac-
cording to software-specific concepts involved in them. Iyer et al. [17] present a
data-driven approach for generating high-level summaries of source code which
can later be used as a semantic representation of the code for RT.4 https://ai.meta.com/blog/meta-llama-3/

https://ai.meta.com/blog/meta-llama-3/


RAG and LLM-based Requirements to Code Traceability 7

Fig. 2: Retrieval Augmented Requirements Traceability Generation

3.5 Synopsis

A limitation of existing works in RT for models and source code include the
fact that such works employ syntactical methods and guidelines for RT. Even
the semantic approaches involve shallow semantics, i.e., semantics derived from
textual similarity and therefore miss out on capturing the ‘purpose’ of the UML
model or the code of the class and thereby cannot bridge the semantic gap
between the UML model/code and the corresponding NL requirement.

In summary, we believe that none of the presented works use the benefits of
RAG-based approaches for software RT. To the best of our knowledge, ours is the
first work that combines RAG with LLM-based code summarization and com-
bined (keyword, vector, and graph) indexing for RT. Our research contributes to
the growing body of work seeking to bridge the gap between high-level require-
ments and executable code. By integrating the advances in LLMs with RAG
techniques and exploiting the latent knowledge within codebases and the knowl-
edge graph-based structural representation of software code, we provide a novel
solution that tackles the challenges outlined by previous research while paving
the way for more improvements in requirement-to-code traceability.



8 S.J. Ali et al.

4 Retrieval Augmented Requirements Traceability
Generation

Next, we present the details of our RAG-based approach for code repository-
specific traceability. We present a novel architecture for enhancing traceability
from natural language requirements to code through the utilization of Llama 3
and a suite of indexing and retrieval mechanisms. Our methodology is structured
into several interconnected stages, as depicted in Fig. 2. The approach involves
an indexing stage (steps 1 and 2) and a querying stage (steps 3, 4, and 5).

4.1 Indexing Stage

The indexing stage involves LLM-based code summary generation and the sub-
sequent storage indexes creation from the the available codebase for efficient
storage and retrieval of code documents, thereby facilitating quick and relevant
matches, given a specific use-case requirement.

Code Summary Generation - There are cases where the classes i) do
not have any docstrings; ii) the docstrings are incomplete; or iii) the docstrings
are generic and do not capture the high-level purpose in the codebase and the
relationship to other classes. To circumvent these issues, we use an LLM to
generate the class docstring using the source code of the whole class. Note that
all the subsequent prompts used in this paper are a result of rigorous prompt
engineering, i.e., constructing different prompts and evaluating which prompt
provides the best results. This task was entirely manual, and we chose the prompt
that provided the best results. Below we show the code summarization prompt.
The ⟨CODE_EXAMPLE⟩ and ⟨DOC_TEMPLATE⟩ are examples of code and
structure of the document that are used to provide some contextual information
for code summarization.

You are an expert in summarizing code. Given a class in a Java code file,
generate a class summary that can be used to map the code to a given
use case requirement of the provided java code. The summary should cap-
ture the purpose of the class and its attributes and methods. Given a
doc with the following structure that will be useful for use case require-
ments with code elements traceability: ⟨DOC_TEMPLATE⟩. Code exam-
ple: ⟨CODE_EXAMPLE⟩ Provide the summary in simple abstract use case
scenario language in the following format: Class Name: <Class Summary>
Method Name: <Method Summary> . . Method Name N: <Method Sum-
mary N> Here is the code - ⟨code⟩

After LLM-based code summary generation, we create several code indexes.
Code Documents Keyword Index - We create a keyword-based index

(KI) that treats the code documents as natural language documents and applies
standard text preprocessing steps of stemming and stopwords, i.e., common fre-
quent words removal from the code. We use the PorterStemmer [36] to stem the



RAG and LLM-based Requirements to Code Traceability 9

words. We store the generated index in a vector database. We create separate
keyword indexes with and without code summaries in the code files.

Vector Index In this step, we use a multi-lingual embedding model [4]which
is well suited for its versatility in Multi-Linguality to generate the text embed-
dings of the code documents and subsequently construct a vector index (VI).
It can support more than 100 working languages, leading to new state-of-the-
art performances on multi-lingual and cross-lingual retrieval tasks. We chose a
multi-lingual embedding model because our dataset contains source code in two
languages i.e., English and Italian. We store the generated embeddings of the
code documents in a vector database. We create separate vector indexes with
and without code summaries in the code files.

Knowledge Graph Index A knowledge graph index (KGI) is constructed
from the dependency graph of the modules in the codebase. We refer to this
knowledge graph as Function Dependency Graph (FDG). Each node of the FDG
stores class names and the existing code documentation of the class as the class
content. Next, we generate triples of subject, object, and a predicate where the
subject is the calling method’s class and the object is the called method’s class.
Finally, we store the created FDG in a Neo4j database to support querying.

Index Creation Subsequently, in step two, the system generates three spe-
cialized indexes as shown in Fig. 2. The first index is constructed using only
the code comments and the names of the classes, class attributes and method
names in the codebase. The second index is constructed using docstrings gen-
erated from an LLM as a code summarization response in the data embedding
step and finally, the last index is for indexing the node embeddings from the
FDG. The indexes generated using only the code docstrings do not consider any
external sources of information or structural semantics from the code via inter-
connections from the code and only focus on the available semantics of the code
from the code’s textual content. The LLM-based indexes aim to improve on the
first indexes by augmenting the documentation by an LLM-generated docstring,
thereby including the LLM’s knowledge as an external source of knowledge. How-
ever, this index still does not involve the structural semantics of the codebase.
Therefore, the knowledge graph index aims to capture the structural semantics
from the code. Furthermore, as performed in [14], we can optionally add the
method call triples of a given class in the knowledge graph during the creation
of the VIs and KIs. This step adds the structural connections explicitly to the
indexes. However, as the authors in [14] showed, the effect of this addition on
the traceability depends on the semantic quality of the connections with respect
to the purpose of the class, which can result in an improved or worsened index
quality. We investigate the impact of this step in our evaluation.

4.2 Querying Stage

In this stage, we use the constructed indexes of the indexing stage to first retrieve
a set of documents relevant to the use case requirements and then subsequently
using the contents of these documents as context to the LLM for predicting the
classes relevant to the given requirement.



10 S.J. Ali et al.

Requirement Traceability Prompt Generation. Upon receiving a NL
requirement, in step three the system first uses a prompt template to construct
a prompt that will be used to fetch the documents relevant to the query. The
generated prompt is subsequently provided, along with the contents of the re-
trieved documents as context to the LLM to generate the final answer. For the
purpose of requirements to code traceability, we constructed the following tem-
plate where the use-case requirements is filled in the place of the ‘requirements’
placeholder.

What are the names of the classes that are related to the following use case
requirement? ⟨requirement⟩

Provide the answer in a list format and provide ONLY the list of class
names as a JSON list. [<"Class 1 Name">, <"Class 2 Name">, ... <"Class
N Name">] where N can be up to 10.

Furthermore, a requirement that is too brief and lacks sufficient detail can result
in poor recall of initial document retrieval. Therefore, to enhance the semantic
quality of the initial requirements, we employ query expansion by generating
semantically similar requirements. We use LLM to generate these similar re-
quirements, which are then added as context to the prompt. However, this step
does not guarantee improved traceability, as its effectiveness depends on the
quality of the generated requirements. We investigate the impact of this step in
our evaluation. After formulating the requirement-specific prompt, our system
proceeds to fetch the relevant documents using various indexes from the indexing
stage.

Relevant Documents Retrieval. The retrieval step takes place in step
four in three stages denoted by retrieval stages RSi in Fig. 2. In RS1, the key-
word and vector indexes are queries to give a combined set (union) of the relevant
documents. In case of the VI, the retrieval is achieved by querying the indexes
for vectors closest to the vector representation of the requirement. Note that
the requirement is transformed into a vector using the same embedding model
which is used to generate the code structural and semantic embeddings in step
1 so that the requirement shares the same vector space as the vector repre-
sentation of the existing docstrings and LLM-generated docstrings. This initial
selection using the keyword and vector indexes can retrieve semantically similar
documents, however this approach may miss out on the structurally connected
relevant documents, thereby reducing the recall of the approach. Therefore, in
RS2, the structurally connected neighbouring documents of the retrieved relevant
documents in the knowledge graph are added to the list of relevant documents.
This forms the content of all candidate documents that can be given as a con-
text to the LLM. However, this further has few limitations. Firstly, retrieving a
higher number of nodes (all the neighbours in this case) can affect the precision
of our approach by retrieving false positives. Secondly, a context created from a
large number of documents does not fit the maximum prompt size allowed for
the LLM. To mitigate these limitations, in RS3, we add a semantic filter that
selects only the documents with a semantic similarity higher than a predefined



RAG and LLM-based Requirements to Code Traceability 11

threshold. Note, that this threshold is more relaxed than the threshold for doc-
ument retrieval in RS1 to allow keeping the documents that were not selected in
RS1 but not entirely semantically unrelated. In summary, our retrieval mecha-
nism combines multiple indexes to construct a unified context and provide that
as input to the LLM for preparing the response.

Response Generation. In the final step, the LLM receives the contextu-
alized prompt, which includes the query, i.e., the natural language requirement
and the relevant code elements and documentation. The LLM utilizes this en-
riched context to formulate a response that aims to predict the classes relevant
to the requirement.

5 Evaluation

Now, we elaborate on an extensive evaluation of our approach. First, we provide
the description of the experimental setup involving the investigated research
questions, the datasets description and evalution metrics, and finally the results.

5.1 Research Questions

We aim to investigate the following research question with our approach:

[RQ.1] How does RARTG perform compared to the state-of-the-art?
[RQ.2] How do various parameterizations influence the traceability performance?

[RQ2.1] How does incorporating the LLM generated summaries influ-
ence traceability?

[RQ2.2] How does incorporating the structural knowledge graph index
influence traceability?

[RQ2.3] How does query expansion by adding similar requirements to
the initial requirements influence traceability?

[RQ2.4] How does incorporating method calls explicitly to the VI and
KI influence traceability?

[RQ2.5] How does incorporating combining all the three indexes influ-
ence traceability compared to a single index (VI or KI)?

5.2 Experimental Setup

Datasets: We use the datasets with the descriptions given in Table. 1. The table
shows the language of the use-case descriptions and the code artifacts. EN and
IT indicate if the language of the artifact is English or Italian. The programming
language for all the datasets is Java, however, the identifiers, such as class and
method names can be in Italian as well. We see that for two datasets, eTour
and iTrust, the artifacts are in English and for the remaining two datasets, the
artifacts are in Italian. These datasets are provided by the Center of Excellence
for Software & Systems Traceability (CoEST) [1] and are commonly used in
automated traceability link recovery [14,25,29]. These datasets are suitable for
our study as they provide trace links between NL requirements and source code.
Note that iTrust is composed of Java and JSP target artifacts. However, we only
consider the Java target artifacts and links here.



12 S.J. Ali et al.
Table 1: Datasets

Project Domain Language Codebase description

Use-case Code Docstrings # Usecases #Classes #Links

eTour Tourism EN Java-EN EN 58 116 308
iTrust Healthcare EN Java-EN EN 131 226 286
SMOS Education IT Java-IT IT 67 100 1044
eAnci Governance IT Java-IT IT 139 55 567

RARTG Configuration Parameters: There are five controlling parameters
that can affect the performance of RARTG: i) Use Generated Summary (GS) -
which controls if the indexes use the LLM-generated summaries during index-
ing, ii) Use KG Index (KGI) - which controls if document retrieval from KGI
using RS2 and RS3 is performed or not during RAG context generation, iii)
Use Method Calls (MC) - which controls if method calls are explicitly added as
strings in the documents during indexing stage, iv) Use Query Expansion (QE)
- which controls if extra semantically similar requirements are generated and
added to the context before response generation using LLM and v) Combine In-
dexes (CI) - which controls if all the three indexes are used together or not. These
five parameters are used to respond to the five sub-RQs of RQ2. We execute the
experiments on all the combinations of the values of these five parameters to
evaluate the impact of these parameters. We term a single combination of values
of all the parameters a single configuration.

Evaluation Metrics: In all our experiments we use the precision, recall and
F1-score to evaluate our approach. The F1-score is the preferred metric for clas-
sification tasks and is commonly used for traceability link recovery [14]. It is
defined as the harmonic mean of precision and recall. In case of traceability
link recovery, precision reveals how accurate an approach proposes correct trace
links. It measures the ratio of correctly proposed links to all proposed links.
Recall shows the ability of an approach to propose all correct links. It measures
the share of expected trace links that were actually found by an approach. High
F1-scores should be the goal for all automated traceability link recovery ap-
proaches [11], as they indicate the approaches’ ability to produce the expected
results without missing links and producing many false positives. In our work,
we not only focus on the F1-score but also on precision individually due to the
research gap that indicates that existing approaches perform poorly, specifically
in precision (cf. [14]).

5.3 Results

In the following, we provide the results of our experimental evaluation and re-
spond to the RQs.

Response to RQ1: In order to respond to RQ1, we show the performance
of our approach regarding the selected evaluation metrics in Table. 2. Out of
all the different configuratins, we selected the configuration that gives the best
F1-scores. We consider the results from [14] on the same four datasets as the base-
line. The results in Table. 2 show, that the top two performing configurations of



RAG and LLM-based Requirements to Code Traceability 13

Table 2: Traceability comparison across evaluation datasets
Dataset iTrust eANCI SMOS eTour

Approach Prc Rec F1 Prc Rec F1 Prc Rec F1 Prc Rec F1

Baseline 0.176 0.353 0.235 0.294 0.220 0.252 0.443 0.297 0.356 0.411 0.623 0.495

RARTG-C2 0.284 0.286 0.285 0.737 0.178 0.287 0.526 0.118 0.192 0.488 0.239 0.321

RARTG-C1 0.289 0.292 0.290 0.779 0.199 0.317 0.608 0.126 0.209 0.543 0.242 0.334

Prc: Precision, Rec: Recall

RARTG outperform the baseline for iTrust and eANCI datasets for F1-scores.
Our approach improved the state-of-the-art F1-scores by almost 6% for both
datasets. In case of the SMOS and eTour dataset, our approach underperforms
with respect to the F1-score due to insufficient recall scores. Moreover, given that
our approach focused on improving the precision scores for traceability based on
the research gap, it is important to note that our approach consistently suffi-
ciently outperforms the baseline with respect to precision. Furthermore, given
that we used a single multi-lingual embedding model, it is important to note
that our approach is robust to the language of the artifacts. This makes our ap-
proach independent of any translation step to English. In summary, these results
clearly show the feasibility and value of our approach to support precise natural
language to code traceability.

Response to RQ2: We performed a statistical evaluation of the F1-scores for
different configurations. We had five controlling RARTG configuration param-
eters i.e., GS, MC, QE, KGI, and CI. To evaluate the impact of each of these
parameters, we evaluate the change in F1-score by changing the value of the
parameter in question and keeping the remaining parameters fixed. We do this
exercise for all the combinations of the fixed values for each parameter. For e.g.,
to evaluate the impact of using LLM generated summaries, we calculated the
change in F1-scores with and without using GS by keeping a particular combina-
tion of the values of other parameters fixed. We calculate the change in F1-scores
for all possible combinations and calculate the T-statistic and P-values [21] to
determine the significance of change in F1-scores. A p-value of less than 0.05
indicates a significant impact on the F1-score. The t-statistic indicates a sig-
nificant positive or negative impact depending upon the sign of the t-statistic.
Table. 3 shows the impact of all five parameters on the F1-scores. The KGI and
CI parameters have two rows because we evaluate the impact of using KGI on
top of an already existing VI in one case, and an already existing KI in another.
Similarly, we evaluate the impact of using CI compared to configurations using
single VI or single KI.

Impact of GS : The p-values for GS in Table. 3 show a significant posi-
tive impact of adding LLM generated summaries to the F1-scores for iTrust and
eANCI dataset. Note that our approach also outperforms for these two datasets.
This indicates using LLM-generated summaries that capture the high-level pur-
pose can be a very useful contrary to using the technical code docstrings. Adding
LLM summaries do not have a significant impact on SMOS and eTour datasets,



14 S.J. Ali et al.

Table 3: Impact of parameter change on the F1-score
Parameter iTrust eANCI SMOS eTour

TS P Effect TS P Effect TS P Effect TS P Effect

GS 2.60 0.02 SP 5.48 <0.05 SP 0.40 0.70 - 1.60 0.13 -

MC -2.36 0.03 SN 2.24 0.04 SP 3.22 <0.05 SP 1.78 0.09 Pos.

QE -4.77 <0.05 SN 1.72 0.10 - 0.29 0.77 - -3.14 0.01 SN

KGI to VI 25.84 0.02 SP -0.31 0.77 - 0.36 0.73 - 15.75 <0.05 SP

KGI to KI 0.18 0.87 - 0.40 0.70 - 12.24 <0.05 SP 3.08 0.02 SP

CI to VI 6.34 0.00 SP 0.58 0.58 - 1.74 0.12 - 7.96 <0.05 SP

CI to KI -0.19 0.86 - 3.42 0.01 SP 16.32 <0.05 SP 3.06 0.02 SP

SP: Significant Positive, SN: Significant Negative, -: Inconclusive, Pos. - Positive
TS: T-statistic, P: p-value

however the t-statistic still shows a slight positive impact which indicates an
overall positive potential of adding LLM generated summaries.

Impact of MC : The p-values for the impact of adding method calls directly
to indexes show a mixed result, i.e., for iTrust we see a significantly negative
impact and for eANCI and SMOS, we see a significantly positive result. This
indicates that using method calls information directly in the document indexes
may or may not be beneficial depending on the dataset and the relatedness of
the semantic quality of the function calls with the purpose or the associated
use-cases of the classes.

Impact of QE : The p-values for the impact of QE are significantly nega-
tive on two out four datasets. This is an interesting result because intuitively we
would expect that adding semantically related information to an already existing
document would improve the retrieval of semantically related documents, how-
ever, our results indicate a negative impact on the performance. This indicates
that query expansion by adding more questions may add more noise to the data
that reduces the semantic similarity of a NL use-case requirement with code.
Furthermore, the impact of QE may be dataset dependent as well. A dataset
may require use-case language to be even syntactically close to the code. For
e.g., a use-case requirement extract from the eTour dataset - “Use case name:
DeleteCulturalHeritage. View the list of CulturalHeritage as a result of the use
case SearchCulturalHeritage” directly hints towards a match with code with class
names based on the keywords. In such cases keyword-based retrieval methods
may outperform retrieval methods based on vector-based methods, therefore,
adding extra information information may act as noise.

Impact of KGI : The p-values for the impact of using KGI with VI and KI
show, that KGI can have a positive impact as can be seen for iTrust, SMOS and
eTour datasets. This result is quite expected because our RAG-based approach
gave lower recall scores because of its strict semantic or even keyword-based sim-
ilarity threshold, whereas a knowledge graph index adds structurally connected
documents to the list of relevant documents that may not necessarily be related
based on the semantic or keyword similarity and thereby missed by VI or KI.

Impact of CI : The p-values for the impact of using a combined index
comprising of all three indices shows an overall positive impact. Using a CI with



RAG and LLM-based Requirements to Code Traceability 15

VI shows a significant improvement in iTrust and eTour datasets and using CI
with KI shows a significant improvement for three out of four datasets. This
result underpins the value of our approach that combines the different indexes
for relevant documents retrieval and subsequent querying the LLM for extracting
the requirement-specific classes from the retrieved documents.

6 Discussion

In the following, we discuss our results regarding both of our research questions
and provide some meta-insights that we learned from our experiments.

Our results showed, that LLMs can be used to enrich the existing docu-
mentations which lack the contextual semantics to fill the abstraction gaps as
pointed out in [16]. In our work, we exploited LLM’s code summarization ca-
pabilities to associate high-level descriptions and tasks related to the abstract
description of the source code thereby creating a contextual summary of the code
which enabled improved traceability. This is particularly useful in cases where
the code is not well documented and hence the semantic gap between the tech-
nical and business layers is high. We note that LLMs have shown a remarkable
expertise in code generation from natural language descriptions [41]. However,
semantically ambiguous descriptions can lead to incorrect code generation. Using
our approach to incorporate contextual, semantically enriched summaries with a
high-level description can enable an unambiguous natural language description
to code generation. Finally, we note that combining a structural and a semantic
index is beneficial and we learnt that a knowledge graph representation of the
code provides significant value toward requirements to code traceability.

While investigating the reason for low recall scores, we analysed the RAG
pipeline. The effectiveness of RAG-based applications heavily relies on the qual-
ity of RAG index such that for a given query, all the information relevant for
answering the query should not only be retrieved but also fit into the maximum
allowed prompt length for an LLM (e.g., 4096 tokens for Llama 3). This limits
the number of documents that can be retrieved and hence it becomes imperative
for the RAG-based approach to have a strict relevance check on the indexed
documents. Due to this, a number of moderately relevant documents are missed.
However, this also means that the document that are retrieved have a higher
relevance accuracy. This can be preferable over higher recall in a setting like
RT which ensures that the links established between requirements and code are
accurate and reliable, reducing the likelihood of irrelevant connections that can
mislead developers and complicate maintenance and verification processes [6].

Nevertheless, the lower recall underscores potential areas for future research
and refinement of our model, indicating a clear path for progressive enhance-
ments. As part of our future work, we aim to improve the recall scores by relaxing
the initial documents retrieval constraints to retrieve more documents and then
employing domain-specific criteria to perform a relevant information retrieval
from the retrieved documents itself. This approach involves a layered documents
retrieval that incrementally builds a more relevant, requirement-specific context



16 S.J. Ali et al.

from a larger set of documents, thereby not compromising with recall. We aim
to make our approach accessible by making the source code openly available
on GitHub 5. Our tool provides support for creating indexes, code summariza-
tion, text embddings, setting up multiple retrieval mechanism including vector,
keyword and knowledge graph index so that users can simply extend our imple-
mentation for their solution.

Lastly, assessing threats to validity is essential to ensure the reliability and
generalizability of your findings. We use the four different types of validity threats
as defined by Wohlin et al. [37]. If the generated code summaries or indexed
documents miss information critical to traceability, then the construct validity
is threatened. We mitigated this threat by manually refining prompts and exam-
ining the generated code summaries and their alignment with the code purpose.
We mitigated the construct validity threats on the indexes by evaluating the dif-
ferent indexes on four datasets for the traceability quality. The dataset quality
of the initial traceability requirements dataset threatens the internal validity of
our work. We mitigated this threat by choosing quality evaluated datasets used
in literature [1]. If the datasets are not diverse enough (e.g., all from similar
types of software or similar domains), the results might not be widely applica-
ble. Our work mitigates this threat by choosing all the datasets from different
domains. The precision, recall, and F1 metrics need to be reliably measured to
ensure that the observed effects are real and not due to measurement errors or
randomness. We mitigated this error by repeating the experiments by making
the index creation reproducible and fixing a seed and temperature value for an
LLM to make the results reproducible.

7 Conclusion

In this work, we presented a novel RAG-based approach that enhances trace-
ability from natural language use-case requirements to code repositories. We
leveraged the synergy between code comments and the code dependency tree
within the RAG framework, coupled with a technique to generate improved
code summarizations. After an empirical evaluation of our approach, we have
demonstrated an effective method for bridging the divide between high-level
business requirements and the corresponding technical code constructs. The em-
pirical evaluation reveals that a configuration that integrates class names and
LLM-generated code summaries with the KGI created from class function calls
improves tracing code from natural language requirements. Further, we evalu-
ated the impact of using different indexes and their combination thereof and
provided a statistical evaluation to analyze the impact of each parameter on
RT. In the future, we aim to extend our solution to develop a tool for tracking a
UML class diagrams evolution and impact analysis with changing requirements,
thereby providing an feedback during design time about the history and impact
of the requirement on the software artifacts.

5 https://github.com/junaidiiith/nl2codeTrace

https://github.com/junaidiiith/nl2codeTrace


RAG and LLM-based Requirements to Code Traceability 17

References

1. Center of excellence for software & systems traceability (coest). http://sarec.nd
.edu/coest/datasets.html (2024), accessed: 3rd June 2024

2. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

3. Booch, G., Rumbaugh, J.E., Jacobson, I.: The unified modeling language user
guide - covers UML 2.0, Second Edition. Addison Wesley object technology series,
Addison-Wesley (2005)

4. Chen, J., Xiao, S., Zhang, P., Luo, K., Lian, D., Liu, Z.: M3-embedding: Multi-
linguality, multi-functionality, multi-granularity text embeddings through self-
knowledge distillation. In: Findings of the Association for Computational Linguis-
tics ACL 2024. pp. 2318–2335 (2024)

5. Chen, L., Wang, D., Shi, L., Wang, Q.: A self-enhanced automatic traceability link
recovery via structure knowledge mining for small-scale labeled data. In: 2021 IEEE
45th Annual Computers, Software, and Applications Conference (COMPSAC). pp.
904–913. IEEE (2021)

6. De La Vara, J.L., Wnuk, K., Berntsson-Svensson, R., Sánchez, J., Regnell, B.: An
empirical study on the importance of quality requirements in industry. In: SEKE.
pp. 438–443 (2011)

7. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapo-
lis. pp. 4171–4186. Association for Computational Linguistics (2019). https:
//doi.org/10.18653/V1/N19-1423

8. Divya, K., Subha, R., Palaniswami, S.: Similar words identification using naive
and tf-idf method. International Journal of Information Technology and Computer
Science (IJITCS) 6(11), 42 (2014)

9. Eyl, M., Reichmann, C., Müller-Glaser, K.: Traceability in a fine grained software
configuration management system. In: Software Quality. Complexity and Chal-
lenges of Software Engineering in Emerging Technologies: 9th International Con-
ference, SWQD 2017, Vienna, Austria, January 17-20, 2017, Proceedings 9. pp.
15–29. Springer (2017)

10. Ezzini, S., Abualhaija, S., Arora, C., Sabetzadeh, M.: Automated handling of
anaphoric ambiguity in requirements: a multi-solution study. In: Proceedings of
the 44th International Conference on Software Engineering. pp. 187–199 (2022)

11. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grünbacher, P.,
Dekhtyar, A., Antoniol, G., Maletic, J.: The grand challenge of traceability (v1.
0). Software and systems traceability pp. 343–409 (2012)

12. Guerrouj, L., Bourque, D., Rigby, P.C.: Leveraging informal documentation to
summarize classes and methods in context. In: 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering. vol. 2, pp. 639–642. IEEE (2015)

13. Hadi, M.U., Qureshi, R., Shah, A., Irfan, M., Zafar, A., Shaikh, M.B., Akhtar,
N., Wu, J., Mirjalili, S., et al.: A survey on large language models: Applications,
challenges, limitations, and practical usage. Authorea Preprints (2023)

14. Hey, T., Chen, F., Weigelt, S., Tichy, W.F.: Improving traceability link recov-
ery using fine-grained requirements-to-code relations. In: 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). pp. 12–22. IEEE
(2021)

http://sarec.nd.edu/coest/datasets.html
http://sarec.nd.edu/coest/datasets.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423


18 S.J. Ali et al.

15. Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy,
J.C., Wang, H.: Large language models for software engineering: A systematic
literature review. CoRR abs/2308.10620 (2023). https://doi.org/10.48550/A
RXIV.2308.10620

16. Huang, Y., Liu, Z., Chen, X., Luo, X.: Automatic matching release notes and
source code by generating summary for software change. In: 2016 6th International
Conference on Digital Home (ICDH). pp. 104–109. IEEE (2016)

17. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a
neural attention model. In: 54th Annual Meeting of the Association for Computa-
tional Linguistics 2016. pp. 2073–2083. Association for Computational Linguistics
(2016)

18. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the
association for computational linguistics 8, 64–77 (2020)

19. Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F.,
Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., et al.: Chatgpt for good?
on opportunities and challenges of large language models for education. Learning
and individual differences 103, 102274 (2023)

20. Khlif, W., Kchaou, D., Bouassida, N.: A complete traceability methodology be-
tween uml diagrams and source code based on enriched use case textual description.
Informatica 46(1) (2022)

21. Kim, T.K.: T test as a parametric statistic. Korean journal of anesthesiology 68(6),
540 (2015)

22. Liang, Y., Zhu, K.: Automatic generation of text descriptive comments for code
blocks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32
(2018)

23. Lin, J., Liu, Y., Zeng, Q., Jiang, M., Cleland-Huang, J.: Traceability transformed:
Generating more accurate links with pre-trained bert models. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). pp. 324–335. IEEE
(2021)

24. Lin, Z., Zou, Y., Zhao, J., Xie, B.: Improving software text retrieval using concep-
tual knowledge in source code. In: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). pp. 123–134. IEEE (2017)

25. Lohar, S., Amornborvornwong, S., Zisman, A., Cleland-Huang, J.: Improving trace
accuracy through data-driven configuration and composition of tracing features. In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
pp. 378–388 (2013)

26. Mills, C., Escobar-Avila, J., Haiduc, S.: Automatic traceability maintenance via
machine learning classification. In: 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). pp. 369–380. IEEE (2018)

27. Moharil, A., Sharma, A.: Tabasco: A transformer based contextualization toolkit.
Science of Computer Programming 230, 102994 (2023)

28. Moore, R.C., Lewis, W.: Intelligent selection of language model training data. In:
Proceedings of the ACL 2010 conference short papers. pp. 220–224 (2010)

29. Moran, K., Palacio, D.N., Bernal-Cárdenas, C., McCrystal, D., Poshyvanyk, D.,
Shenefiel, C., Johnson, J.: Improving the effectiveness of traceability link recov-
ery using hierarchical bayesian networks. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. pp. 873–885 (2020)

30. Nejati, S., Sabetzadeh, M., Arora, C., Briand, L.C., Mandoux, F.: Automated
change impact analysis between sysml models of requirements and design. In: Pro-

https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2308.10620


RAG and LLM-based Requirements to Code Traceability 19

ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. pp. 242–253 (2016)

31. Pauzi, Z., Capiluppi, A.: Applications of natural language processing in software
traceability: A systematic mapping study. Journal of Systems and Software 198,
111616 (2023)

32. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: Bm25
and beyond. Foundations and Trends® in Information Retrieval 3(4), 333–389
(2009)

33. Sridhara, G., Mazumdar, S., et al.: Chatgpt: A study on its utility for ubiquitous
software engineering tasks. arXiv preprint arXiv:2305.16837 (2023)

34. Tian, Q., Cao, Q., Sun, Q.: Adapting word embeddings to traceability recovery.
In: 2018 International conference on information systems and computer aided Ed-
ucation (ICISCAE). pp. 255–261. IEEE (2018)

35. Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., Yu, P.S.: Improving auto-
matic source code summarization via deep reinforcement learning. In: Proceedings
of the 33rd ACM/IEEE international conference on automated software engineer-
ing. pp. 397–407 (2018)

36. Willett, P.: The porter stemming algorithm: then and now. Program 40(3), 219–
223 (2006)

37. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

38. Xu, C., Li, Y., Wang, B., Dong, S.: A systematic mapping study on machine
learning methodologies for requirements management. IET Software 17(4), 405–
423 (2023)

39. Yazawa, Y., Ogata, S., Okano, K., Kaiya, H., Washizaki, H.: Traceability link
mining - focusing on usability. In: 41st IEEE Annual Computer Software and Ap-
plications Conference, COMPSAC 2017,. Volume 2. pp. 286–287. IEEE Computer
Society (2017). https://doi.org/10.1109/COMPSAC.2017.254

40. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696 (2017)

41. Zan, D., Chen, B., Zhang, F., Lu, D., Wu, B., Guan, B., Yongji, W., Lou, J.G.:
Large language models meet nl2code: A survey. In: Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
pp. 7443–7464 (2023)

https://doi.org/10.1109/COMPSAC.2017.254
https://doi.org/10.1109/COMPSAC.2017.254

	Establishing Traceability between Natural Language Requirements and Software Artifacts by Combining RAG and LLMs

