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Abstract. Large Language Models (LLMs) have opened new oppor-
tunities in modeling in general, and conceptual modeling in particular.
With their advanced reasoning capabilities, accessible through natural
language interfaces, LLMs enable humans to deepen their understand-
ing of different application domains and enhance their modeling skills.
However, the open-ended nature of these interfaces results in diverse
interaction behaviors, which may also affect the perceived usefulness of
LLM-assisted conceptual modeling. Existing works focus on various qual-
ity metrics of LLM outcomes, yet limited attention is given to how users
interact with LLMs for such modeling tasks. To address this gap, we
present the design and findings of an empirical study conducted with
information systems students. After labeling the interactions according
to their intentions (e.g., Create Model, Discuss, or Present), and repre-
senting them as an event log, we applied process mining techniques to
discover process models. These models vividly capture the interaction
behaviors and reveal recurrent patterns. We explored the differences in
interacting with two LLMs (GPT 4.0 and Code Llama) for two modeling
tasks (use case and domain modeling) across three application domains.
Additionally, we analyzed user perceptions regarding the usefulness and
ease of use of LLM-assisted conceptual modeling.

Keywords: Large Language Model · Domain Modeling · UML · Process Mining.

1 Introduction

In recent years, the advent of Large Language Models (LLMs) has revolutionized
the landscape of natural language processing and machine learning. Trained on
vast amounts of text data, LLMs exhibit remarkable proficiency in understand-
ing and generating human-like text. They have proven to be effective tools across
various tasks [29], including translation [27,18], text summarization [28,24], sen-
timent analysis [21,2,9] and recommender systems [19,15]. Particularly notewor-
thy is their significant impact on software engineering, where they excel in tasks
such as program synthesis from natural language specifications, code completion,
debugging, and documentation generation [11,16].
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The exploration of LLMs’ potential to enhance modeling tasks has only re-
cently gained attention, as evidenced by emerging research, e.g., [6,12,5,7,3,17,8].
Most of these works focus on the accuracy, utility and other quality metrics of
the LLM-produced models. However, to the best of our knowledge, no study has
investigated how modelers interact and perceive their interactions with LLMs
for conceptual modeling tasks. These interactions can be influenced by factors
such as the specific LLM used, the application domain, and the nature of the
modeling task itself. Thus, our objective is to discover the process of interacting
with LLMs and identify recurrent patterns that can inform ‘best practices’ for
LLM-assisted conceptual modeling.

In this paper, we report on the design and results of an empirical study
with 76 undergraduate information systems students. The students submitted
the course assignments in 39 groups (of one or two students). The assignment
used for the study required use case modeling with UML use case diagrams and
domain modeling with UML class diagrams. The groups were first expected to
interact with an LLM and then, if needed, to manually improve their models.
Groups were randomly assigned to interact with either GPT 4.0 or Code Llama
34B Instruct in one of three application domains. To facilitate data collection
without disclosing the LLM’s identity, we developed a dedicated web application
capable of logging all interactions between the groups and the LLMs. Finally,
the students’ perceptions were collected via a standard usefulness and ease of
use questionnaire, in which the students were also requested to list the main
positive and negative aspects they experienced.

The rest of the paper is structured as follows. Sections 2 and 3 elaborate
on the experimental design and analysis procedure, respectively. Sections 4 and
5 present and discuss the results. Finally, Section 6 reviews related work, and
Section 7 concludes and refers to future research directions.

2 Experimental Design

2.1 Goals, Research Questions, and Independent Variables

The goal of this study is to analyze modeler interactions with LLMs, for the
purpose of identifying the underlying intentions and patterns, as well as exploring
user perceptions on interacting with LLMs for conceptual modeling tasks. To this
end, we identified the following two main research questions:

[RQ1] How do users interact with LLMs for conceptual modeling tasks?
[RQ2] How do users perceive the usefulness and ease of use of those interactions?

Considering that responses to these questions can be influenced by various fac-
tors, we identify three independent variables that potentially impact the model-
ing process and experience. These variables are:

– LLM –We investigate GPT-4 and Code-Llama 34B Instruct;
– Application Domain – We investigate NPA (Nature & Park Authority)

for nature & archaeological sites management, R4A (Rating for All) for
viewership data analytics, and PTr (Perfect Trip) for tourism management;
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– Task – We investigate UCD (use case modeling with Use Case Diagrams)
and CD (domain modeling with Class Diagrams).

Accordingly, we divided the first research question into the following sub-questions:

[RQ1.1] What are the recurrent interaction behaviors (i.e., intentions and pat-
terns)?

[RQ1.2] To what extent do the recurrent interaction behaviors vary across dif-
ferent LLMs?

[RQ1.3] To what extent do the recurrent interaction behaviors vary across dif-
ferent application domains?

[RQ1.4] To what extent do the recurrent interaction behaviors vary across dif-
ferent modeling tasks?

We further refined the second research question into the following sub-questions1:

[RQ2.1] What are the overall perceived usefulness and ease of use users expe-
rience when utilizing LLMs for conceptual modeling?

[RQ2.2] To what extent do the perceived usefulness and ease of use vary across
different LLMs?

[RQ2.3] To what extent do the perceived usefulness and ease of use vary across
different application domains?

2.2 Settings and Objects

The rationale behind selecting GPT-4 and Code-Llama (referred to as Llama
henceforth) lies in their distinct capabilities and performance metrics. GPT-4, a
large multi-modal, general-purpose model capable of processing both image and
text inputs, has demonstrated remarkable performance across various human-
designed benchmarks [23]. Studies, such as [1], have highlighted GPT-4’s supe-
rior performance, often outscoring a significant majority of human test takers.
Llama, on the other hand, encompasses a range of LLMs of varying sizes devel-
oped by Meta AI 2, specifically designed for coding tasks. Llama stands out for
its state-of-the-art performance among open models, robust infilling capabilities,
support for extensive input contexts, and the ability to execute programming
instructions without the need for prior training [14]. Notably, its fine-tuned 70
billion parameters variant has shown exceptional performance in coding tasks,
outperforming GPT-4 in benchmarks such as HumanEval [23] 3.

Although GPT-4 features a larger context window of 32,000 tokens4 com-
pared to Llama’s 16,000 tokens, allowing it to retain more information across
interactions, , our decision to include both models in the study is driven by their
1 We have no dedicated sub-question regarding differences related to the modeling

tasks, as the participants could work on them interwinedly.
2 https://www.meta.ai/
3 https://llama.meta.com/code-llama/
4 1 token ≈ 0.75 words.

https://www.meta.ai/
https://llama.meta.com/code-llama/
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Table 1: Descriptive statistics of application domains

Artifact Element NPA R4A PTr Avg Std

UCD Use Case 11 14 12 12.33 1.25

Actor 6 6 6 6.00 0.00

Association 9 12 12 11.00 1.41

Dependency 3 4 5 4.00 0.82

CD Class 14 13 12 13.00 0.82

Enumeration 2 2 1 1.67 0.47

Attribute 36 26 30 30.67 4.11

Operation 2 2 2 2.00 0.00

Generalization 2 2 2 2.00 0.00

Association 8 7 8 7.67 0.47

Association Class 2 2 3 2.33 0.47

Description Length in GPT-4 tokens 846 856 855 852.33 4.49

Length in Llama tokens 943 945 943 943.66 0.94

respective strengths — GPT-4’s versatility in general-purpose tasks and Llama’s
specialization in coding-related tasks.

We further selected three application domains that are likely familiar to hu-
mans and LLMs: nature & archaeological sites management (NPA), viewership
data analytics (R4A), and tourism management (PTr). Despite their differences,
we took care to ensure that their expected models were of comparable size and
complexity, as depicted by the descriptive statistics in Table 1. The entire ex-
perimental material is provided in our online supplementary material5.

2.3 Modeling Tasks

The participants were asked to perform two modeling tasks using UML nota-
tion: use case modeling employing UCD and domain modeling utilizing CD. This
choice is supported by their widespread adoption as well as their representation
of distinct yet complementary aspects. The participants were instructed to en-
gage with the LLM until they were satisfied with the results or opted to skip
further refinement. Subsequently, they had the opportunity to enhance the mod-
els within a modeling tool. This process resulted in two distinct outcomes for
each task: a ‘DRAFT’ model, solely derived from interactions with the LLM, and
a ‘FINAL’ model, refined through additional manual adjustments in a modeling
tool. Grading primarily focused on the ‘FINAL’ outcomes (85%). To incentivize
engagement, interactions with LLMs accounted for 15% of the grade. Notably,
the ‘DRAFT’ models did not factor into the grading.

5 Online supplementary material: https://zenodo.org/records/13513891

https://zenodo.org/records/13513891
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2.4 Instrumentation and Data Collection

In order to collect the participants’ interactions without revealing the LLM they
are using, we designed a web application built using Streamlit 6, which is an
open-source Python library for creating web applications. Our application per-
mits up to 100 prompts per user (who can include one or two participants,
see Section 2.5 for more details). This limit aimed to encourage participants to
generate meaningful prompts for their tasks.

The interface design is similar to those of existing chatbots, allowing users
to input their prompts and receive modeling artifacts in response. A screenshot
of the interface is included in the experimental material5. The application also
presents users with the number of prompts they have used and the number
of remaining prompts. Additionally, it enables the research team to download
an interaction log with the following fields: User ID, Input (the user prompt),
Response (the modeling artifacts), and the Prompt Number (within user ID).

2.5 Participants and Experimental Design
The experiment took place in the academic year of 2024 in a second-year under-
graduate course on ’Design and Implementation of Information Systems’. The
course focused on object-oriented modeling with UML. The students were en-
rolled in a three-year BSc program in Information Systems. They were already
knowledgeable in programming in general and in object-oriented programming
with Java in particular. The tasks were part of the course assignments and were
mostly submitted in groups of two students, with only two exceptions where
students submitted individually. Table 2 summarizes the experiment design and
the division of the 39 groups along the LLMs and the application domains. Each
group was assigned to a single application domain and a single LLM, and had
to perform both modeling tasks.

The experiment comprised three stages: (i) a 30-minute tutorial providing
a brief introduction to LLMs, prompt engineering, and a demonstration of the
application the students were required to use for their assignment; (ii) a two-
week window during which the students were asked to complete and submit the
artifacts of the two modeling tasks; and (iii) a questionnaire (see Section 4.2 for
the questions) aimed at assessing each student’s perceived usefulness and ease
of use when interacting with the LLM for both modeling tasks.

Table 2: Number of groups per experimental category

Domain ↓ LLM → Llama GPT-4 Total
NPA 8 7 15

R4A 7 6 13

PTr 5 6 11

Total 20 19 39

6 https://docs.streamlit.io/

https://docs.streamlit.io/
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Table 3: Intentions used for labeling interaction prompts

Intention Description
Create Model Relates to the creation of a (potentially partial) model. This prompt does not refer

to previous responses.

Update Model Relates to the update of a (potentially partial) model. This prompt refers to previous
responses, e.g., for correcting or clarifying previous outcomes.

Create List Relates to the creation of a list of modeling elements, such as classes, use cases and
associations. This prompt does not refer to previous responses.

Update List Relates to the update of a list of modeling elements. This prompt refers to previous
responses.

Present Relates to the presentation of the response in a given format (e.g., XMI).

Explain Asks the LLM to explain certain parts of previous responses. The purpose of Explain
prompts is to understand and not update an outcome.

Discuss Asks the LLM to discuss possible solutions (presented either explicitly or implicitly),
appearing in previous prompts or responses. Differently from Explain, Discuss has
an implicit intention for updating an outcome.

3 Analysis Procedure

Interaction Labeling. After downloading the log with 541 interactions in to-
tal, we explored the user prompts and identified seven intention types. Table 3
describes and explains the identified intentions in detail. They refer to model
development operations (‘Create Model’, ‘Update Model’, ‘Create List’, ‘Update
List’ ), model presentation operations (‘Present’ ), and explanatory operations
(‘Explain’, ‘Discuss’ ). Each interaction underwent manual labeling by two of
the three conducting researchers, with each researcher responsible for labeling
two-thirds of the interactions. While doing so, we also identified the task type
(UCD or CD) of each interaction. Initially, our agreement level for intention
labeling stood at 64.3%. To ensure consistency and accuracy, we engaged in
multiple discussion sessions to refine the definitions of the various labels, even-
tually achieving full agreement on the labeling outcome.

Following the labeling phase, we encountered prompts that combined mul-
tiple intentions, requiring the splitting of rows in the log file. Additionally, we
identified eight prompts lacking clear intentions, comprising only descriptions
without actionable requests, which we consequently omitted. After these pre-
processing steps, we were left with 566 interactions for analysis.
Behavior Extraction. We treated the interactions log as an event log and
employed the process mining tool Disco7 to: (i) discover the interaction process;
and (ii) extract recurrent interaction patterns. We considered the combination
of the user ID (corresponding to groups 1 to 39) and the task type (UCD or CD)
as the case ID. We further added information on the LLM (GPT-4, Llama) and
the application domains (NPA, R4A, PTr) of each group to check differences in
the interaction behavior based on the independent variables.

7 https://fluxicon.com/disco/

https://fluxicon.com/disco/
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Fig. 1: Discovered interaction process model

4 Results

Next, we elaborate on the results of our study and answer the research questions.

4.1 Results for RQ1: Interaction Behavior

Overall Behavior Results (RQ1.1). In the discovered interaction process
model (see Fig. 1), nodes depict intentions while edges depict transitions between
intentions, i.e., appearance in sequential prompts. The percentages displayed on
the nodes indicate case coverage, i.e., the proportion of cases employing an in-
tention. On the edges, the black value on the left indicates the case coverage
of transitions, while the orange value on the right refers to individual intention
instances (rather than grouped by cases), showing the probability of proceeding
with that transition from the source intention. Less traversed paths with a case
coverage of ≤ 10% and a probability of ≤ 20% are omitted for the sake of com-
prehensibility. The interaction log is provided with the experimental material5.

Model Development Operations. In nearly all cases (97.4%), ‘Create
Model’ was employed, and in 88.5% of cases, it initiated the interaction with
the LLM. These statistics align with expectations given the nature of tasks
requiring model creation. Notably, the most frequent transition from ‘Create
Model’, observed in 47.4% of cases, is to another ‘Create Model.’ Moreover,
‘Create Model’ has a probability of 34.0% to follow ‘Create Model’, compared to
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‘Update Model’ which has a lower probability of 19.7% and covers fewer cases
(37.2%). This preference for initiating new models over updating existing ones
in specific scenarios can be attributed to participants’ desire for a fresh start
and the potential for clearer conceptualization. This inclination contrasts with
the operation of modifying existing models, which may involve navigating and
adapting previous decisions or structures. Another explanation could be the lim-
ited capacity of the LLMs to retain information over interactions depending on
their maximum context window, leading to forgetting of information by the LLM
and consequently generating unsatisfactory models that are not worth updating.

The results also reveal that ‘Update Model’ is a common intention, appearing
in 56.4% of cases, with subsequent updates occurring in 21.8% of cases (vs. 19.2%
cases that start over with ‘Create Model’). This observed behavior implies an
iterative process of model refinement, potentially influenced by feedback from
the LLM or as additional information becomes available.

We further observed interaction paths in which lists are used, before or after
using models. These paths were less frequent, accounting for 39.7% case cov-
erage for ‘Create List’ and 17.9% for ‘Update List.’ These intentions primarily
revolved around listing model elements, such as classes, associations, use cases,
and actors. In some cases (7.7%), ‘Create List’ was the initial intention. How-
ever, it typically followed ‘Create Model’ (in 21.8% of the cases), potentially to
assess the suggested model by listing certain modeling elements. Once lists were
established, they were re-created, modified, or utilized to (re)create a model.
List re-creating and modification had the same case coverage of 14.1%, yet the
first exhibited a higher probability of 40.5% compared to list modification with
a probability of 15.2%. In 12.8% of the cases, list creation was followed by a
subsequent model creation with a transition probability of 13.9%.

Explanatory Operations. We observed that the use of explanatory oper-
ations was moderate, with ‘Discuss’ at case coverage of 43.6% and ‘Explain’ at
25.6%. Discussions embody a collaborative aspect, where modelers utilize the
LLM outputs for deep exploration or decision-making between alternatives. The
repeated use of ‘Discuss’ (with a case coverage of 23.1% and a probability of
38.2%) reflects ongoing clarification and negotiation of ideas, further indicating
an active dialogue-based interaction with the LLM. A closer examination of the
prompts reveals dissatisfaction with the LLM’s responses in some cases. In about
one-fifth of cases (19.2%), the discussion results or insights are integrated into
the model through performing ‘Update Model.’

‘Explain’ intentions aim to provide detailed insights into previous LLM re-
sponses. Through explanations, participants shed light on the reasoning behind
specific outcomes, foster comprehension, and reach informed decision-making in
subsequent interactions. Given that LLMs frequently offer explanations in their
responses, the occurrence of ‘Explain’ is less frequent. Interestingly, in 23.3% of
the instances, ‘Explain’ preceded ‘Create List,’ which may serve to formalize the
explanation results as lists of modeling elements. In 26.7% of instances, ‘Explain’
is followed by ‘Discuss,’ potentially indicating a desire for deeper insights into
the suggested options.
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Table 4: Five most recurring interaction patterns

Code Pattern Overall No. of Groups
(out of 39)

No. of Cases
(out of 78)

P1 Model Evolution
Create Model+; Update Model+

37 20 29

P2 Partial Model Visualization
Create Model+; Present+

21 14 17

P3 Partial Model Discussion
Create Model+; Discuss+

20 14 18

P4 Discussion-based Model Updating
Discuss+; Update Model+

20 12 15

P5 Partial Model Listing
Create Model+; Create List+

19 13 17

Presentation Operations. ‘Present’ involves visualizing or representing
outcomes in importable formats. This intention was observed in 38.5% of the
cases where participants sought to visualize or import the results of their model-
ing efforts into a modeling environment to, e.g., continue manual modeling there.
The repeated sequential uses of this intention (with a probability of 37.7%) may
indicate dissatisfaction with the results. Indeed, both LLMs faced difficulties in
generating outcomes that could be directly imported to the modeling environ-
ment used in the course (Visual Paradigm). Additionally, in 14.1% of cases (a
probability of 21.3%), ‘Present’ is followed by ‘Create Model,’ suggesting a need
to (re)create a model after reviewing the previous outcomes in a specific format.

Recurrent Patterns. The process model in Fig. 1 does not cover interaction
patterns, i.e., paths that go beyond immediate transitions. Hence, in Table 4, we
show the top five patterns with their overall instance frequencies, group coverage,
and case coverage. The ’+’ sign indicates potential repetitive occurrences of an
intention. Note, that since it is important to relate the recurrent patterns to
the quality of the created models, we also examined the top recurrent patterns
of cases achieving a passing grade. Despite a slight difference in their ordering,
the patterns remained the same. We leave the analysis of the impact of specific
interaction behaviors on the quality of models to future research.

As expected, the most frequent pattern is ‘Model Evolution’ (P1). This pat-
tern starts with a sequence of ‘Create Model’ prompts followed by a sequence of
‘Update Model’ prompts. This pattern captures the iterative nature of concep-
tual modeling where refinement and progressive enhancement are key.

The second most recurrent pattern, ‘Partial Model Visualization’ (P2), also
starts with a sequence of ‘Create Model’ prompts, but this is followed by ‘Present’
prompts, which aim at visualizing the modeling outcomes in certain formats.
This step precedes decision-making on subsequent actions such as updating the
outcomes, completing the task, seeking for explanations, or initiating the task.

The third pattern ‘Partial Model Discussion’ (P4) indicates pauses in the
model creation process to explore and discuss potential alternatives, which may
be subsequently implemented in the model (e.g., using pattern P4). The fourth
pattern ‘Discussion-based Model Updating’ (P3) empowers participants to dis-
till discussion insights into actionable items for updating the model. Finally,
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Table 5: Intention distribution categorized by independent variables. Significant
results are in bold with an asterisk.

LLM (%) Application Domain (%) Task (%)

Intention GPT-4 Llama NPA PTr R4A UCD CD

Create Model 28.92 35.73 37.68 33.81 28.76 32.86 33.68

Update Model 26.47∗ 12.74∗ 24.63∗ 19.42 10.04∗ 15.90 19.50

Create List 4.41∗ 19.39∗ 6.28∗ 12.95 21.91∗ 13.78 14.18

Update List 1.96 3.87 1.93 3.59 4.07 2.12 4.25

Present 7.35 12.74 5.31∗ 8.63 17.35∗ 12.01 9.57

Explain 7.84 3.87 2.89 7.19 6.39 4.94 5.34

Discuss 23.03∗ 11.63∗ 21.25∗ 14.38 11.41∗ 18.37 13.12

Prompts Per Case 5.36 9.05 6.90 6.31 8.4 6.90 7.23

Table 6: Ranking of top five interaction patterns across independent variables

LLM Application Domain Task

Code GPT-4 Llama NPA PTr R4A UCD CD

P1 Top 2 Top 1 Top 1 Top 1 Top 3 Top 1 Top 1

P2 Top 6 Top 3 Top 7 Top 2 Top 3 Top 4 Top 2

P3 Top 3 Top 8 Top 6 Top 7 Top 2 Top 4 Top 4

P4 Top 1 Top 28 Top 3 Top 7 Top 6 Top 7 Top 2

P5 Top 21 Top 2 Top 10 Top 4 Top 1 Top 2 Top 6

‘Partial Model Listing’ (P5), illustrates a shift in the modeling approach where
participants move from working directly with models to using lists. This is used
to explore specific aspects of the model, such as structural components by list-
ing all classes and associations. Unlike the iterative process observed in ‘Model
Evolution’ (P1), participants following this pattern aim to systematically break
down and analyze individual elements of the model to gain a more detailed
understanding and enhance their modeling outcomes.

Behavior Results by Independent Variables (RQ1.2–RQ1.4). Next, we
analyzed the results according to the independent variables – LLM, domain, and
task. Tables 5 and 6 present the intention distribution and the ranking of the
top five patterns across the independent variables, respectively. We further con-
ducted pairwise comparisons of intention probabilities using Z-tests to compare
proportions of independent populations. For reporting the statistical significance,
we applied the Bonferroni adjustment [4] to control for multiple comparisons,
reducing the likelihood of false positives by providing a more rigorous criterion
for significance.

Interaction Behavior with respect to LLM (RQ1.2). Overall, we noted
a significantly higher average number of interactions when engaging with Llama
compared to GPT-4 (9.03 vs. 5.37 per case). This observation aligns with the fact
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that GPT-4 currently ranks as the most proficient LLM8. Our findings further
revealed significant differences in the use of three intentions. Specifically, ‘Cre-
ate List’ emerged as significantly more prevalent in Llama prompts compared to
those with GPT-4 (19.39% versus 4.41%, respectively). This observation can be
attributed to Llama’s specialization in coding tasks, which emphasizes break-
ing down problems into structured lists or steps, thereby encouraging users to
approach tasks in a similar manner. On the other hand, ‘Update Model’ and
‘Discuss’ were significantly more common in GPT-4 interactions than in those
with Llama (26.47% versus 12.74% for ‘Update Model’ and 23.03% versus 11.63%
for ‘Discuss’). This discrepancy may stem from GPT-4’s broader language un-
derstanding and its tendency to facilitate dynamic exchanges and conceptual
refinement, thus encouraging users to update existing models or engage in dis-
cussions more frequently.

As seen in Table 6, three of the top-five patterns appear on the top-five lists
for both GPT-4 and Llama, i.e., ‘Model Evolution’ (P1), ‘Partial Model Dis-
cussion’ (P3), ‘Discussion-based Model Updating’ (P4) for GPT-4; and ‘Model
Evolution’ (P1), ‘Partial Model Visualization’ (P2), ‘Partial Model Listing’ (P5)
for Llama. In other words, GPT-4 seems to encourage more interactive and col-
laborative dialogues, while Llama nudges users to follow a try-and-fix approach,
involving the listing of model elements and presenting partial models before
continuing with model updating and refinement.

Interaction Behavior with respect to Application Domain (RQ1.3).
In terms of the application domain, we conducted pairwise comparisons and dis-
covered four significant differences, particularly between NPA and R4A: ‘Create
List’ and ‘Present’ were more frequently utilized in R4A, while ‘Discuss’ and
‘Update Model’ were more common in NPA. Although the descriptive statistics
in Table 1 do not offer an immediate explanation for this observation, it is pos-
sible that the participants were less familiar with the NPA domain compared to
R4A, leading to more frequent discussions and model updates. In R4A tasks, the
emphasis was on organizing and systematically presenting already known data.

Moreover, the top five patterns appear on the top ten lists of all three do-
mains. This is not surprising given that the application domains are of com-
parable size and complexity. These findings imply that LLM-assisted modeling
tools do not necessarily need to be fine-tuned for different application domains.
Further research is needed to study whether and how the size and complexity of
application domains affect the distribution of intentions and the most recurrent
interaction patterns. This is particularly relevant for large domain descriptions
exceeding the LLM’s context window, as participants often used the entire tex-
tual domain description in their interactions.

Interaction Behavior with respect to Task (RQ1.4). The results fur-
ther indicate that there are no statistically significant differences in the dis-
tribution of intentions or the most recurrent interaction patterns between use
case modeling with UCD and domain modeling with CD. This suggests that the
underlying processes and patterns of interaction remain consistent across differ-

8 https://www.vellum.ai/llm-leaderboard, last accessed: 25.05.2024.

https://www.vellum.ai/llm-leaderboard
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ent modeling tasks, implying that tools and techniques used for LLM-assisted
modeling may be broadly applicable and versatile. However, further research is
needed to validate this hypothesis and explore its implications.

Summary of RQ1 Results. From the analyses conducted, we conclude that in-
teractions with LLMs for conceptual modeling primarily involve prompts aimed
at creating and updating models, generating and modifying lists of model ele-
ments, explaining and discussing modeling alternatives or decisions, and present-
ing models (RQ1.1). Several recurrent patterns have emerged, supporting model
evolution, partial model visualization and listing, and discussion-based model
development (RQ1.1). Notably, no statistically significant differences have been
observed in terms of interaction behavior across modeling tasks (RQ1.4), while a
few explained differences have been noted in the frequency of certain intentions
across LLMs (RQ1.2) and application domains (RQ1.3).

4.2 Response to RQ2: User Perception

Table 7 shows the perceived usefulness and ease of use of LLM-assisted modeling
both overall and segmented by LLMs and application domains. Due to the iter-
ative work on the modeling tasks, the results reflect the participants’ feedback
at the end of the assignment, after submitting both modeling artifacts.

Our questionnaire comprised 14 questions: six closed questions assessing per-
ceived usefulness, six closed questions evaluating perceived ease of use, and two
open-ended questions. Responses to closed questions were rated on a Likert scale
from 1 (unlikely) to 7 (likely). The open-ended questions asked to list the most
negative and positive aspects the participants faced while utilizing LLMs for
modeling tasks. We employed GPT-4 to analyze and categorize the participants’
feedback to these open questions. Furthermore, to evaluate the statistical sig-
nificance of LLM and Application Domain, we performed the Kruskal–Wallis
H-test [20] and show the p-values in Table 7.

Overall User Perception (RQ2.1). Overall, the results show moderate user
experiences, with an average of 4.0 for perceived usefulness and 4.4 for perceived
ease of use. The only statistically significant result relates to the ease of learning
to operate LLMs, suggesting the potential for steep learning curves associated
with LLM-assisted modeling. The borderline significant result concerning the
ease of becoming skillful at using LLMs further supports this observation.

To gain a deeper understanding of user perception, we analyzed their tex-
tual feedback. The positive feedback mainly referred to: (i) Efficiency and speed
– “it is very responsive and quick,” “Fast response, response explanation;” (ii)
Guidance and direction – “it give[s] you a way to start your solution,” “Helped
me build something basic to start from;” and (iii) Supports Creativity – “it has
a unique thinking about the problem,” “provides too much aspects of certain
topics which help generate new ideas.” The negative aspects that were widely
mentioned referred to: (i) Lack of contextual memory and continuity – “it gives
answers to the question that was just asked and does not give answers that com-
bine all the requirements of the question,” “its answers aren’t based on previous
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Table 7: Perceived usefulness and ease of use, overall and categorized according
to LLMs and application domains. Significant results are in bold with an asterisk.

Overall LLM Application Domain

Mean
[SD] p-value Mean

[SD]1 p-value Mean
[SD]2 p-value

Perceived Usefulness

Using LLMs for modeling would
enable me to accomplish tasks
more quickly

4.2
1.9

0.425 (4.7, 3.6)
(1.9, 1.7)

0.017* (4.0, 4.0, 4.7)
(2.0, 1.9, 1.6)

0.367

Using LLMs would improve my
modeling performance

3.9
1.8

0.475 (4.3, 3.4)
(1.8, 1.7)

0.027* (3.7, 3.5, 4.5)
(2.0, 1.3, 1.8)

0.133

Using LLMs for modeling would in-
crease my productivity

4.0
1.8

0.900 (4.2, 3.8)
(1.9, 1.7)

0.303 (3.7, 4.0, 4.3)
(1.9, 1.5, 2.0)

0.523

Using LLMs would enhance my mod-
eling effectiveness

3.8
1.8

0.327 (4.0, 3.6)
(1.8, 1.7)

0.324 (3.5, 3.8, 4.1)
(2.0, 1.3, 1.8)

0.374

Using LLMs would make it easier
to model

4.0
1.8

0.897 (4.4, 3.7)
(1.9, 1.6)

0.061* (3.9, 4.0, 4.3)
(1.8, 1.6, 2.0)

0.745

I would find LLMs useful for
modeling

4.0
1.8

0.948 (4.4, 3.6)
(1.8, 1.6)

0.027* (3.9, 3.8, 4.3)
(1.8, 1.6, 1.9)

0.726

Perceived Ease of Use

Learning to operate LLMs would
be easy for me

4.8
1.7

<0.001* (5.0, 4.5)
(1.6, 1.7)

0.171 (4.5, 4.9, 5.0)
(1.6, 1.5, 1.9)

0.249

I would find it easy to get LLMs to
do what I want it to do

3.9
1.7

0.469 (4.1, 3.6)
(1.8, 1.7)

0.260 (3.4, 3.8, 4.4)
(1.7, 1.6, 1.8)

0.090

My interaction with LLMs would
be clear and understandable

4.2
1.5

0.300 (4.5, 3.9)
(1.5, 1.5)

0.070 (4.0, 3.9, 4.9)
(1.6, 1.4, 1.6)

0.022*

I would find LLMs to be flexible to
interact with

3.9
1.6

0.621 (4.2, 3.6)
(1.7, 1.5)

0.086 (3.6, 3.7, 4.6)
(1.6, 1.3, 1.8)

0.039*

It would be easy for me to be-
come skillful at using LLMs

4.4
1.7

0.051* (4.9, 3.9)
(1.5, 1.7)

0.012* (4.2, 4.2, 4.9)
(1.8, 1.4, 1.8)

0.147

I would find LLMs easy to use 4.4
1.7

0.167* (4.5, 4.1)
(1.7, 1.6)

0.217 (4.2, 3.9, 4.8)
(1.5, 1.4, 1.9)

0.083

1 (GPT-4, Llama), 2 (NPA, R4A, PTr), * Significant

answers, could easily go off topic, make up things;” (ii) Inaccuracy and unre-
liability – “The answers provided to me were not close to what I was looking
for,” “it doesn’t understand complex questions,” “every time we tried to fix it or
improve the diagram it made it worse;” (iii) Reliance on precise inputs – “Over
caution, I kept fearing that my inputs needed to be extremely precise,” “need to
explain everything like he is a little kid, every single aspect and point;” and (iv)
Difficulty in visualization – “When asked to visualize/demonstrate something
using drawing or some sort of UML diagram, it is not done in alignment and
is somewhat messy, although there is potential and it can improve drastically.”
This feedback may indicate the need for the development of concrete guidelines,
such as prompt templates, for interacting with LLMs in conceptual modeling
tasks. In our study, participants utilized entirely free-form text, which at times
proved insufficient for eliciting the desired responses.

User Perception by Independent Variables (RQ2.2–RQ2.3). In Table 7,
the results indicate a significant difference in perceived usefulness between GPT-
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4 and Llama, in favor of GPT-4, and no significant differences in perceived ease
of use. This latter result aligns with the fact that students were provided with the
same interface and were unaware of the specific LLM they were using, thus not
expected to encounter different challenges in usage. Nevertheless, we observe
a significant difference in the assessment of ease of becoming skillful at using
LLMs, favoring GPT-4. This can be explained by the more advanced capabili-
ties of GPT-4, which may facilitate a better experience of use. The usefulness
of the application, on the other hand, could depend on the utilized LLM. We
see that the choice of LLM not only affects the overall perceived usefulness but
also impacts perceived efficiency (quickness) and perceived effectiveness (perfor-
mance). This suggests that more advanced LLMs like GPT-4 provide a better
user experience by delivering faster and more accurate responses.

Table 7 further shows that, with respect to application domains, there are no
significant differences in either perceived usefulness or ease of use. This may be
attributed to the relatively low number of participants per application domain
(ranging from 21 to 27). However, two significant differences were observed in
terms of ease of use: understandability and flexibility. These results are surpris-
ing, considering that the application domains are comparable in terms of size
and complexity, and LLMs are not biased toward any particular domain. Further
research is required to explore the reasons for this result.

Summary of RQ2 Results. Based on the analyses conducted, we conclude
that overall, the user experience was moderate (RQ2.1). The perceived useful-
ness of GPT-4 was found to be better than that of Llama, while there were no
statistically significant differences in terms of perceived ease of use across LLMs
(RQ2.2). Finally, there were no statistically significant differences in terms of per-
ceived usefulness and perceived ease of use across application domains (RQ2.3).

5 Discussion

In the subsequent discussion, we outline the key practical implications derived
from our results, along with an analysis of the potential threats to validity.

Practical Implications. Overall, the results suggest the potential of LLM-
assisted conceptual modeling. However, the current way of interaction, relying
solely on completely free-form text, presents limitations and can lead to frus-
tration. Therefore, the first implication of our findings is the development of
prompt templates for conceptual modeling, derived from the observed intention
distribution. Expert modelers or domain experts can offer general, domain-, or
language-specific templates for various modeling tasks. These templates should
break down the overall task into smaller units, aiding modelers in clarifying their
intentions and facilitating an iterative and incremental modeling process. As an
example, consider the intention ’Discuss’: "Discuss <variants> [in the setting
of <setting>] [considering <metric> measures]," where <variants> specifies
the variants to be discussed, <setting> is optional and specifies the setting in
which the variants should be discussed, and <metric> suggests the metrics for
assessing the variants, such as correctness or comprehensibility.
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The second implication involves the development of a recommender to guide
modelers regarding their next steps in the modeling process. This recommender
would utilize our findings regarding the top recurrent interaction patterns ob-
served in the study. By analyzing these patterns, the recommender could suggest
relevant prompts or actions to users based on the current state of their mod-
eling session. This approach aims to enhance the efficiency and effectiveness of
the modeling process by providing modelers with tailored guidance. Moreover,
by offering personalized recommendations based on the user’s current modeling
context and the identified interaction patterns, the recommender would seek to
improve the user experience and perceived usefulness of LLM-assisted modeling.

The final implication underscores the importance of a thorough tool selec-
tion. With GPT-4 demonstrating superior perceived effectiveness and efficiency,
it may significantly influence decisions regarding which LLM to employ for con-
ceptual modeling. Further research needs to explore updated versions of these
LLMs, alongside other alternatives. Moreover, analyzing the impact of prompt
templates and recommenders on interaction behavior and user perception is cru-
cial for a comprehensive understanding of LLM-assisted conceptual modeling.

Threats to Validity. In the discussion of the validity threats encountered
in our study and the corresponding mitigation strategies, several key consider-
ations emerged. To tackle concerns regarding conclusion validity, particularly
concerning sample size, as our study encompassed 39 groups, we opted to assign
each group two modeling tasks. This decision yielded a total of 566 interac-
tions, thus enhancing the robustness of our conclusions. Concerning construct
validity, particularly regarding the selection of intentions, we adopted a data-
driven approach, carefully analyzing all prompts within the research team, with
each prompt analyzed by two researchers to reconcile any inconsistencies and
establish consensus. Addressing internal validity, the potential impact of varia-
tions in participants’ capabilities and LLM assignment on the study’s integrity
was mitigated by randomly assigning tasks, ensuring equitable distribution, and
minimizing bias. Furthermore, in addressing external validity regarding the gen-
eralizability of our findings across application domains, we selected three distinct
domains familiar to both students and LLMs, thereby enhancing the potential
transferability of our conclusions. Notably, we do not see a threat in having stu-
dents participate in our experiments as our research focuses on intuitive LLM
interactions, therefore there was no prerequisite to involve modeling experts [10].

6 Related Work

In recent studies, researchers have explored the application of LLMs in concep-
tual model generation. Chaaben et al. [6] demonstrated the effectiveness of few-
shot prompt learning in completing static and dynamic domain models, empha-
sizing its versatility across various modeling activities. Giglou et al. [13] demon-
strated the suitability of LLMs as assistants when fine-tuned for specific tasks.
Chen et al. [8] conducted a comprehensive comparative study on using LLMs for
fully automated domain modeling, revealing impressive domain understanding
capabilities while emphasizing the need for careful consideration due to practical
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limitations. They observed that while LLMs provide reliable domain elements,
there are often missing elements. Arul et al. [3] investigated how LLMs can be
used to extract domain models from agile product backlogs. Kanuka et al. [17]
explored the bidirectional traceability problem between design models and code,
and they demonstrated the proficiency of ChatGPT in understanding and in-
tegrating specific requirements into design models and code. Ruan et al. [22]
presented an automated framework for requirement model generation that incor-
porates ChatGPT-based zero-shot learning to extract requirement models from
textual requirements and subsequently compose them using predefined rules. All
these works concentrate on the LLM outcomes and their evaluation. Differently,
our study concentrates on the human-LLM interaction and provides unique in-
sights into interaction behavior and user perception.

Several works address prompt engineering, either generally or within the
modeling context. White et al. [26] curated a catalog of prompt patterns that
can be applied collaboratively throughout the software life-cycle, encompass-
ing requirements elicitation, system design and simulation, code quality, and
refactoring. In another paper, White et al. [25] suggest initial classifications for
the catalog of prompt patterns tailored for use with ChatGPT, covering in-
put semantics, output customization, error identification, prompt improvement,
interaction, and context control. Fill et al. [12] explored how to generate and
interpret ER, business process, UML class diagrams, and Heraklit models. No-
tably, these interactions were conducted by the researchers themselves with the
LLM (GPT-4). While these works adopt a top-down approach for prompt cat-
alog creation, we employed a data-driven approach that analyzes the intuitive
interaction of humans with LLMs to extract interaction intentions. Moreover,
we analyzed patterns of interactions rather than individual prompts.

7 Conclusion

In this paper, we conducted an empirical study to explore the interaction be-
havior and user perception of LLM-assisted conceptual modeling. Utilizing two
LLMs (GPT-4 and Code-Llama), two modeling tasks (use case modeling with
use case diagrams and domain modeling with class diagrams), and three appli-
cation domains, we identified seven interaction intentions (create model, update
model, create list, update list, present, explain and discuss) and five recurrent
interaction patterns (model evolution, partial model visualization, partial model
discussion, discussion-based model updating, and partial model listing).

In the future, we aim to expand our study by implementing a template-based
approach designed to facilitate the interaction intentions and patterns identified
in this research. Such an approach would offer a structured framework for users
engaging with LLMs, enhancing efficiency and effectiveness in conceptual mod-
eling. Additionally, we plan to broaden our investigation to encompass newer
versions of various LLMs, allowing for a comprehensive assessment of their evolv-
ing capabilities. Finally, we will explore the impact of different interaction types
on the quality metrics of the generated conceptual models, thereby providing
deeper insights into enhancing LLM-assisted modeling processes.
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