
A Decade of Challenges: A Practitioners
Exploratory Study of Microservices Operational

Stability

Gabriel Morais1[0000−0003−1113−7873], Mehdi Adda1[0000−0002−5327−1758], and
Dominik Bork1,2[0000−0001−8259−2297]

1 Université du Québec à Rimouski, Lévis, QC, Canada {gabrielglauber.morais,
mehdi_adda}@uqar.ca

2 Business Informatics Group, Technische Universität Wien, Vienna, Austria
dominik.bork@tuwien.ac.at

Abstract. Microservices have been around for a decade, but operational
challenges remain unsolved. The complexity of operating them has been
a persistent issue among practitioners, being a barrier to the proper
adoption of the Microservices Architecture (MSA) paradigm. In some
extreme cases, this situation led to the failure of MSA adoption and a re-
turn to monolithic architectures. Throughout a longitudinal exploratory
case study conducted at a large financial organization with over 40 years
of experience in developing and operating complex distributed systems,
we examine the factors influencing the dependability and sustainability
at runtime, i.e., the operational stability of microservices. Our findings
highlight the need for systematic approaches to define realistic service-
level targets, design cohesive and robust stability strategies, and establish
optimal resource utilization, thereby framing a research agenda aligned
with industry needs. Ultimately, we ensure the quality of our study by
adopting a multivocal approach to data collection, employing system-
atic data triangulation during analysis, and ensuring transferability by
relating our findings to previous studies and collecting feedback from
non-participants from a different domain.

Keywords: Microservices Architecture · Operational Stability · Soft-
ware Dependability · Software Sustainability.

1 Introduction

Over the last decade, microservices architecture (MSA) has driven a paradigm
shift in the design and deployment of large, distributed systems, aligning with the
continuum of Internet services and inheriting their objectives and challenges [33].
MSA has focused on coping with barriers that prevent fast adaptation to mar-
ket conditions and evolution [26, 52]. It has fostered independence at all levels as
the backbone of adaptable, reusable, scalable and resilient applications, impact-
ing the technology, development and operation processes used when developing
software systems [4, 29]. MSA has demonstrated significant benefits in system
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design and development, but it remains a complex paradigm when in opera-
tion [17, 43, 51]. Due to this complexity, organizations have reverted to mono-
lithic approaches, primarily because of the operational costs and issues with
system performance, scalability, and management [44].

The lack of governance and the presence of organizational silos in MSA de-
velopment, combined with its operational complexity, may cause misalignments
that hinder the effective use of this service-oriented paradigm in enterprise archi-
tecture (EA) for engineering reliable enterprise systems, leading to weaknesses
in EA design, governance, and its ability to support evolving business needs [29,
24]. Besides, migration to microservices may produce hybrid systems composed
of microservices and non-microservices components, which are developed and
operated using disparate practices [5, 17]. This context leads to specific chal-
lenges, such as defining system dependability strategies or determining thresh-
olds for automatic recovery mechanisms that accommodate different architec-
tural paradigms deployed in heterogeneous infrastructures, and using different
appraoches [29, 51].

These challenges influence the operational dependability and sustainability
of systems, as well as their ability to maintain them at expected levels over
time, thereby ensuring their stability. Indeed, systems operational stability is
achieved through dependability, including fault tolerance and avoidance, systems
performance and robustness aspects, and sustainability, including services’ so-
cial impact, economic viability, resource consumption optimization, portability,
evolvability, and maintainability [1, 23, 22]. Realizing dependability and sustain-
ability requires strategies, measurements, and coordination to be effective [1, 9,
23]. However, these aspects have been overlooked, highlighting the current need
for developing novel approaches to handling them within MSA [19, 43, 44].

This research aims to identify the goals, factors, challenges and improvement
perspectives related to operational stability of microservices in a microservices
migration context, from a practitioner’s perspective. We conducted a twelve-
month exploratory case study in collaboration with an industrial partner from
the finance services domain. Findings reveal that MSA operational stability de-
pends on cross-service coordination and requires holistic approaches to design
pragmatic system-wide operational stability strategies, displaying the practical
limitations of MSA’s core tenets of independence and autonomy. Specifically,
practitioners pointed out the challenges of defining realistic end-user service lev-
els, achieving cohesive stability strategies, assessing the robustness of resilience
mechanisms, and optimizing resource consumption. These insights contribute to
shaping a research agenda grounded in practitioners’ latent needs.

Besides, we offer a working definition of operational stability to support
understanding stability in this context. Eventually, we evaluated our research
against its multivocality, rigour, reflexivity, credibility, and transferability. Arti-
facts used in and produced by this research are available at this paper’s com-
panion repository [28].

The remainder of this paper is organized as follows: Section 2 presents foun-
dational concepts related to operational stability and MSA, as well as a summary
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of related works. Section 3 presents the research design. Section 4 reports the
findings, and Section 5 discusses their implications and lessons learned. We dis-
cuss evaluation in Section 6, and we conclude with final remarks and research
perspectives in Section 7.

2 Background and Related Work

This section provides foundational knowledge and related work necessary to
understand the research problem and its implications, as well as to contextualize
its findings. First, we introduce a working definition of operational stability,
followed by the principles and challenges of microservices operations. Finally, we
present related work.

2.1 A Working Definition of Operational Stability

Operational stability has been considered a purpose within software stability. It
aims to stabilize systems’ runtime behaviour, encompassing software evolution,
maintenance and runtime aspects [41]. However, a unique definition of opera-
tional stability may be inaccurate or incomplete because stability is context-
specific and multi-dimensional [40]. A trade-off is to use a working definition
built from properties related to the context or case where the stability abili-
ties should be observed. Such a definition provides a conceptual framework to
support the understanding of specific stability tenets within the context [41].

In the scope of this paper, we are concerned with operation control pro-
cesses [49], notably the control of the system’s capacity to face failures and
service degradation. Focusing on the purpose of stability during the software
systems’ operation, we constructed a definition for operational stability (Defini-
tion 1) based on the system’s ability to achieve dependability and sustainability.

In this context, the dimensions of dependability and sustainability have spe-
cific properties.Operational dependability is the ability to avoid system failures
that violate established service-level duties. Indeed, dependability is considered
the background of building system trustworthiness [11, 45]. Operational sustain-
ability is the ability to operate systems cost-effectively, relying on adequate re-
source consumption. Sustainability encompasses the social, economic, technical,
and environmental perspectives of a system, which may support or conflict, re-
quiring their accommodation [12, 23]. Based on this context and dimensions, we
define operational stability as follows:

Definition 1. Operational stability is the ability of a system to maintain its be-
haviour at a fixed operation level under varying internal and external conditions.

Here, system denotes a software architecture comprising components that
interact to deliver a service [1]. Behaviour denotes the set of states the sys-
tem exposes when delivering a service [1]. Operation level denotes the degree of
compliance with operational specifications, which represent runtime boundaries
defined from operational dependability and sustainability attributes for a specific
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use environment, establishing the acceptable tolerance threshold for deviation
from expected runtime behaviour. The system’s environment is the set of other
systems with which the considered system interacts [1]. The system’s structure
defines the varying internal conditions. The variability in the operational sta-
bility of the system environment defines the varying external conditions. These
properties are often defined throughout contracts that establish the system per-
formance targets as service-level agreements (SLAs) and objectives (SLOs) [10].

2.2 Operating Microservices

Contemporary systems based on cloud microservices adhere to recovery-driven
computing (ROC) principles, which focus on building fault-tolerant systems [9,
34]. Microservices are built based on the isolation principle and operated in a
scalable infrastructure that enhances redundancy [13, 52]. They are developed
in short cycles and rely on approaches that foster automation and tight collab-
oration between developers and operators, such as DevOps [4, 47]. However,
practitioners have identified challenges in handling operational concerns, such
as evaluating, establishing baselines and metrics, and effectively monitoring mi-
croservices [18, 51].

MSA complexifies system operation due to its distributed nature, which im-
pacts resource consumption, system management, and monitoring [43, 48]. This
complexity has been exacerbated by the proliferation of microservices resulting
from the MSA migration process [51]. Additionally, organizations transitioning
from legacy to MSA systems must manage different paradigms and operational
practices in parallel and address the incompatibilities that may arise from oper-
ating such hybrid systems. For instance, DevOps has a positive impact on system
operational performance and is considered complementary to MSA; however, the
adoption of DevOps may not be entirely achieved, and challenges to adopting
MSA and DevOps may arise concurrently, influencing each other [3, 47, 51].

The difficulty in comprehensively monitoring microservices leads to the chal-
lenge of defining their operational behaviour, which is paramount to supporting
automatic resilience mechanisms and assessing performance [48, 51]. It has been
achieved by aggregating its historical operation data using application perfor-
mance monitoring tools and modelling supposed baselines, which are used as
comparison points in monitoring activities [18]. Resource usage, load balancing,
and availability are the most frequently used monitoring metrics for microservices
systems, supporting continuous analysis of application stability and estimation
of operational costs [47]. However, frequent microservice releases, fault tolerance,
and resilience mechanisms make modelling a microservice’s operational normal
behaviour difficult [18, 51]. Besides, the monitoring is achieved atomically, i.e., for
each microservice individually, which makes establishing the expected behaviour
and monitoring microservices compositions complex [18, 29, 47].
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2.3 Related Work

In 2017, Soldani et al. [43] reviewed 51 non-academic industrial studies published
between 2014 and 2017 to identify the gains and pains of adopting MSA. They
unveiled challenges in handling the complexity of distributed systems, data man-
agement, and consistency, as well as increased resource consumption. In 2020,
Waseem et al. [48] surveyed 106 practitioners using a questionnaire and inter-
viewed six practitioners to identify standard practices and challenges associated
with designing, monitoring, and testing microservices. They confirmed the pre-
vious challenges and unveiled others related to fault detection and isolation, log
exploration, performance assessment and monitoring, and the lack of tools to
support operations activities. Between 2021 and 2022, Zhou et al. [51] revisited
these challenges to document their evolution. They interviewed 20 practitioners
from various industries to analyze their current practices and challenges. Their
findings showed that challenges identified by Soldani et al. and subsequent stud-
ies remain unresolved. They also elaborated on practical issues in operating
microservices, such as excessive technology diversity, difficulties in automating
operational processes, and setting thresholds to trigger operational tasks, e.g.,
recovery mechanisms, calling for formal and methodical approaches.

Previous studies did not focus on runtime dependability and sustainability,
and lack a longitudinal, immersive approach, which limits the depth of their ob-
servations. Our study complements these prior works by targeting operational
stability concerns and considering the extended context of microservices opera-
tion within hybrid systems. We also bring depth to the study of these aspects in a
real-world scenario through a longitudinal on-site study, enabling a comprehen-
sive understanding and revealing insights that may be previously inaccessible.

3 Case Study Design

We followed the guidelines for the design and execution of observational case
studies proposed in [50] and the standard for conducting empirical case studies
proposed in [38] to structure this research execution. We engaged with practi-
tioners to incrementally build knowledge about the operational stability chal-
lenges they face, using a combination of literature review, interviews, document
exploration, and observations, similar to the approach adopted in [31] and [39].

3.1 Objectives and Research Questions

We aimed to qualitatively explore how practitioners address MSA operational
stability in the context of hybrid systems and what challenges they encounter.
To meet this goal, we explored the following research questions:

RQ1. Which factors influence the operational stability of hybrid systems?
RQ2. How do these factors influence operational stability?
RQ3. How operational stability practices should be enhanced?
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3.2 Defining a Conceptual Framework

We conducted a literature review of taxonomies, ontologies and conceptual frame-
works in the fields of MSA and software stability, dependability, and sustainabil-
ity. Based on them, we built a conceptual framework that bounded our explo-
ration and served as a classification schema to categorize our findings.

3.3 Data Collection

We grounded our study in a critical realism stance, recognizing the role of sub-
jective information from actors while acknowledging the independent structures
that influence their actions. We relied on interviews and observations, and ap-
proached the research questions from two epistemological perspectives: construc-
tivism and pragmatism [25]. The constructivist perspective ensured the reflection
of the role of individual and collective experiences in building an understand-
ing of operational stability, serving as a guideline for interviews. The pragmatic
perspective ensured that the role of operational stability practice in extending
practitioners’ knowledge was considered, guiding our observations.

The first time we met participants, we presented our definition of operational
stability (cf. Sec. 2) to avoid any ambiguity or misunderstanding, and asked de-
mographic questions. Table 1 provides a summary of participants’ demographics.

Table 1: Participants Demographics
Gender Males Females
Role Business Developer Operator Process Owner
YoE-SO 15+ 5-10 10-15 15+ 10-15 15+ 10-15 15+ 5-10
YoE-MSA 2-5 5-10 2-5 2-5 5-10 5-10 0-2 2-5 5-10 2-5 5-10 0-2 2-5 5-10
Number 2 1 1 3 1 3 1 2 1 3 4 1 1 1 1
Total Role 4 7 11 4
Total Gender 23 3
Total 26

Abbreviations: Years of experience in software operation (YoE-SO), Years of expe-
rience in MSA (YoE-MSA).

Interviews – We conducted semi-structured interviews (cf. [28] for interview
guides). Each interview involved an interviewee and a researcher who discussed
for a duration of at least 30 minutes and a maximum of 60 minutes. Minutes were
created and sent to the interviewees for review and validation. Any questions
that emerged were recorded in a questions backlog to be addressed in subsequent
sessions, as in [39]. We conducted four interview cycles from June to Novem-
ber 2024. The number of sessions per cycle varied according to the number of
questions in the questions backlog.

Observations – We conducted the observations from November 2024 to
May 2025 using the protocol proposed in [39], recording the observation pe-
riod, details, quotes, and follow-up questions. We observed practitioners as they
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executed the process of defining system SLAs for eight business functions, each
with 4 to 13 services. Stakeholders, operators, and developers varied by function,
but the process owner remained the same. Table 2 summarizes our observation
execution.

Table 2: Observations Execution
Observed Task Participants Duration Times Recurrence

Process improvement PO(3) 60 min 3 monthly
SLA definition kick-off B(1), PO(1), O(1), D(1) 60 min 8 1 / BF
Definition of capability O(1), D(1) ≈90 min 27 ≈3 / BF
SLA negotiation B(1), PO(1), O(1) 60 min 16 2 / BF
SLA tasks alignment PO(1), O(1) 60 min 8 1 / BF
Operators-Business alignment B(4), PO(1), O(11) 60 min 14 2 / month
SLA enactment PO(1), B(1), O(1) 60 min 8 1 / BF

Abbreviations: Business stakeholders (BS), Process owners (PO), Operators (O),
Developers (D), Business functions (BF).

During individual observations, we spent at most 90 minutes with partici-
pants, with the duration varying according to the tasks they had to perform. One
observer conducted each observation session. We began by asking participants to
describe the task they would perform, and then we followed its execution, asking
questions throughout the performance. We kept 15 minutes after each session
for an open discussion with the participants, during which we collected their
thoughts about the tasks they had just performed, their perception of the tasks’
utility and effectiveness, as well as the improvements they foresaw. During group
meetings, we observed the dynamics of the group as participants aligned their
tasks and progressed toward achieving the process. Our goal was to identify how
the individual perceptions and improvement ideas observed during individual
sessions were conveyed to the group.

3.4 Data Analysis

We conducted a triangulation of the data collected. We compared facts acquired
during the interviews against what we observed when practitioners execute oper-
ational stability tasks. Then, we examined the organization’s documents, includ-
ing processes documentation, EA-related documents, and architecture decision
and operations guides, to corroborate our observations. We sought to confirm
perceptions and claims, as well as identify gaps between what practitioners see
and do and what is expected. Besides, we reviewed the literature and updated
the conceptual framework when we encountered novel insights. We used the
framework suggested in [23] to support the data analysis process. This frame-
work identifies factors holistically, relating them to the dimensions under study.
It supports the identification of how factors influence each other, representing
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dependencies and characterizing them, as dependency can be supportive or con-
flictual. We relied on UML class diagrams to convey our findings, complementing
them with textual descriptions. The final version of the conceptual framework
is available at this paper companion [28].

3.5 The Case Studied

To align with our goals, the case study had to encompass complex systems,
including microservices that operate concurrently with legacy systems. Addi-
tionally, it had to have a significant number of microservices, above 100, and be
substantial in the system; thus, we target systems comprising at least 25% of
microservices implementing business functionalities.

The selected case is a section of a financial services organization, a concen-
tration of technologies and practices that encapsulate 40 years of system de-
velopment and operation in a single location. They started MSA-migration in
2018, nowadays, they operate 234 complex business services, comprising 5 to 32
functionalities, totalling 1,300 components, which include legacy services (480
or 69% of business services), microservices (220 or 31% of business services),
and infrastructure services (600), such as gateways, databases, and monitoring
services. These services are arranged to compose a transactional website serv-
ing approximately 1 million users and a transactional intranet portal used by
the organization’s staff (approximately 20,000 users). We cannot share detailed
case information due to the organization’s confidentiality policy, but we facilitate
some details upon request to assist with reproducing the study.

4 Findings

The findings reveal that operational stability in microservice architectures can-
not be achieved in isolation—it demands coordination across system compo-
nents, directly challenging the MSA principles of independence and autonomy.
This tension is evident in the difficulty of defining realistic service-level targets,
a problem exacerbated by current methods that rely on localized thresholds
rather than system-wide metrics and fail to integrate non-MSA components.
These limitations constrain the adoption of advanced dependability techniques,
exposing a gap between the capabilities of existing tools and their practical ap-
plication. Furthermore, the prevalence of longstanding operational challenges in
software engineering, as observed in the studied case, such as defining achievable
operational targets and developing cohesive strategies, suggests that addressing
them requires more than a commitment to MSA tenets and the availability of
advanced recovery mechanisms.

Below, we examine these findings through four themes—service level, strate-
gies, mechanisms, and resources—by first identifying the underlying factors (F)
shaping stability (RQ1), then analyzing their relationship with stability goals
(G) and challenges (C) (RQ2), and finally proposing concrete improvements (P)
to address these issues (RQ3).
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Table 3: Summary of Key Findings
Observation #PA #NPA

Realistic End-user SLAs 16 2

(G1) End-user satisfaction 23 2
(G2) Optimize operation costs 7 2
(F1) End-user expectations 16 2
(F2) IT capabilities 16 2
(F3) Feasibility of SLA-SLOs 16 2
(F4) Instability level 19 2
(C1) Accommodate end-user expectations and IT capabilities 10 2
(C2) Define operational normal behaviour 10 2
(P1) Systematic approach to establish operation profile 10 2

Cohesive Stragegies 26 2

(G3) Design complementary stability strategies 22 1
(F5) Services’ dependencies 22 2
(F6) Services’ disruption point 22 2
(F7) Available stability mechanisms 22 2
(F8) Stability mechanisms interplay 22 2
(F9) Compatibility of services and stability mechanisms 13 2
(C3) Assess strategy complementarity 26 2
(C4) Establish operational stability profiles 26 2
(C5) Align stability strategies 26 2
(P2) Methodical approach to align stability strategies 19 2
(P3) Simulation-projection mechanisms 9 1

Robustness of Resilience Mechanisms 17 2

(G4) Choose the right mechanism for the right scenario 17 2
(F10) Mechanism configuration 15 2
(F11) Mechanism reliability 17 2
(C5) Benchmark robustness 15 2
(C6) Evaluate mechanisms in real-life conditions 15 2
(C7) Assess the mechanism’s robustness when facing cascading failures 15 1
(P4) Methods to identify mechanisms disruption points 17 2

Optimal Resource Consumption 22 2

(G5) Saving on stability mechanisms costs 8 2
(F12) Billing model 4 1
(F13) Consumption goals-limits 22 2
(F14) Outages-failure resource costs 8 1
(C8) Accommodate SLAs-SLOs and resource consumption 22 2

Abbreviations: Operational stability goal (G), factors (F), challenges (C), proposi-
tions (P), participants (PA), non-participant (NPA).

4.1 Realistic end-user service level agreements

Participants (16) highlighted the theme of service level as a central component
in understanding and achieving operational stability. Notably, the importance of
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defining realistic service level targets that align with end-user expectations (F1)
and IT capabilities (F2), as well as setting feasible targets (F3), is emphasized.
All operators and business participants (19) indicated service instability level
(F4) as the main factor considered when defining a service level target. In this
context, the instability level acts as a risk indicator. By doing so, the objective
is to achieve high end-user satisfaction (G1) while optimizing costs (G2).

The factors associated with the need for realistic end-user service level agree-
ments align with what the literature identified as the need to unveil and under-
stand the goals and requirements related to operational stability concerns [41].
It involves identifying stakeholders and their goals to derive views, requirements,
and stability strategies, aiming to reach a consensus by accommodating stake-
holders’ needs, objectives and IT capabilities. Once a common view is reached,
implementation strategies can be derived [11, 20]. These end-user SLAs are then
transformed into local SLOs, which must be met to comply with the agreed
SLAs [16, 46]. This factor aligns with the social perspective on sustainable sys-
tems [23], as the systems provide trustworthy services to end-users.

Participants (10) stressed the challenges of balancing end-user expectations
and IT capabilities (C1), which necessitate baselining system capabilities (C2),
aligning with longstanding issues in MSA [18, 43, 51]. A proposition is to develop
systematic approaches to establish local and system operation profiles, which
requires benchmarking SLAs-SLOs by defining rules and baselines, allowing them
to measure their achievement system-wide, similar to requests made in [51].

4.2 Cohesive Strategies

All process owners, operators, and developers emphasized the importance of un-
veiling service dependencies at runtime (F5), arguing that services, both legacy
and microservices, are often developed in silos with limited interaction between
teams, resulting in recurring mismatches in architectural documents between
development and operations, as noted in [30, 29]. Similarly, they pointed out
the services’ stability profile (F6), the available stability mechanisms (F7), and
their interplay (F8) as unavoidable factors in designing complementary stabil-
ity strategies (G6). They consider aligned objectives as essential because the
predominance of disparate stability objectives within services may prevent the
achievement of dependability and sustainability at the system level. Further-
more, they noted that the service nature, i.e., legacy or microservice, introduces
compatibility concerns (F9). Operators (7) and developers (6) indicated that
assessing stability strategies is a challenge (C3) that requires reliable system
runtime models, identifying the trigger patterns of stability mechanisms, and a
dedicated test environment, aligning with known limitations in testing microser-
vices and runtime architecture [18, 29, 35, 43].

All participants emphasized understanding the system stability profile (C4),
which identifies service properties that affect operational stability. While C4
is related to C2 in terms of modelling service runtime behaviour, C2 focuses
on the system’s standard operational capabilities without considering SLA and
SLO targets, while C4 examines behaviour changes leading to SLA and SLO
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violations. In all, they are concerned with the negative impact of contradictory
stability actions (C5).

The case primarily relies on a ‘fix-as-fails’ strategy, addressing faults as they
occur. It manages operational stability within the ITIL framework for service op-
erations, particularly through incident management and problem management
practices [2]. Automatic and manual monitoring are key elements of its oper-
ational strategy, which focus on the velocity of detecting, alerting, classifying,
and fixing outages. Two operators mentioned the low level of “intelligent moni-
toring” and advocated for the adoption of observability practices [27]. Besides,
six operators pointed out the annoyance caused by improper alert thresholds,
relating this issue to the lack of practical guidance and operational knowledge
required to set the fit values when configuring them. Preventive strategies using
automatic resilience processes were observed; however, four operators noted that
they have, occasionally, been a source of instability, as reported in [51].

Generally, participants (19) emphasized the lack of systematic and objec-
tive methods, such as data-based or test-based approaches, indicating that cur-
rent practices foster ad-hoc and approximate solutions, which we observed when
they executed operational stability-related processes. To address these chal-
lenges, they proposed benchmarking strategies for alignment and complementar-
ity. Thus, the proposition of developing a methodical approach to align stability
strategies (P2) emerged. Some of the participants (9) envisioned a simulation
system (P3) that could project operational behaviour without deploying the
system, resilience and recovery mechanisms in a physical structure, which would
allow them to conduct tests and experiment with stability strategy variants. P2
closely align with recent research on applying Digital Twins techniques to MSA
and cloud applications to avoid infrastructure costs during test activities [7, 36].

4.3 Robustness of Resilience Mechanisms

The robustness of resilience mechanisms encompasses their adaptability, strength,
and capacity to keep the system in the desired state when activated. Robust
resilience mechanisms within cohesive stability strategies relate to technical sus-
tainability [23]. It directs the design of adaptable and resilient systems, influenc-
ing their long-term use [12]. Participants (15) were concerned with the adequacy
of resilience mechanism configurations (F10), mainly in how minimal and maxi-
mal values are established and in identifying variations between expected and ac-
tual mechanisms’ behaviour, echoing the challenge of defining adequate triggers
identified in [51]. Besides, participants (17) identified the reliability of resilience
mechanisms (F11) as a critical decision factor. Indeed, considering that stability
mechanisms can face disruption helps practitioners analyze and make informed
decisions when designing stability strategies and defining realistic SLAs.

These considerations remained theoretical in the case without practical ap-
plication. Developers (7) and operators (8) acknowledged their importance but
indicated that they did not apply any specific method to assess them. They ar-
gued that they face a lack of standards to benchmark robustness (C5) and the
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need for a test environment representative of real-life conditions (C6) to con-
duct mechanism evaluation in a trial-and-error approach, which is the ad-hoc
technique we observed some of them used (2 operators). They also indicated the
challenge of assessing mechanisms’ robustness when facing cascading failures
(C7), from the viewpoint of mechanisms’ interaction. This perspective differs
from the one identified in [43] and [51], where participants were concerned with
the cascading effect of service failures.

Therefore, participants (17) identified the need to pinpoint disruption points
in mechanisms (P4), i.e., when mechanisms are overwhelmed, and to track varia-
tions over time, allowing them to evaluate the mechanism’s reliability and outage
risks. Similar to experimenting with stability strategies, they suggested using
simulators (P3) in place of real test environments to enhance mechanisms ma-
nipulation and experiments.

4.4 Optimal Resource Consumption

Business participants pointed out the cost of stability mechanisms as a critical
factor in ensuring the economic sustainability of stability strategies. This cost
is directly related to resource consumption and the platform provider’s billing
model (F12). Operators and developers noted the case of using autoscaling re-
silience mechanisms, where the costs vary depending on the type of service being
scaled. Also, resource consumption is budgeted yearly, imposing a consumption
limit goal (F13). However, operators and developers noted the lack of knowledge
of real costs as they are managed outside their teams.

Nevertheless, all operators noted that they have extensive knowledge of nor-
mal resource consumption levels, which they use to optimize operations. We
observed the practical use of this knowledge when operators manually adjust
resources in production to adapt to usage peaks. Similarly to the definition
of stability strategies, all operators and developers highlighted the influence of
connections between microservices and legacy services on resource consumption
induced by inadequate choices (F9 and C5). For instance, we observed that oper-
ators closely follow the scalability of microservices that depend on legacy parts
that are not scalable, both for technical and business reasons. All developers
and operators noted the impracticability of generalizing autonomous resource
management through the auto scale-up and down practice in this context.

Building dependable systems is considered a priority by business and process
owners to achieve end-user satisfaction (G1). However, it is likely to conflict with
resource savings and consumption limits aimed by the same business participants
(G5). Indeed, the activation of stability mechanisms helps ensure dependability,
but it also increases operational costs (F14). Operators and developers nuanced
this conflict; for them, these costs depend on the number and activation rate of
stability mechanisms, which in turn depend on the particularities of the service
and its operational stability profile (F6).

Operators, developers, and process owners highlighted the alignment between
SLAs, strategies, and implemented mechanisms and their consumption levels as
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essential conditions for achieving operational stability but acknowledged the dif-
ficulty in concretizing this alignment (C8). They emphasized that these condi-
tions are addressed individually within each service. It is worth noting that in
this case study, resource consumption limits are allocated to each service indi-
vidually, but SLAs may overlap between services. The lack of wide alignment at
the system level is considered a source of fragility for operators and an economic
risk for process owner participants. One operator summarized the situation: “The
biggest challenge I face is trusting resilience mechanisms. I lack a complete un-
derstanding of the interplay between all the system’s parts, I cannot ensure these
mechanisms will align with what is required when handling a service disruption,
in both their capability to keep the service up and to fit in the expected costs.”

These factors echo the challenges of managing microservice resource con-
sumption unveiled by previous research [43, 48, 51]. Yet, here, we observed this
concern in the context of supporting processes, not within microservices. Again,
the proposal of a simulation and projection mechanism (P3) to support the de-
sign and assessment of resource consumption was mentioned, which reinforces
previous findings on the practitioners’ need for systematic and virtualized ap-
proaches to design effective MSA operational strategies [19, 35].

5 Discussion

The findings of this study suggest a continuity in the operational challenges
experienced by practitioners, aligning with existing literature in software sys-
tems operations and MSA challenges. The need for reachable targets, systematic
approaches and assessment methods as fundamental elements for building cus-
tomers’ trustworthiness has been suggested as a paramount factor in designing,
implementing and operating reliable systems since the 1990s [11]. Similarly, eco-
nomic sustainability is a constant in product development and operation [42].
The novelty lies in the perspective of resource consumption optimization due to
environmental concerns. However, even here, the results have a direct impact on
the economics of the product, thus on business motivations.

Also, we unveiled novel insights into MSA and hybrid-system interplay, no-
tably the significant role of cohesion between these system parts, which may, in
some cases, be unattainable due to their intrinsic characteristics. This insight
allows us to advance the theoretical understanding of microservices operations
within hybrid systems by linking this phenomenon to two theorized phenomena
in distributed software engineering: the consensus problem [6, 15] and the mixed-
criticality problem [8]. On the one hand, system parts are independent compo-
nents that collaborate to achieve a goal, requiring consensus when deciding on an
event. On the other hand, each of these parts may be characterized by a differ-
ent business or technical criticality. Beyond that, we identified collaboration and
coordination factors behind those pointed out by the participants. The central
place of coordination and the need for enforced alignment between the system’s
parts may encounter the organizational silos observed in MSA practices [29].
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Therefore, questions arise about the practicability of the MSA’s share-nothing
philosophy.

Besides, we found that the concept of resilience in MSA extends beyond the
technical implementation of mechanisms such as autoscaling or redundancy [18].
Here, the critical issue is not the availability of advanced resilience mechanisms
but the lack of a unified approach to define, quantify, and enforce reliability
objectives across a multi-service and multi-architecture system. Therefore, the
challenge lies not in deploying resilience mechanisms, but in designing them to
operate as a cohesive whole—a problem that existing practices and tools alone
do not fully address. The shift from technical capability to systemic alignment
represents the unaddressed frontier in MSA operational stability, where the com-
plexity stems less from tooling and more from architectural and organizational
misalignment. This frontier affects the EA’s ability to effectively build service-
oriented systems that align with the enterprise’s goals.

We interpreted our study findings from the perspective of engineering prac-
tices. Therefore, there is room for alternative explanations. One plausible alter-
native is the effect of using a specific instance or combination of methodologies
and frameworks, e.g., Agile, DevOps, and Waterfall, as the common factor iden-
tified in the above challenges is the coordination of system parts that directly
depends on teams’ coordination, which is influenced by the development and op-
eration methodology adopted [37]. Indeed, the operational challenges observed
may originate from insufficient DevOps adoption or its fragmented implemen-
tation. While DevOps, with its emphasis on cross-functional collaboration, is
often viewed as synergistic with MSA, it is not inherently required for microser-
vice development and operation [51, 47]. The case studied exemplifies this: the
organization’s partial adoption of DevOps with a segregation of development
and operations teams may amplify coordination challenges. In such contexts,
the overlapping struggles of MSA and DevOps adoption may create a feedback
loop, where gaps in one domain exacerbate difficulties in the other [44, 47]. Nev-
ertheless, a system-wide practices alignment seems required, which necessitates
adapting development methods to encompass the entire system, including non-
microservices components.

Another perspective for explanations may be the lack of literacy among prac-
titioners on specific aspects of MSA [32]. Likewise, the impact of transferring
practices from previous paradigms to MSA may influence some of the identified
issues, as this practice may generate MSA anti-patterns [14].

A key lesson in conducting this study is flexibility, as the unpredictable nature
of software failures, the substantial workload of operators, and the tight sched-
ules of business stakeholders often disrupted this research execution, leading to
context-shifting that needed restarting interviews and observations, which de-
manded patience and rigour. A second lesson is transparency. Industrial studies
may face issues of secrecy that restrict researchers’ access to precise descriptions
of processes, goals, or motivations [21]. Software operation is sensitive to them,
as they fear reputational damage by exposing weaknesses. Despite having worked
with this organization on other research projects, building confidence and trust
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with participants remained a pivotal and time-consuming process. At the first
contact with participants, we conveyed that our purpose was not to criticize
individual practices or spy but to understand their reality and unveil the causes
of the challenges they face, which they could assess by reviewing anonymized
interview minutes, observation protocols, and this paper. Some initially reticent
participants became more open to the study’s conclusions, thanks to the policy
of transparency we adopted. A third lesson is managing participants’ subjective
perceptions. We must distinguish between criticisms driven by discontent with
the organization and objective assessments of operational reality. Data triangu-
lation and immersive, on-site observations have proven essential in navigating
this issue.

6 Evaluation

We relied on the quality criteria for evaluating exploratory case studies proposed
in [38]. Therefore, we evaluated our study against its multivocality, rigour, re-
flexivity, credibility, and transferability.

We achieved multivocality by including participants with both technical and
non-technical profiles, different backgrounds, and diverse viewpoints on opera-
tional stability-related processes. We maintained rigour by employing a system-
atic data collection and analysis approach, including a data triangulation strat-
egy. Additionally, we maintained a “questions backlog,” which gauged the need
for more data and analysis; thus, being our saturation indicator. We achieved
reflexivity by continuously auto-analyzing our interactions with participants,
particularly considering the risks of unintentionally influencing their responses
or actions, as we brought external knowledge and experience that may not have
been present in the case. When in doubt, we cross-checked interview minutes
and observation journals with those of other participants. If uncertainty per-
sisted, we re-interviewed the participant to check for any influence; as a final
recourse, we excluded the data from the analysis. We maintained the credibility
of our conclusions through the multivocal and triangulated data collection and
analysis approach we employed. Finally, transferability refers to the ability of
a study’s results to plausibly apply to other contexts. Indeed, case studies aim
to produce theoretical generalizations, creating transferable concepts applicable
to various contexts. To assess transferability, we first related our findings to ex-
isting literature. We then shared our results with non-participant practitioners
from the health insurance (1) and real estate (1) domains to check whether our
insights were recognizable and familiar to them. Their feedback confirmed that
our findings resonated, unveiling a set of common concerns in the industry.

7 Conclusion and Future Work

This study examined challenges to the operational stability of microservices
within hybrid systems through a longitudinal exploratory case study. We found
that the coherence and coordination of stability attributes among a system’s
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components are the primary factors influencing the effectiveness of operational
stability strategies. Additionally, operational stability attributes are complex to
estimate, underscoring the need for systematic approaches. Without such sys-
tematic approaches to translate high-level operational stability goals and re-
quirements into cohesive, cross-service strategies, even well-implemented stabil-
ity mechanisms risk failing to deliver effective system dependability and sustain-
ability. This gap between localized stability tactics and holistic stability gover-
nance is where the next frontier of microservice operation lies. Future work will
focus on developing metrics, indicators and interpretation models to support
operational stability decisions in MSA.
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