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Abstract. Conceptual models need to be comprehensible and maintainable by
humans to exploit their full value in faithfully representing a subject domain.
Modularization, i.e. breaking down the monolithic model into smaller, compre-
hensible chunks has proven very valuable to maintain this value even for very
large models. The quality of modularization however often depends on application-
specific requirements, the domain, and the modeling language. A well-defined
generic modularizing framework applicable to different modeling languages and
requirements is lacking. In this paper, we present a customizable and generic
multi-objective conceptual models modularization framework. The multi-objective
aspect supports addressing heterogeneous requirements while the framework’s
genericity supports modularization for arbitrary modeling languages and its cus-
tomizability is provided by adopting the modularization configuration up to the
level of using user-defined heuristics. Our approach applies genetic algorithms
to search for a set of optimal solutions. In this paper, we present the details of
our Generic Genetic Modularization Framework with a case study to show i)
the feasibility of our approach by modularizing models from multiple modeling
languages, ii) the customizability by using different objectives for the modu-
larization quality, and, finally, iii) a comparative performance evaluation of our
approach on a dataset of ER and ECore models.
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1 Introduction

Conceptual modeling enables domain understanding and communication among stake-
holders and is integral to enterprise and information systems engineering [30]. The
usefulness of any conceptual model for humans is inversely proportional to the size of
the model depicted. Models with more than 30 nodes/edges are considered to be already
challenging for easy comprehension. The more relationships in a model, the less com-
prehension is possible due to the accompanying increase in complexity [41]. Therefore,
the increased size and complexity can make models cognitively intractable [12].

Clustering or modularizing conceptual models1 into smaller chunks provides ben-
efits in that very large models become easy to communicate, validate, and maintain [41].

1 Note, we use graph clustering/partitioning and modularization interchangeably in this paper.
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However, to be truly effective in improving human understanding, clustering approaches
must be based on sound principles of human information processing [25].

Due to the NP-hardness of the modularization problem, search-based algorithms
treat modularization as an optimization problem over an objective function [28] using
techniques like genetic algorithms (GA) [9,26]. However, several limitations exist, such
as choosing the heuristic for modularization cannot be generalized well given the diver-
sity of conceptual models designed, domains modeled, modeling languages used, and
requirements being addressed. Finally, several steps are involved in GA-based solutions
i.e., selection, crossover, and mutation which should be customizable depending on the
modularization case. Therefore, there is a need for a modularization framework that
i) can be adapted to multiple modeling languages, ii) provides multiple heuristics and
allows extending the set of heuristics; and iii) allows GA parameter (re-)configuration
based on the modeler’s requirements.

In order to achieve modularization genericity in terms of modeling languages, we
need a generic representation of conceptual models that can be used as input for the
modularization techniques. Knowledge graphs (KGs) can encapsulate knowledge in a
graph structure, creating new processing possibilities, such as knowledge reasoning.
KGs provide a foundation for data integration, fusion, analytics, and sharing [34] based
on linked data and semantic metadata. Conceptual models can be treated as graphs with
nodes and edges capturing conceptual model-specific information. We can transform
a general conceptual model into KGs and utilize the benefits of a KG-based repre-
sentation of conceptual models. Therefore, we can use knowledge graphs as a generic
representation of conceptual models that captures the domain semantics of the model
and the model’s graph structure.

Once we have a generic conceptual model representation, we need to drive the mod-
ularization toward optimization objectives suitable for the modeling requirements. Mul-
tiple objectives can measure the modularization quality. Moody and Flitman [25] pro-
posed nine principles for decomposing data models, including the number and the size
of cognitively manageable clusters, which are also valid for conceptual models. More-
over, users should also be able to define objectives based on their requirements. E.g., a
custom objective to optimize the modularization for the number of abstract classes in a
module. Furthermore, using an objective as a combination of several objectives can be
beneficial.

To that end, we present the main contributions of this paper as follows - i) we in-
troduce the Generic Genetic Modularization Framework (GGMF) for conceptual mod-
els that provides a multi-objective, generic, customizable framework for modularizing
conceptual models; ii) we provide a UI platform for modeling experts to modularize
conceptual models where users can upload a conceptual model, define configuration
parameters for the GA-based optimization, and select the objectives for which the GA
should optimize. Furthermore, the user can weigh each objective based on its expected
importance. Therefore, the user can execute the optimization as a multi-objective opti-
mization or aggregate the objective into a single objective in a weighted or unweighted
manner. Finally, (iii), we present a comparative analysis of our approach with existing
approaches. We evaluate our framework based on the following research questions -
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RQ1- Is developing a modularization framework that supports multiple modeling lan-
guages feasible?

RQ2- How does the framework support modularization for different requirements?
RQ3- How does the modularization perform compared to existing approaches?

Note that the focus of our paper is the genericity and customizability provided by
GGMF. Therefore, we do not focus on the details of the optimization mechanism of
genetic algorithms and use the jenetics [2] library. The rest of the paper is structured
as follows: Section 2 presents the foundational concepts involved in our work. Sec-
tion 3 discusses the relevant literature while Section 4 introduces our framework and
the developed tool support. Section 5 evaluates our approach. We discuss the threats to
validity in Section 6 and finally, we conclude this paper in Section 7.

2 Foundations

2.1 Modularization

Modularization in conceptual modeling concerns the decomposition of a monolith, po-
tentially overarching model, into smaller, more comprehensive model chunks—called
modules. The module components depend on the intended purpose of modularization
while fulfilling the definition of a module. E.g., if the purpose of the module is solely to
answer a query, then it should only be composed of the necessary concepts and relations
that can answer the considered query [21].

2.2 Conceptual Knowledge Graphs

Knowledge Graphs (KGs) represent a collection of interlinked descriptions of entities—
e.g., objects, events, and concepts. KGs provide a foundation for data integration, fu-
sion, analytics, and sharing [34] based on linked data and semantic metadata. Recently,
a generic approach has been proposed to transform arbitrary CMs into CKGs called
CM2KG [36]. However, CM2KG focuses only on the element labels and metamodel
information. Ali et al. [3] define the notion of Conceptual Knowledge Graphs (CKGs)
by adding semantics from external sources such as language metamodel, domain, and
foundational ontologies to the KG-based representation. These enriched semantics can
be used as information sources for many tasks. In our work, CKGs act as the interme-
diary representation of CMs based on which the modularization is performed.

2.3 Genetic Algorithms

Genetic algorithms (GA) are randomized search-based optimization algorithms inspired
by the principles and mechanics of natural selection and natural genetics [15]. GAs map
the optimization problem into the concepts involved in GA-based search and apply the
search to find the optimal (a set of) solutions. We briefly describe the involved concepts.

Genetic Encoding. The genetic encoding i.e., the genotype is the representation of
the optimization problem that the GA uses as input for executing the optimization. In
modularization, a genotype could be a binary string or an array where each element
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represents the module assignment of a node in the graph. A gene is a specific element
within a genotype, e.g., a gene would represent the module assignment of a specific
node in the graph. The value stored in a gene is called an allele. A chromosome is a
collection of genes that forms a complete genetic representation. It represents an indi-
vidual or candidate solution in the genetic algorithm, e.g., a complete set of module
assignments for all nodes in the graph. Commonly used encoding schemes are binary
encodings, tree encodings, or matrix encodings [19]. A population is a set of currently
present chromosomes. Linear Linkage Encoding (LLE) is a genetic encoding for group-
ing problems, such as graph coloring or data clustering. It represents a problem solution
as a fixed-length chromosome, which encodes the assignment of elements to a group.
This encoding ensures there is only one representation for a grouping solution [20],
thereby mitigating redundancy and isomorphism.

Fitness Functions and Objectives. The fitness function is used to determine the
fitness value of a chromosome [15]. The fitness value quantifies the quality of chro-
mosome w.r.t a fitness function. In the context of modularization, the fitness function
would evaluate the quality of a chromosome by considering factors such as intra-module
similarity and inter-module dissimilarity. GA can use multiple objectives during op-
timization. However, multi-objective problems often have conflicting objectives, i.e.,
maximizing one objective may lead to minimizing another, e.g., maximizing cohesion
and minimizing coupling. Pareto optimal solution sets or Pareto front is a solution for
conflicting objectives. This set consists of possible Pareto optimal solutions.

We explain modularity and MQ in Eq. 1.

modularity =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj)

MQ =
∑

CFi where

CFi =
2µi

2µi + ϵi

(1)

For a graph G = (V,E) where V is the set of nodes in the graph and E is the set
of edges. A is the adjacency matrix of a graph with n nodes and m edges. Modularity
is defined in Eq. 1, where Aij is an element of the adjacency matrix A, didj

2m is the
expected number of edges between nodes i and j, di is the degree of node i, ci is the
community to which node i belongs and δ is the Kronecker delta function that returns
1 if ci = cj and 0 otherwise. The MQ score is obtained from the sum of all module
factors. CFi denotes the module factor for each module i, where µi represents the count
of intra-module edges and ϵi represents inter-cluster between two modules [28].

Selection. Once we have a genetic encoding, the selection step selects a subset of
chromosomes from the current population for reproduction based on their quality de-
fined by a fitness function and creating the offspring [19]. The fitness function guides
the selection process by favoring individuals with higher fitness scores, increasing the
probability of their genetic material being passed on to the next generation. The se-
lected individuals for the reproduction process are also called the mating pool. There
are different types of selection operators in GA. The most common variations for single-
objective GA are roulette wheel section, rank selection, and tournament selection [19].
The roulette wheel selects chromosomes randomly for the reproduction process [15]
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based on the number of copies of each chromosome present in the population. Tourna-
ment selector uses a tournament process, where randomly selected individuals compete
against each other in pairs or larger tournaments. The winner is the individual with the
highest fitness, and the winner is added to the mating pool with chromosomes with
higher average fitness compared to the population’s average fitness. The tournament is
repeated until the desired size for the mates is reached.

Alterers. Crossover combines the genetic material from two parent chromosomes
to create the offspring. In the context of modularization, the crossover could involve
combining the module assignments of two parent chromosomes to generate a new set
of module assignments for the offspring. Mutation is an operator that introduces chro-
mosome alterations. It helps to introduce diversity in the population and explore new
solutions. In modularization, the mutation could involve randomly reassigning the mod-
ule of a node to a different cluster.

3 Related Works

We now discuss the different modularization approaches, separating GA and non-GA
approaches, and the modularization metrics proposed in the literature.

3.1 Conceptual Models Modularization

Non-GA-based Approaches. Stuckenschmidt and Klein [37] propose a method that
clusters models based on the structure of the class hierarchy for real-world ontolo-
gies like SUMO and the NCI cancer ontology. Saruladha et al. [33] propose two new
neighbor-based structural proximity measures, TNSP and DNSP to decompose ontolo-
gies into disjoint clusters. They consider concept pairs with common neighbors for
clustering. Doran et al. [11] present a language-independent ontology module extrac-
tion approach implemented as ModTool. Andritsos et al. [4] present LIMBO, a hierar-
chical clustering algorithm based on minimizing information loss that will be incurred
on merging two nodes in a cluster, in the context of a software system. In [24] a hi-
erarchical clustering-based weighted linkage clustering (WLC) approach is presented.
They associate a new feature vector using the feature vectors of a set of cluster entities.
Two entities are merged based on their types, globals, and routines. Hence, the new fea-
ture vector correctly reflects relationships between the entities. Pourasghar et al. [28]
present a GMA (Graph-based Modularization Algorithm) modularization technique.
Their work uses relationship depth to compute the similarity between model entities.
Furthermore, they propose several metrics to evaluate the modularization quality that
uses structural features of the modularized model.

Metrics. Sarkar et al. [32] propose a set of metrics for determining the quality of
modularization of large-scale object-oriented software using intra-module dependen-
cies, the modules’ APIs, and object-oriented inter-module dependencies, e.g., inheri-
tance. Using model slicing, Bae et al. [5] modularize UML metamodels. The Model
Slicing approach uses vital elements to generate the modularized metamodel. A key
element is a model element of M . The slicing is executed in two phases using the edges
of the multigraph and the key elements to determine the slices. Hinkel et al. [16] apply
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the modularization quality metrics proposed by [32] on metamodels. Like class dia-
grams, metamodels can be organized into packages, making the metrics appealing for
application on metamodels. Based on the results of this work, they propose an entropy-
based approach. Their metric measure the degree of classes that are stored in different
packages [17].

GA-based approaches. Bork et al. [9] introduce the ModulER tool for modulariz-
ing entity-relationship models. The tool follows a meta-heuristic search approach using
genetic algorithms. Multiple objectives, defined as fitness functions, aim to minimize
or maximize specific properties of the modularization of each individual, resulting in a
Pareto Set of optimal solutions [9].

Mu et al. [26] propose a hybrid genetic algorithm (HGA) using a heuristic based
on edge contraction and vectorization techniques to generate feature-rich solutions and
subsequently implant these solutions as seeds into the initial population. Finally, a cus-
tomized genetic algorithm (GA) improves the solution quality. Tabrizi et al. [38] com-
bine hierarchical clustering with genetic algorithms, where they first modularize the
model using GA and then further improve the solution using hierarchical clustering.
Bavota et al. [6] propose Interactive Genetic Algorithms (IGAs) to integrate the de-
veloper’s knowledge in a re-modularization task. Their approach uses automatically
evaluated fitness functions and a human evaluation to penalize cases where a developer
considers module assignments meaningless.

3.2 Modularization Metrics

Metrics are needed to quantify the modularization quality and different metrics have
been proposed in the past. Some metrics use the characteristics between modules and
relationships between elements in modules. Others utilize concepts from information
theory or network theory. Lastly, some metrics consider specific conceptual models’
properties and are only tailored for a specific conceptual modeling language.

Moody et al. [25] propose nine principles for decomposing data models using net-
work theory and cognitive science principles. Sarkar et al. [32] present metrics for cohe-
sion and coupling between modules by defining an entropy metric that measures the ex-
tent to which classes are used together and should be clustered. The properties or struc-
ture of specific conceptual models can also indicate which elements belong together in
a module. Prajapati et al. [29] modularize by properly distributing classes among var-
ious packages in a model with minimum perturbation. Hinkel et al. [16] adapt some
of the proposed metrics in the context of metamodels. Hinkel et al. [17] propose an
entropy-based modularization metric that quantifies class distribution in packages [17].
Dazhou et al. [18] use weights for relations in UML classes. Each UML class rela-
tion gets weight assigned to build weighted class dependence graphs. Singh et al. [35]
similarly assign dependency weights to BPMN models.

In network theory, many metrics can be used to measure modularity. The impor-
tance of an edge is captured by determining the shortest paths of all vertex pairs that
go through the edge. The edges have higher values in communities as there are more
shortest paths between the vertex pairs. This metric is called Edge Betweenness Cen-
trality [13]. Similarly, Vragovic et al. [42] use the idea that neighbors in communities
are close to each other, even when they are removed. They introduced the concept of
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loop coefficients. It takes the number of smallest loops running through a node into con-
sideration. High coefficients indicate main nodes in a community, whereas low values
indicate peripheral nodes in communities. Newman [27] defines a spectral method for
modularity optimization. His approach uses Eigenvectors to express modularity char-
acteristics and optimize accordingly.

In the related work, we note a need for a customizable and generic modularization
framework, i.e., applicable to multiple modeling languages, extensible to user-defined
metrics. Multiple modularization metrics available can be used depending on the re-
quirements. With this motivation, we propose our generic and customizable conceptual
model modularization framework using genetic algorithms.

4 The Generic Genetic Modularization Framework (GGMF)

In the following, we introduce our proposed Generic Genetic Modularization Frame-
work (GGMF) in detail. We show in Fig. 1 the end-to-end approach from a monolithic
conceptual model to a modularized one. The conceptual model is first transformed into
a CKG, which the GA then uses to produce a Pareto Set of optimal solutions based on
the user’s selected objectives and requirements.

Fig. 1: End-to-end Generic Genetic Modularization Framework

4.1 Model Transformation and Genetic Encoding

In GGMF, we first transform a conceptual model of any modeling language into a CKG.
We show in Fig. 2 the transformation of an Online Shop UML class diagram into the
corresponding CKG. The CKG is represented as a labeled property graph [14] with each
node and edge capturing their corresponding properties, e.g., association, and depen-
dency relationships. The GA can use these properties during optimization (see Fig. 4).

Once we have transformed the model into a CKG, we create a genetic encoding that
serves as input to the GA. We use Linear Linkage Encoding of the CKG in Fig. 3. LLE
represents the elements in each module as a linked list with elements sorted in the order
of their indices. The sorting is done to avoid isomorphic representations of a module
and thereby avoid duplicate solutions. Fig. 3 shows LLE as a chromosome representing
the CKG where each vertex and edge is assigned to a module. A gene is associated with
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Fig. 2: Conceptual Model to CKG transformation

each vertex and an edge. The allele values of each gene are the index of the next vertex
or edge in the same module. So each gene is linked to the next element in the module
except for the last element. The last element points to itself. Each module is denoted
by the last element, i.e., the ending node. The modularization yields a set of modules
where each module is connected to the other. Note that in the subsequent subsections,
we provide high-level details of the aspects involved in the optimization process of
GAs. These aspects are invariants during optimization in GGMF and do not contribute
to the genericity and customizability of GGMF; therefore, the in-depth details about
these aspects are outside the scope of our paper.

Fig. 3: Linear Linkage Encoding Example

4.2 Objective functions

Given an LLE chromosome, we can evaluate the module assignment of each element
of the CKG and therefore evaluate the modularization quality on the objectives se-
lected for modularization. Table 1 shows multiple objectives to measure modularization
quality from a chromosome found in the literature. We categorized the objectives into
module-based, semantics-based, entropy-based, and graph-based. The module-focused
objectives aim to measure the module-related properties. The semantics-based objec-
tives use language model-based word embeddings of an element. The entropy-based
types only apply entropy techniques to the string values. Lastly, graph-based objectives
employ graph properties for characterization. The categorization is not mutually exclu-
sive, i.e., one objective has side effects on other objectives. For example, graph-based
objectives can capture cohesion.

We can use the structural features of the graph to evaluate the module and graph-
based objectives. Note that module and graph-based objectives can have edge weights
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Table 1: List of implemented objective functions

Category Objective Objective Description

Module Cohesion Maximise the sum of intra-module edges

Module Coupling Minimise the sum of inter-module edges

Module Balancedness Minimize the standard deviation of module size from a threshold2

Module Average Module Size Minimise the average module size

Semantics Semantic cohesion Maximise the semantic similarity of intra-module vertices

Semantics Semantic coupling Minimise the similarity of inter-module vertices

Entropy String similarity Maximise the average string similarity per module

Entropy String difference Maximise the average string difference between modules

Graph node closeness Minimise the average of vertex closeness centrality per module

Graph edge betweenness Minimise the average edge betweenness centrality per module

Graph Modularity Maximise the modularity score [27]

depending on the relation type (see Fig. 4). To evaluate the entropy and semantics-based
objectives, we use the natural language semantics captured by the node labels using a
language model-based representation of the nodes that capture the natural language
semantics of its labels. Recent contextualized NLP models such as BERT [10], with
bidirectional attention-based mechanism, i.e., transformers [40], can extract essential
features from textual sequences and learn high-quality contextualized representations.
Pre-trained BERT can be effectively employed for knowledge transfer and has pro-
duced impressive results in various downstream tasks such as open-domain question
answering [45] and aspect-based sentiment analysis [43]. Therefore, pre-trained BERT
embeddings can represent the conceptual model elements’ terms. Therefore, we use the
vector-based representations of each node to capture the natural language semantics of
each node label. To evaluate the semantic similarity between two nodes, we use the
cosine similarity measure between the vector embeddings of the node labels.

Finally, it is important to note that we can execute the GA using multiple objectives.
However, we can also combine the objectives as a weighted sum of the objectives to cre-
ate a single objective. We multiply the maximization objectives by minus one, reducing
the single objective to a minimization objective. By default, we treat the weights of all
objectives as equal to one.

4.3 Selection

Once we have transformed the CKG into LLE and we have an initial population of
chromosomes, we need to perform a selection of candidates for the offspring gener-
ation. We use two selection operators. The tournament selection is used for choosing
the chromosomes for the offspring generation when both the single- or multi-objective
functions are applied. These selected chromosomes go through the altering process i.e.,
crossover and mutation to create new altered individuals. The roulette wheel selector is
used for choosing the chromosomes for the survivor population. The altered offspring
and survivor population get merged. Some individuals are removed during this merge
to simulate the killing process [2].
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4.4 Alteration

After selecting the chromosomes for offspring generations, we apply crossover with the
selected chromosomes. The parents are randomly chosen from the offspring population
to create new offsprings. The group crossover guarantees the creation of valid LLE
instances. The central idea of the group crossover is to treat the ending node of the par-
ent individuals as the central element of a module during the crossover. These central
elements are then shared in the offspring instances [20]. The crossover operation gen-
erates two children, which share the ending nodes of the parents. They are inserted into
the offspring population. The modules are built in the offspring from these new ending
nodes after crossover. The group crossover approach also ensures that each module is a
connected element, which follows the self-contained principle described in [25].

Mutation randomly takes and alters any individual from the offspring population
and creates an offspring. The alteration focuses on changes in the modularization solu-
tion instance where modules will be merged, split, or elements in a module get assigned
to a different module. The graft mutation operation randomly determines which of the
three possible mutation types is applied. The first type of mutation divides a random
module consisting of multiple elements into multiple connected submodules. The main
idea involves multiple random walks to split modules into multiple connected submod-
ules. This approach only operates inside the respective module—other modules’ ele-
ments are unaffected. The next type of mutation is the combination of two random
modules. In this case, only the modules with neighboring modules are used. The last
mutation type moves one element in a module to a neighboring module. Elements are
candidates if they are directly incident to a different module. If the element is a vertex,
an incident edge must be in a different module. When the element is an edge, then one
of the incident vertices must be assigned to a different module. This element is removed
from the source to the target module’s linked list.

4.5 Constraints and Termination

The mutation operation can produce invalid chromosomes due to randomly assigning a
gene to a module. Therefore, constraints are enforced to remove invalid chromosomes.
We enforce firstly that modules must be a connected subgraph to be self-contained [25],
i.e., each element in the module must be reachable. Secondly, both the endpoints of an
edge must be present in one of the modules. Fig. 1 shows the genetic algorithm process.
The process is terminated if the population’s fitness reaches a pre-defined threshold
based on the selected objectives. The convergence of the algorithm and the number of
solutions in the Pareto set is dependent on the CKG complexity and the fitness functions.
Currently, GGMF ranks all the different solutions in the Pareto set equally.

4.6 Modularization tool

We now present the Web-based tool we developed for GGMF. Fig. 4 shows the configu-
ration parameters including the edge weights. The edge weights denote the importance
of a conceptual model’s different edge types of. Fig. 4 shows the edge weights for a
UML model, however, the edge weights as well as labels get updated depending on
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the type of modeling language of the input model. The user can freely customize the
weights.

Fig. 4: Configuration parameters

The web UI is developed with Angular [1]. The web application utilizes a web
component to create the user interface’s visual part. In the background, a service cre-
ates an HTTP request and waits for the HTTP response. The UI is built so that it can
be extended via a configuration. The default parameters, the edge weights, and the ob-
jectives are specified in a configuration file. Especially for the weights and objectives,
a new entry can be added to the configuration and is immediately displayed. The ratio-
nale behind the UI was to ease the configuration of modularization experiments. The
implementation of the tool can be publicly available in the GitHub Repository 3

5 Evaluation

In the following, we respond to the three research questions as defined in Section 1 by
first showing the genericity of our framework in terms of modeling languages supported
(RQ1). We perform an impact analysis of the different kinds of objectives used for
modularization (RQ2), and, finally, we show the performance of GGMF by comparing
it to three other approaches proposed in the literature (RQ3).

5.1 Generic modularization

Fig. 5 shows the modularization result of applying our approach to different model-
ing languages. The figures show modularized results of the models from three different
modeling languages, i.e., ER, UML and ADOxx-based models. The modularized re-
sults produce valid models and do not violate any constraints. These results support the
feasibility of our proposed approach. Note that we conducted experiments on the dataset
of 555 UML4, 42 ER5 models but due to limited space, we show the three representative
cases in Fig. 5.

3 https://github.com/me-big-tuwien-ac-at/GGMF
4 https://zenodo.org/record/2585456#.YM5ziSbtb0o
5 https://drawsql.app/templates
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(a) Monolithic ADOxx-based Model (b) Modularised ADOxx-based model

(c) Monolithic ER Model (d) Modularised ER model

(e) Monolithic UML Model (f) Modularised UML model

Fig. 5: Three exemplary modularization experiments with different models

5.2 Objective Impact Analysis

To respond to RQ-2, i.e., how the framework caters to different requirements, we show
the impact of different objectives on modularization. We show, that changing objectives
affect the modularization quality, therefore, our framework can support modularization
in the context of changing requirements given that the user can choose appropriate ob-
jectives. Fig. 6 shows the impact of using balancedness, modularity, and semantic cohe-
sion as the objectives for modularization. We choose these three objectives to show the
effect of different types of objectives, with balancedness focusing on individual module
size, modularity focusing on the entire model, and semantic cohesion focusing on the
natural language semantics of the model. We see, that using balancedness as the objec-
tive produces two modules with seven elements as per the expectation of the objective
to produce modules with a size close to Miller’s magic number seven [31]. In the case
of modularity, we see more modules with uneven sizes. This modularization results
from maximizing the modularity score as the objective given by Eq. 1. Finally, we see
even more modules for semantic coupling to minimize the similarity between terms in
different modules. We see that the terms in each module are semantically closer and dis-
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(a) Balancedness

(b) Modularity

(c) Semantic Betweenness

Fig. 6: Effect of different objectives on the modularization



14 S.J. Ali et al.

Table 2: Modularization approaches comparison

NumNodes Modularity MQ

WLC GMA Louvain Ours WLC GMA Louvain Ours

48 0.55 0.55 0.66 0.62 3.55 4.34 5.13 4.34

56 0.15 0.15 0.21 0.62 2 2 3.80 2

97 0.55 0.07 0.42 0.39 3.91 1.76 5.13 3.27

98 0.42 0.42 0.51 0.62 2 2 3.49 2.84

103 0.26 0.55 0.59 0.62 2 2 3.76 4.52

similar in different modules. Each objective has strengths and weaknesses, depending
on the use case. Therefore, GGMF allows users to apply any objectives they want.

5.3 Comparative analysis

In order to evaluate RQ-3, we compare the quality of the GGMF modularization results
with three different approaches i.e., Weighted Linking Clustering (WLC) [24], Graph-
based Modularization (GMA) [28], and the Louvain algorithm [8] on a set of five UML
models. We use a distance matrix created from the adjacency matrix of the CKG as
an input to WLC and a similarity matrix constructed from the distance matrix as 1 −
distance as input to GMA. We compare the quality of the results using modularity and
MQ score. Note that the purpose of this comparison is primarily to show that the results
from our approach are reasonably good in the context of modularization, which can be
further optimized depending on the customizations provided by GGMF based on the
user requirements.

We show the comparison based on modularity and MQ Score in Table 2. We see
the modularized results from our approach provide better modularity and MQ scores
for the five models compared to GMA and WLC and also perform comparable to the
Louvain algorithm. However, Louvain can suffer from drawbacks such as it may yield
arbitrarily badly connected communities and communities may even be internally dis-
connected [39], which our approach explicitly avoids as part of the constraints (see Sec-
tion 4). Moreover, we cannot apply natural language semantics-based objectives with
Louvain. The results show that our GA-based optimization approach successfully finds
good-quality modules of a model based on heterogeneous objectives.

6 Threats to Validity
We now elaborate on the threats to validity according to the widely accepted categories
introduced by Wohlin et al. [44]. Conclusion validity concerns the relationship be-
tween the treatment and the outcome. We mitigated this threat by testing our framework
on models of multiple modeling languages and with multiple combinations of objective
functions to perform impact analysis of using a specific objective on modularization.
Internal Validity - Parameter tuning of search algorithms is still considered an open
research challenge [7]. In our work we set the configuration parameters for modulariza-
tion based on experience with the modularization tool. However, we make our results
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reproducible with a set of configuration parameters and we expose all the configuration
parameters through our web UI. External Validity - The quality of conceptual models
used in our experiments also threatens the validity of our work. However, we mitigated
this by using the dataset of models used by several works in the literature [22, 23].

7 Conclusion

In this paper, we presented a generic, customizable framework for conceptual model
modularization using genetic algorithm optimization techniques. We showed, that us-
ing Conceptual Knowledge Graphs as the intermediary representation of conceptual
models can be used as a generic intermediary representation before applying GA-based
modularization. We presented our end-to-end approach that takes as input a concep-
tual model and provides the modularized model. We showed the feasibility of generic
modularization by executing our approach on models from three modeling languages
i.e., ER, UML and ADOxx-based models. Different requirements require targeting dif-
ferent objectives, therefore, we showed the effect of using different objectives on the
modularization results. GGMF allows extending the list of objectives that can be used
by the GA for optimization, thereby supporting modularization depending on differ-
ent requirements. We compared the quality of the solutions produced by our approach
with two other approaches. The results show that our approach provides modules of
comparable quality. Finally, we showed the interface of the web-based modularization
tool that we developed, which allows users to configure the parameters for the modu-
larization and also adjust the importance (weights) of different types of edges present
in a model, which allows using a weighted contribution of an edge while evaluating the
quality of a module during optimization. Consequently, GGMF enables an entirely new
level of flexibility and customizability of GA-based model modularization which is also
applicable for non-technical users.

In the future, we focus on the following potential improvements of GGMF: i) ad-
vanced qualitative evaluation of the resulting modules in relation to the initial modular-
ization goals, which is currently quantitatively evaluated using the fitness scores of the
involved fitness functions; ii) statistical-analysis based GGMF configuration parameter
values recommendation for diverse models; and iii) comparative analysis with ML-
based modularization techniques that use structure and semantics for modularization.
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