
Journal of Object Technology | RESEARCH ARTICLE

A Model Management Framework for Next-Generation
Web-based Modeling Tools

David Jaeger∗, Adam Lencses∗, Martin Fleck‡, Philip Langer‡, and Dominik Bork∗
∗Business Informatics Group, TU Wien, Austria

†EclipseSource Services GmbH, Vienna, Austria

ABSTRACT The move towards web technologies has arrived at modeling and especially modeling tools. Several frameworks and
platforms have been proposed recently, aiming at the efficient realization of web-based modeling tools, i.e., tools developed with
web technologies that natively allow for cloud-based deployment and use in web browsers. Most of these frameworks separate
modeling tool functionality like editing, rendering, and management of the model into separate specialized components, often
realized in different technologies. For the model management of Ecore-based modeling languages like the UML, the Eclipse
Modeling Framework (EMF) is still prevalent. While this may maximize reuse, it comes at a cost: EMF is Java-based, entailing
a polyglot technology stack, which complicates the development and hinders an entirely browser-based deployment without
any backend. In this paper, we address this problem by introducing a Typescript-only approach for generating Langium-based
modeling language grammars and model management servers. Using our approach, developers can build next-generation
web-based modeling tools with a homogeneous technology stack, which can be executed as cloud applications or plain browser
applications without any backend, if needed. We evaluate our approach by applying it to two distinct modeling tools: a Workflow
and a UML modeling tool.

KEYWORDS Modeling tools, Web modeling, Langium, LSP, GLSP, UML.

In recent years, we have observed an increasing interest in
the modeling community in bringing some of their powerful
platforms and frameworks (Kelly et al. 1996; Steinberg 2009;
Jarke et al. 1995) into the web, or to re-invent them using web
technologies (Bainczyk et al. 2022)–exemplary endeavors are
Sirius Web and EMF Cloud. This movement is ongoing and
motivated by the expected increase of flexibility and usability
such web-based modeling tools would unlock, compared to
their full-fledged, powerful, and currently still widely used fat-
client alternatives (Bork et al. 2023; Rodríguez-Echeverría et al.
2018a,b).

Many of the existing approaches managed to shift the fron-
tend onto web technologies, including the rendering of dia-

JOT reference format:
David Jaeger, Adam Lencses, Martin Fleck, Philip Langer, and Dominik
Bork. A Model Management Framework for Next-Generation Web-based
Modeling Tools. Journal of Object Technology. Vol. 24, No. 2, 2025.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2025.24.2.a1

grams and user interfaces for editing, with novel technologies,
such as Sprotty (Eclipse Foundation 2024; Petzold 2022) and
GLSP (EclipseSource 2024). However, those approaches typi-
cally still rely on the prevalent Java-based frameworks, such as
EMF (Eclipse Foundation 2024a; Steinberg 2009), in the back-
end for specifying the modeling language and for the model
management, including the (de-)serialization of models, han-
dling of cross-references, and validation. While this maximizes
the reuse of existing modeling framework capabilities and lan-
guage implementations, the dependency on Java increasingly
becomes an issue, as it (i) leads to a heterogeneous developer en-
vironment complicating the development, (ii) entails additional
runtime requirements if, for instance, shipped as a VS Code
extension, and, most importantly, (iii) prevents a deployment as
plain browser application, in which the modeling tool is hosted
as a static website without the need for a backend. However,
this form of deployment becomes increasingly important given
the cost and IP considerations with a cloud infrastructure.

With the same motivation, Langium (langium 2024) has

An AITO publication

https://eclipse.dev/sirius/sirius-web.html
https://eclipse.dev/emfcloud/
http://dx.doi.org/10.5381/jot.2025.24.2.a1
dominik
Textfeld
Accepted for the ECMFA 2025 conference and publication in the JOT journal.
This is the camera-ready author version of the paper, the final version will be accessible via JOT.

been recently released as a Typescript-native textual language
development framework alternative to Xtext (Eclipse Founda-
tion 2024). Besides enabling the efficient development of new
textual languages, Langium also provides solutions for many
complex problems that are relevant for model management, in-
cluding parsing language files into semantic models represented
as Typescript interfaces (i.e., the abstract syntax tree, AST),
validating these models against language rules, and managing
cross-references within a workspace. However, as Langium is a
textual language framework strongly aligned with the Language
Server Protocol (Bork & Langer 2023), it only focuses on tex-
tual editing, i.e., changing text documents in a two-dimensional
space defined by row and character position. Therefore, the
question arises whether the features of Langium can be made
available for model-oriented use cases, enabling modeling tools
to benefit from Langium’s rich capabilities in model serializa-
tion, managing cross-references, and validating models.

When looking at existing solutions like GLSP and Langium,
we can observe, that partial solutions for fully web-based mod-
eling tools exist. GLSP supports the development of Typescript-
based modeling editors but lacks full model management sup-
port using web technologies (i.e., currently only offering a Java-
based model server). On the other hand, Langium is rich in
functionality to automatically generate model management for
textual languages. A gap thus remains in leveraging the model
management functionality of Langium for graphical modeling
languages and editors. This research consequently explores
the possibilities of expanding the functionalities of Langium
to provide model-oriented clients access to its AST model and
use it as a Typescript-native model management framework
for modeling tools, replacing crucial functionalities that would
otherwise require traditional Java-based frameworks, such as
EMF. This paper makes conceptual and technical contributions
to the further development of new and the improvement of
existing modeling tools, a very important pillar of modeling
research (Paige & Cabot 2024; Michael et al. 2023).

We enhance Langium with a dedicated model management
service and a corresponding API to which model-oriented
clients can connect and manipulate the model state. As Langium
is written in Typescript and can be packaged for the browser
without a dependency on NodeJS, complete model management
can be handled inside the browser. Access to the local file
system can be implemented to load model files by using the
Browser File System API1 or other external services.

We further introduce a Typescript-native language to sim-
plify the definition of the metamodel. This metamodel definition
language is based on Typescript interfaces which are extended
to capture necessary meta-information of metamodel elements
by custom annotations (e.g., to signify cross-references). Tak-
ing such a Typescript-native metamodel definition language as
input, we generate a generic JSON grammar from these type def-
initions, and, ultimately, a Langium-based model management
server.

In the remainder of this paper, we first present the relevant
background in Section 1. Our Typescript-based grammar speci-
fication approach is introduced in Section 2. The generation of
1 https://developer.mozilla.org/en-US/docs/Web/API/FileSystem

the Langium-based model management service is described in
Section 3 and evaluated and discussed in Section 4. Section 5
then sheds light on the implications of our work toward the
development of next-generation web-based modeling tools. We
close this paper with a conclusion in Section 6.
1. Background

1.1. Web-based Modeling
Several approaches exist to develop modeling language gram-
mars and model management servers using web technolo-
gies (Maróti et al. 2014; Syriani et al. 2013; Rocco et al.
2023; Lafontant & Syriani 2020). The majority of these
approaches focus on either the frontend (i.e., model repre-
sentation and user interaction like in Sprotty (Eclipse Foun-
dation 2024; Petzold 2022), EMF.cloud (Eclipse Founda-
tion 2024b), Sirius Web (Eclipse Foundation 2024c), Re-
actFlow (xyflow 2024), ReactDiagrams (Storm 2024), Join-
tJS (client.IO 2024)), require a Java-based backend (like in the
EMF ecosystem (Steinberg 2009)), exclude model management
(like in GLSP (EclipseSource 2024)), or are constrained to tex-
tual languages (like Langium (langium 2024)). Emerging tools
like Gentleman (Lafontant & Syriani 2020) and jjodel (Rocco et
al. 2023) offer the promise of providing fully web-technology-
based solutions to the development of web modeling tools.

With respect to the modeling language definition, also var-
ious approaches exist that have been adopted over time. Ap-
proaches exist to define DSLs by creating a grammar (Jézéquel
et al. 2011) or by defining metamodels in a textual, graphical, or
dialogue-driven manner (Steinberg 2009; Bork et al. 2020). Ad-
ditionally, EMF can be integrated with Xtext (Eclipse Founda-
tion 2024), which enables the creation of DSLs using a Java tech-
nology stack. Within the Eclipse ecosystem, models can also
be managed within the browser through EMF.cloud (Eclipse
Foundation 2024b). However, this solution only brings the fron-
tend into the cloud, still requiring a Java server for the model
management; therefore, the tool can still not run in a browser-
based environment without a backend. In (Giner-Miguelez et
al. 2022), a DSL and a supporting tool to describe machine
learning datasets is introduced. The authors extend Langium by
a few services to realize initial model management.

1.2. GLSP
The Graphical Language Server Platform (GLSP) (Metin &
Bork 2023b) is an extensible open-source framework for build-
ing custom diagram editors with web technologies (eclipseglsp-
website 2024). GLSP is based on an extensible client-server
architecture and comes with four major components (Metin &
Bork 2023b): GLSP Server, GLSP Client, Platform Integration,
and Model Management. The client-server communication is
based on a variant of the Language Server Protocol (lsp 2024;
Bork & Langer 2023), which is extended to provide features
required for graphical modeling. This way, the client only has
to cope with the rendering of the graphical model and providing
possibilities for the users to interact with the model, while the
server handles the more computationally heavy tasks like modi-
fying the underlying AST of the diagram, loading the diagram,
and handling user actions performed on the client.

2 Jaeger et al.

https://developer.mozilla.org/en-US/docs/Web/API/FileSystem

The GLSP server can be written in any programming lan-
guage because there is a clearly defined protocol between the
server and the client–available servers are programmed in Java
and Typescript. The GLSP server loads the source model, which
can be in an arbitrary format, e.g., in JSON or a parsed AST
from Langium, and stores it in the model state. It then cre-
ates the graphical model from the source model. The graphical
model contains all the elements that the client will display and
all their necessary attributes, e.g., size, position, element type,
and label. This graphical model is then serialized by the server
and sent to the client. The server also provides action handler
implementations for actions that were dispatched from either
the client or the server itself. The actions can modify the model
state directly. After every modification to the model state, the
server re-generates the graphical model and sends it to the client.
This way, the architecture provides a clearly uni-directional
flow of data, enabling the client to be realized as a lightweight
web-based editor.

The client focuses on and is responsible for rendering the
diagram and providing editing operations for the diagram, e.g.,
CRUD model operations, manipulating the size or position of
the elements, or renaming labels. The client requests informa-
tion from the server regarding the possible operations on each
distinct model element. Using the information provided by
the server, the client can then provide the editing tools for the
different kinds of model elements.

To provide customizability and extensibility, the GLSP server
and client both use an inversion of control pattern based on
dependency injection, DI (eclipseglspserverdigraphics 2024).
On the server, all of the provided services and components are
placed in a global DI container and can be either extended or
completely overwritten. While the GLSP Client is realized with
web technologies like CSS and SVG, the GLSP Server, with
open-source implementations available in Java and Typescript,
lacks proper model management capabilities.

1.3. Langium
“Langium is an open source language engineering tool with first-
class support for the Language Server Protocol, written in
Typescript and running in Node.js.” (langium 2024) Langium
provides the possibility to create DSLs together with an out-of-
the-box Typescript-based language server that can be integrated
into VS Code as an extension or other web applications and
can be arbitrarily customized to meet the language creators’
needs. With its pre-built implementations, Langium simplifies
language tasks such as parsing, AST generation, validation,
scoping, cross-referencing, and more. The Langium framework
is built on DI. All its default services and other framework
components can be arbitrarily customized, completely replaced,
or extended.

The most important element of a Langium project is the
grammar file that describes the abstract syntax of the language
for which the language server should be created. Langium
has its own Langium grammar language, which is based on
EBNF. The grammar defines the structure of the AST which is
created after Langium parses a document written in the specified
language.

The LangiumDocument is the main data structure of the
language server that represents a text document written in the
specified language. The LangiumDocumentFactory creates a
LangiumDocument utilizing the LangiumParser, which parses
the text document based on the created grammar. After a
LangiumDocument was parsed and created, it needs to be built
by the DocumentBuilder service, resulting in the AST of the
model including resolved cross-references and validation errors.
This workflow allows Langium to act as a language server that
communicates with a client using the LSP. We refer the reader
to the Langium documentation for a comprehensive overview2

1.4. Synopsis
To the best of our knowledge, no adequate mature solution for
efficiently realizing model management in the browser using
exclusively web technologies exists yet. Primarily, we aim
for a solution that is extensible, interoperable, and built with
community-driven frameworks like Langium and standardized
programming languages like Typescript. The reason for this
constraining is that other approaches often do not excel from
academic proof-of-concept prototypes. Proper browser-based
model management is desired, as it would enable the shift of the
entire modeling tool into the browser, omitting any installation
steps. The usage of Java is one of the main obstacles on the path
toward browser-based modeling tools. To address these short-
comings, we propose a novel grammar specification (Section 2)
and model management generation (Section 3) approach that is
based on Typescript and Langium.

2. Typescript-based Grammar Specification
Next, we first introduce the requirements for the Typescript-
based grammar specification before presenting the realized
concept. The requirements were derived from analyzing ex-
isting metamodeling languages like Ecore and the structure of
Langium’s grammar definition as this will be the target platform.

2.1. Requirements
The grammar definition language has to provide a notation to
define . . .

– Root/Entry element definition, what shall be the root/en-
try element of a model;

– Element definition for model elements;
– Attribute definition for model elements;
– Inheritance definition between model elements;
– Multiplicity definition for attributes (i.e., exactly one, zero

or one, zero or more, and one or more);
– Reference definition for containment references (i.e., ref-

erences to elements contained within the referencing ele-
ment) and cross-references (i.e., references to other, inde-
pendent elements within the model); and

– Type alias definition;
– Grammar validation: to ensure a valid representation of

the grammar and a transformation into a corresponding
Langium grammar definition.

2 Langium documentation: https://langium.org/docs/reference/grammar
-language/

A Model Management Framework for Next-Generation Web-based Modeling Tools 3

https://eclipse.dev/glsp/documentation/overview
https://langium.org/docs/grammar-language/
https://langium.org/docs/reference/grammar-language/
https://langium.org/docs/reference/grammar-language/

Figure 1 Visualization of the Typescript-based grammar language’s metamodel in Ecore

2.2. Language Concepts

In the definition of the language concepts, it has to be ensured
that all defined requirements are fulfilled while natively using
Typescript. The metamodel of the Typescript-based grammar
language is visualized in Figure 1. It consists of Types and
ModelElements, which can be either of type Class or Interface3.
ModelElements can have multiple properties, while Types can
have multiple DataTypes. It has to be noted, that the DataType
represents built-in data types (like string or number), constant
data types (like instances of strings or numbers), and complex
data types, including ModelElements and Types.

Next, we illustrate the concepts of our Typescript-based
grammar specification language by iteratively rebuilding the
metamodel in Figure 2. The metamodel relates to a univer-
sity domain where a University is composed of Rooms, offers
Courses which are delivered by a Professor and taken by Stu-
dents. This example aims to be complex enough to show the
expressivity of our Typescript-based grammar specification ap-
proach while remaining compact enough to fit the paper size.

Listing 1 shows how model elements can be defined in our
new grammar language using the Typescript-native keywords
class and interface. Attributes add semantics to model ele-
ments are defined in our grammar by creating properties and
their multiplicity inside the model element definition. The in-
terface Person shows how the four kinds of multiplicity are
handled within the Typescript-based grammar language. The
name property represents an element with multiplicity exactly
one, as next to the property’s name and the property’s type no
additional notations are used. The title property represents the
multiplicity type zero or one, signaled by the Typescript native
optional (?) operator after the property’s name. The firstNames
property defines an attribute with the multiplicity one or more,
as its type is a container of type Array. Finally, the nickNames
property represents an attribute with the multiplicity zero or
more by combining the use of the optional operator (?) with a
container of type Array.

3 Interfaces and classes can be used interchangeably. As Typescript does not
support multiple inheritance, using interfaces enables extending multiple other
interfaces, adding support for multiple inheritance as is being used in Ecore.

class University {
name:string;

}
interface Person {

lastName:string;
title ?: string;
firstNames:Array <string >;
nickNames ?:Array <string >;

}

Listing 1 Definition of model elements and their attributes

The grammar needs a notation to create containment references
and cross-references to other model elements. Containment
references can be created using the default Typescript notation
for properties (see Listing 2). For cross-references in model
elements with the class-keyword, the decorator @crossRefer-
ence has been created. As interfaces do not support decorators,
a custom container type (i.e., CrossReference<T>) has been
created to enable the definition of cross-references for model
elements defined as interfaces. Both solutions are shown in
Listing 3.

class University {
rooms:Array <Room >;

}
class Room {

roomNr:number;
}

Listing 2 Definition of containment reference

class Course {
@crossReference room:Room;
@crossReference students:Array <Student >;
@crossReference professor:Professor;

}
interface Course {

room: CrossReference <Room >;
students:Array <CrossReference <Student >>;
professor:CrossReference <Professor >

}

Listing 3 Definition of cross-reference

Inheritance is natively supported in Typescript by the extends
keyword. The Typescript-based grammar definition uses this
definition as can be seen in Listing 4.

4 Jaeger et al.

Figure 2 Visualization of a university domain metamodel in Ecore

class Student extends Person {
matNr:string;

}
interface Professor extends Person {

isAssociate:boolean;
}

Listing 4 Definition of sub-model elements

To define base elements, which can not be instantiated in the
language but should provide an initial structure, it is possible
to create abstract model elements. For classes, the abstract
keyword can be used. However, for interfaces, this keyword is
not supported. Therefore, a type named ABSTRACT_ELEMENT
has been introduced, which signals for a definition of a model
element using the interface keyword to be abstract. Listing 5
shows the definition of abstract model elements using both
notations.

abstract class Person {}
interface Person extends ABSTRACT_ELEMENT {}

Listing 5 Definition of abstract model elements

Another requirement for the grammar language is the ability to
create type alias elements, which can be done by the creation
of union types. An example of these union types used in a
Typescript-native way can be seen in Listing 6.

Finally, to define the root level structure of a model, a decora-
tor named @root and a type named ROOT_ELEMENT has been
introduced, which enable a class or an interface to be the root
element, respectively. Listing 7 shows how the root element can
be defined using either of the two definitions.

type Language = "GERMAN" | "ENGLISH" | "FRENCH";

Listing 6 Definition of type alias element

@root
class Model {

persons:Array <Person >;

universities:Array <University >;
}
interface Model extends ROOT_ELEMENT {

persons:Array <Person >;
universities:Array <University >;

}

Listing 7 Definition of root model element using class

Each grammar defined by our Typescript-based approach is
validated in a twofold manner. First, it must consist of exactly
one root element. Without such a root element, it is unclear how
the model can contain all defined model elements. Second, it
has to be serializable to enable model transformation between
different systems.

3. Model Management Generation
We now investigate to what extent a generator can be realized
that uses our previously introduced Typescript-based metamodel
definition as an input to generate a Langium-based model man-
agement server. We first discuss the requirements and propose
a concept for such a generator. Afterward, the API of the gener-
ated model management server is presented to show how it can
be used and integrated into model editors.

3.1. Requirements
The main requirements for the model management generator
are the following:

R1 Initial project properties The generator has to include an
option to set the initial project properties like the name,
language name, file extension, and root element.

R2 Parsing Parsing is required to be able to read the Typescript-
based grammar definition and other configuration files. Fur-
thermore, to ease the transition from Ecore to our approach,
an .ecore parser would be beneficial.

A Model Management Framework for Next-Generation Web-based Modeling Tools 5

R3 Validation & Transformation All parsed and generated
files must be validated. This includes the Typescript-
based grammar definition, the LangiumDeclaration, and
the LangiumGrammar files. Once validation is passed, the
transformators should be able to generate different types of
files.

R4 File creation The file creation includes two types of files:
either they can be predefined using template files, or they
need to be created from scratch based on the generator’s
inputs. The files that need to be created from scratch in-
clude the Langium grammar definition (.langium file) and
Langium services, which are written in Typescript and in-
clude, for example, the serializer service. These files also
need to be recreated upon every change in the Typescript-
based grammar definition.

R5 Package installation & build The generator has to provide
the functionality to install the required packages and build
the generated model management project.

3.2. Generator Concepts
Figure 3 illustrates the steps involved in generating the model
management from the Typescript grammar specification. In the
following, we will walk through these steps and describe the
generator comprehensively.

3.2.1. R1. Initial project properties The related concept
includes the definition of which properties should be gathered
in the generator’s first execution. The most important properties
are the project name, language name, and file extension. These
values should be collected using prompting.

3.2.2. R2. Parsing For the parsing feature, a concept for
three types of parsers is required: A JSON, Ecore, and a Type-
script parser. As JSON format is a default structure, JSON files
can be parsed by reading the data into a variable. A more en-
hanced parsing functionality must be implemented for Ecore and
Typescript files. The fast-xml-parser npm package is utilized to
parse the Ecore definition into the data structure EcoreDefinition
which can be seen in Listing 8. In this definition, the classes
property collects the information about the features of EClasses
and their EReferences and EAttributes, while the dataTypes
property is used to store the parsed elements of type EDataType
and the types property to collect union types (i.e., EEnums).

export interface EcoreDefinition {
classes:EcoreClass [];
dataTypes:string [];
types:EcoreType [];

}

Listing 8 Defintion of the data structure used for the entire
Ecore definition

For the parsing of Typescript files, the typescript npm package
is used, which parses a Typescript definition into its AST repre-
sentation. In the parser functionality of the generator, this AST
is traversed, and the relevant data is stored in the data structure
that can be seen in Listings 9 and 10.

export interface Declaration {
type:"class" | "type";
name?: string;
isAbstract ?: boolean;
decorators ?: string [];
properties ?:Array <Property >;
extends ?: string [];

}

Listing 9 Data structures used by the parser - Declaration

export interface Property {
name:string;
isOptional:boolean;
decorators:string [];
types:Type [];
multiplicity:Multiplicity;

}

Listing 10 Data structures used by the parser - Property

The base elements the parser needs to be able to understand are
classes, interfaces, and types. These elements are parsed into the
Declaration interface. As classes and interfaces are used to cre-
ate model elements, they are both parsed into class types. Addi-
tionally, for type aliases, the type type is used as seen in Listing 9.
The name attribute of the Declaration is parsed into a property
of type string. The isAbstract property signals whether class
definitions include the abstract keyword or interfaces extend the
ABSTRACT_ELEMENT interface. The decorators property col-
lects the annotations from classes, and for interfaces, it checks,
whether the interface extends the ROOT_ELEMENT. In type
alias declarations, this property is ignored. The extends property
collects for each class and interfaces the classes and interfaces
they are extending other than the ABSTRACT_ELEMENT and
ROOT_ELEMENT. The properties property is used to store the
properties of a class, interface, or type.

Special treatment is also required to parse properties other
than name, isOptional, and multiplicity. The property decora-
tors is used to check if a property is of type CrossReference or
if the property has the annotation @crossReference. The types
property collects the types of an attribute. As it is possible that
the type is defined using a union type, this property is an array.
The Type interface consists of two attributes: typeName, which
stores the name of the type, and type, which stores whether
the type argument is a simple type, a complex type, or a fixed
constant type.

3.2.3. R3.Validation & Transformation In the generator,
two types of transformations need to be done. The first trans-
formation step turns the data structure into a format that can
be validated more efficiently. For this, the previously defined
Declarations are transformed into LangiumDeclarations using
the Langium extendedBy property. Therefore, instead of sub-
elements knowing which elements they extend, the super-classes
know by which elements they are extended. The transformation
consists of three steps: First, the elements are mapped to the
new data structure. This includes collecting super-elements’
properties and adding them to their own properties. Secondly,
the extendedBy property for the new data structure is filled. Fi-
nally, for all abstract elements, all properties are removed as the

6 Jaeger et al.

https://www.npmjs.com/package/fast-xml-parser
https://www.npmjs.com/package/typescript

Figure 3 Workflow of the model management generator

extending element already holds these properties after the first
transformation step.

After the transformation is completed, the definition can be
validated. As declared in Section 2.2, the validator iterates
through all LangiumDeclarations and validates, that only a sin-
gle element includes the root-element decorator. Following a
successful first validation, the LangiumDeclarations are trans-
formed into a LangiumGrammar, whose data structure can be
seen in Listing 11. This transformation follows the following
three steps:

1. Search the array of LangiumDeclarations for the element
that contains the @root decorator, and map it to the En-
tryRule.

2. Map all abstract LangiumDeclarations of types class and
type to TypeRules. Then, search through the remaining
elements, and, if a property of an element has multiple
possible types, check if there already exists a TypeRule
that represents these types. If one exists, replace the types
with the name of the TypeRule, otherwise, create a new
TypeRule to represent these types.

3. Map all non-abstract LangiumDeclarations, that are of
type class to ParserRules.

export interface LangiumGrammar {
entryRule:EntryRule;
typeRules:Array <TypeRule >;
parserRules:Array <ParserRule >;

}

Listing 11 Data structures used in second transformation -
LangiumGrammar

Following this transformation, a second validation checks,
whether the grammar can be serialized. In the concept of this

validation, an initial serializable set (which includes string, num-
ber, and boolean types) is created and iteratively extended until
no new model elements are added in an iteration. If, by then, all
model elements are in the serializable set, the entire definition
is serializable and the validation was successful.

3.2.4. R4. File creation The files that need to be created can
be predefined according to a certain structure, which includes
wildcard phrases. These phrases are replaced with the needed
value during the file creation. In Listing 12 an example template
can be seen. In the creation of the file, the generator would
replace the <%=LanguageName%> with the actual language name
that has been defined in the initial project properties.

export class <%= LanguageName%>Example {
}

Listing 12 Template file including wildcard phrase

The second type of file is recreated whenever the definition file
is changed. This kind of file creation can be optionally exe-
cuted if Ecore is used for the metamodel definition to create the
Typescript-based grammar language definition. Furthermore, it
is executed to create the Langium grammar definition and the
serializer service for Langium. The Langium grammar defini-
tion is created by mapping the data structure, which has been
presented in Listing 11 to Langium rules as follows:

– EntryRule: The entry rule is the entry element rule for
the Langium grammar. The entry rule has to start with the
identifier entry, followed by the rule name. In the body
of the entry rule, the structure of the model is defined.
The structure has to be in a valid JSON format to enable
further processing; therefore, an opening or closing curly
bracket is added before the first and after the last attribute
definition. Furthermore, colons are added between the
different attribute definitions.

A Model Management Framework for Next-Generation Web-based Modeling Tools 7

– TypeRule: This rule is used for unassigned rule calls,
which represent rules that assign the parsing to their sub-
elements. Creating a valid JSON grammar is unnecessary
for this type of rule, as this is handled within the child rule
elements.

– ParserRule: The parser rule is used to define the valid
structure of a rule element. The parser rule has the same
mapping procedure as the EntryRule, with the only dif-
ference being that the entry keyword is left out in the
mapping.

3.2.5. R5. Package installation & build After all files have
been created, the generator executes the npm install command
inside the newly created project. Following that, the npm run
build command is executed, which creates the initial build. If
both actions are successful, a ready-to-use Visual Studio Code
extension can be started.

3.3. Model Management API
The model management API allows graphical editors to access
the AST of a Langium language server. This API provides
functionalities to open, close, load, save, and update a docu-
ment. A central component of the model management server
is the ModelService that is responsible for the loading, saving,
and manipulation of the model state inside a LangiumDocu-
ment. One of the requirements of the model management API
is its easy integration with Langium. Therefore, it is imple-
mented as an npm package consisting of a module file, which
defines extensions to the default Langium services, including
language-specific extensions and extensions that enhance the
functionalities of the language server in general. Two crucial
extensions we implemented are the JsonSerializer, which is
essential for the implementation of the JSON patch functional-
ity in the model management server, and the Serializer, which
is responsible for the transformation of the model AST into
its textual representation. Next, we briefly describe the core
functionalities of the model management API.

open With the uri of a file, a language ID, and a client ID, a
file can be opened. The server checks, whether a document
with the provided uri is already contained in its state or if
it has to be loaded.

close An already opened file shall also be closed upon request
by the user. While the file is closed, cross-referencing of
elements in that file shall still be supported.

request This functionality can be used to request the current
state of a model.

save This functionality is used to save the model’s current state
to the file system.

update The update functionality supports model updates from
it’s textual and graphical source. The update function ex-
pects the updated model as a parameter, either in textual
form or as the complete AST of the model. If the model is
sent as an AST, it is first serialized into a textual represen-
tation, followed by an update of the internal model state.

To update the AST, the update method from the Langium
DocumentBuilder is called. Finally, the current state of the
model is returned.

patch The patch functionality expects as a parameter the JSON
patch that should be applied to the current state of the
document. The previous and the new state are stored to
efficiently support redo/undo. A particular challenge of
applying the patch is to maintain consistency and cross-
references throughout the model revision. Once all prepara-
tory steps (e.g., retrieving all affected documents and JSON
objects cross-referencing a patch element) are finished, an
external library called fast-json-patch is used to execute the
patch and thereby updating the model into a new consistent
state. Finally, the Langium references need to be recon-
structed using three Langium services AstNodeLocator,
NameProvider, and LangiumDocuments.

The rebuildLangiumReferences function consists of four
nested functions:

– linkNode: This function recursively visits child el-
ements of AST nodes to recreate the Langium ref-
erences. It also makes sure that the reconstructed
references are correct Langium nodes, i.e., it adds the
$container, $containerProperty and $containerIndex
properties.

– reviveReference: This function can be used to
transforms a JSON reference into a Langium refer-
ence.

– getRefNode: This function can be used to search
for an AST node, given a reference element, which
consists of a __documentUri and a __id, or __path.

– getAstNodeById: Given the root AST node of a
document and an id, this function uses the Langium
utility function streamAst to produce a stream of AST
nodes that is searched for the AST node with the
given id.

After the Langium references have been restored, the AST
is serialized, and an update similar to the discussed update
functionality of the ModelService is executed.

redo and undo To redo or undo a patch, the ModelService
calls the respective functions inside a PatchManager that
provides a Map of previous and current model states.

4. Evaluation
To evaluate our approach, we report on two comprehensive case
studies where we used our approach to generate the grammar
and the model management layer for two open-source model-
ing tools, one for workflows4 and BIGUML (Metin & Bork
2023a) for UML. The two examples show breadth and depth of
our solution as the Workflow editor comes with a Typescript-
based GLSP client and server implementation already while
BIGUML comes with a Typescript-based GLSP client, a Java-
based GLSP server, and a Java-based model management. Thus,

4 https://eclipse.dev/glsp/examples/#workflowoverview

8 Jaeger et al.

https://github.com/Starcounter-Jack/JSON-Patch
https://eclipse.dev/glsp/examples/#workflowoverview

the BIGUML example is much richer in requirements and ex-
tends the workflow editor requirements from an architectural
point of view (Java-based GLSP server and model management
server) and in functionality (i.e., having a Property palette and
an outline view). All sources and generated files of both case
studies and the university example of Section 2 can be found
online5.

The challenge in both examples was to rebuild the modeling
tool functionality by using i) our Typescript-based grammar
generator and ii) our generated Langium-based model manage-
ment server.

4.1. Realization and Integration of the Model Manage-
ment Server

4.1.1. Workflow Model Management Server The GLSP-
based Workflow editor already provides a client implementation
and a TypeScript-based GLSP server implementation. There-
fore, the existing implementation can be used to rebuild the
workflow diagram example, albeit with the necessary adjust-
ments to create a connection to the newly created model server
API so that the model server can handle the model management.
Additionally, the commands employed for model editing need to
be adapted to utilize the JSON patch functionality of the model
server API, as opposed to direct editing of the source model and
subsequent transmission of the updated model to the server.

The workflow diagram language is a rather small modeling
language consisting of only a few different types of nodes and
one type of edge. The definition of the workflow diagram
language, using the TypeScript-based grammar language (see5)
served as the input for the Langium grammar generator and
the model management server generator. For using the new
model management server, the extension startup code needed
to be extended by one line to also startup the generated model
management server.

In order to facilitate the integration of the novel model man-
agement server, it was necessary to redirect a number of specific
function calls to that server. For instance, the loading and saving
of workflow models was redirected to the SourceModelStorage.
Moreover, all model state changes needed to be related to the
Langium-based AST in the ModelState class. This class has
now been assigned responsibility for handling all model state
changes through the JSON patch method. In order to support the
rendering of the workflow model on the client, the GModelFactory
class was revised to map the AST nodes to model elements. Fi-
nally, the implementation of all GLSP operators responsible for
handling model updates performed by the modeler (CRUD oper-
ations on the model) needed to be adjusted. Instead of sending
an updated model to the GLSP server, the new handlers create a
JSON patch representing the model changes. This patch is then
applied to the model state in the new model management server.

Table 1 lists the supported features after integrating the new
model management server. It can be derived, that all basic
modeling requirements (CRUD operations) are fully supported.

5 Online supplementary material: https://drive.google.com/drive/folders/1W
_ejDYv9H7dm63TE03QqH5y0AkPfxviR?usp=sharing

4.1.2. BIGUML Model Management Server BIGUML
consists of three main components: A GLSP client, a GLSP
server, and a Java-based model server. As the GLSP server
implementation of BIGUML is Java-based, a Typescript imple-
mentation for the GLSP server has been added. However, as
this paper focuses on the model management aspect, the steps
to recreate the GLSP server will not be discussed in more detail.

The challenge was to use our Typescript-based grammar
specification and generator to realize a new Langium-based
model management server for BIGUML. The generator’s func-
tionality has been utilized for the initial setup of the model
management, then the metamodel definition had to be created.
Because BIGUML uses the UML metamodel, we created a
partial Typescript-based grammar representation of the UML
metamodel. Listing 13 shows the Typescript-based UML meta-
model root element definition, the full specification can be found
online5.

@root
class Diagram {

diagram:ClassDiagram | PackageDiagram;
metaInfos ?:Array <MetaInfo >;

}

Listing 13 Root element definition for the UML metamodel

The implementation of the GLSP server for the BIGUML
tool is based on the already existing TypeScript-GLSP-server of
the workflow diagram example with all the already discussed
required adjustments to work with the newly created Langium-
based model management. After the metamodel has been de-
fined in the Typescript-based grammar language, the generator
workflow has been executed (cf. Figure 3). Afterward, the
rebuilt BIGUML modeling tool has been tested against the stan-
dard modeling tool features like CRUD operations on model
elements (cf. Table 1). The focus then moved to further support
the advanced features like a property palette and a model outline
view offered by BIGUML.

The property palette in BIGUML offers a form-based
view that supports direct editing of model element prop-
erties like attributes and operations of a UML class.
To be able to handle actions of the property palette,
handlers for the RequestPropertyPaletteAction and
UpdateElementPropertyPaletteAction had to be imple-
mented.

The RequestPropertyPaletteAction handler must pre-
pare the property palette’s form according to the se-
lected model element. To prepare this form, a util-
ity class named PropertyPaletteBuilder has been created,
which eases the creation of property palette items us-
ing the builder pattern. The implementation of the
UpdateElementPropertyPaletteAction handler creates a
UpdateOperation, which updates the value of a selected property
inside the property palette. After the registration of these new
handlers, the property palette was fully functional based on the
new model management server.

Figure 4 shows an example of the property palette for a Class
in the class diagram. As can be seen, all properties of the class
are listed in the property palette, and input fields, checkboxes,
and choice elements exist to change the values of these proper-

A Model Management Framework for Next-Generation Web-based Modeling Tools 9

https://drive.google.com/drive/folders/1W_ejDYv9H7dm63TE03QqH5y0AkPfxviR?usp=sharing
https://drive.google.com/drive/folders/1W_ejDYv9H7dm63TE03QqH5y0AkPfxviR?usp=sharing

Figure 4 Property palette in the rebuilt BIGUML tool.

ties. Furthermore, references exist for the child elements that
can be used to open the property palette for the selected child
element as can be seen next to the properties and operations.
We can thus state, that our new model management server fully
supports the property palette in BIGUML (cf.Table 1).

The only requirement that is currently not yet fully sup-
ported is the outline tree view, which has only been partially
implemented. However, this functionality can also be realized
by creating an action handler for the RequestOutlineTreeView
action, which is responsible for loading and transforming the
model data into the tree view data. The handler would need to
make an API call to request the current ModelState and then
transform the retrieved AST into the required structure by the
tree view.

4.2. Discussion
Now, we focus on the core contributions of this research, which
are aligned to three research questions: RQ-1: how should a
type definition language be conceptualized to accurately and
comprehensively define metamodels; RQ-2: how can the previ-
ously defined type definitions be used to automatically generate
a valid Langium language specification; and RQ-3: how can the
AST created by Langium be made available to model-oriented
clients to enable model editing directly in the browser?

We presented a solution to create a browser-based model
management solution using a Typescript-only technology stack
(RQ-1). For this, a Typescript-based grammar language was
conceptualized. This step included analyzing Langium’s capa-

bilities and the widely used Ecore metamodel. After gathering
all requirements, the concept of the Typescript-based grammar
language was developed. This encompasses the creation of sim-
ple model elements as well as the addition of cross-references
between them. While this first definition already includes a lot
of functionalities like multiplicities, containment- and cross-
references, some specific aspects of the very large Ecore lan-
guage are left for future extension (like derived, transient, and
ordered attributes). The online supplementary material features
a detailed analysis of the supported features5.

In response to RQ-2, we developed a concept and an imple-
mentation for a generator capable of generating a standard JSON
grammar and the entire setup for a Langium-based model man-
agement server. In the evaluation, we showed that the generator
is able to create the model management for two state-of-the-art
modeling tools, one for Workflows, the other for the UML.

Finally, regarding RQ-3, to enable model-oriented clients
to access Langium’s AST, the requirements for a model server
API were analyzed and a model server API was created, which
provides the implementation to fulfill these requirements. This
model server API has been integrated within Langium. In the
evaluation, we showed that the functionality of BIGUML and
the Workflow editor could be rebuilt using the Langium-based
model management solution.

4.3. Threats to Validity
This research is not exempted from threats to validity. Primarily,
we want to stress that our approach currently has been tested
on two instances, the Workflow editor and BIGUML. While
this is limited concerning the number of instances, both mod-
eling tools come with a heterogeneous technology stack and
functionality, and rich metamodels. Consequently, this initial
evaluation shows the feasibility of our approach. Future appli-
cations will need to further test the expressivity and generality
of our solution.

5. Implications for Research and Practice
To show the far-reaching implications of our proposal, we aimed
to realize some advanced web-modeling capabilities on top of
it. Blended modeling has been a popular advanced topic in the
field of model engineering (David et al. 2022). So far, blended
modeling tools have primarily been developed based on tradi-
tional frameworks e.g., Xtext (Eclipse Foundation 2024; Glaser
& Bork 2021) or EMF (Eclipse Foundation 2024a). Novel
approaches (Petzold 2022; Giraudet 2022) using web-based
technologies either do not provide enhanced editing possibili-
ties on the graphical model, only generate a read-only visual
representation of the model, or do not consider non-semantic
information in the textual representation of the model e.g. com-
ments or formatting, that would get lost after modifying the
model in the graphical representation.

In the following, we show how our generated model man-
agement server, combined with GLSP and Langium enables
the generation of web-based modeling tools for hybrid textual
and graphical modeling in BIGUML. Consequently, we need to
extend our generated model service to not only enable model-
oriented clients but also textual model clients to access and

10 Jaeger et al.

Table 1 Evaluation of the requirements of the rebuilt modeling tools. Legend:
✓⇒ supported, (✓) ⇒ partially supported; n/a ⇒ not supported by the original workflow editor.

Requirement Workflow editor BIGUML

Creating, Editing, and Deleting nodes ✓ ✓

Moving and Resizing nodes ✓ ✓

Creating, Editing, and Deleting edges ✓ ✓

Showing model elements in property palette n/a ✓

Creating child nodes via the property palette n/a ✓

Editing nodes via the property palette n/a ✓

Deleting child nodes via the property palette n/a ✓

Showing the model in the outline view n/a (✓)

make changes to the AST. The challenges here were threefold:
i) how can the model service API allow textual and graphical
editors to manage and manipulate the underlying AST jointly;
ii) how to implement the modification model to allow for simul-
taneous modifications on the textual and graphical models; and
iii) how to handle non-semantic information?

The developed approach had to provide a solution to pursue
updates on the model in two directions: a) updates made in
the text editor where the language server has to delegate the
action handling to GLSP; and b) updates made in the graphical
representation where GLSP has to delegate the action handling
to the text editor and the language server. As the model service
already provides the up-to-date AST of the model to request-
ing clients, the direction a) can be implemented via listening
to changes on the model and updating GLSP’s source model
with the new version of the model. After GLSP receives an
update, it re-generates its graphical model and delegates the
updated graphical model to the client to update the graphical
representation of the model.

To implement updates in the direction b) two approaches
were developed. Firstly, updates in the graphical representation
of the model were directly applied to the model’s AST by the
GLSP server, and the new version of the AST was sent to the
model server to serialize it and update the content of the text
editor. However, this method raises the problem of removing the
non-semantic information of the model’s textual representation,
as the serializer would not consider comments and white spaces
in the model, as the AST does not contain this information. To
mitigate this problem, the GLSP server has to implement meth-
ods for updating, deleting, and inserting nodes in the model’s
textual syntax. This can be achieved as the AST generated
by Langium provides the positions of the nodes in the textual
syntax, and therefore, nodes can be directly edited, deleted, or
inserted without losing the non-semantic information of the
model’s textual syntax. GLSP then sends the updated model as
the textual syntax to the model service, which updates the text
editor’s content and rebuilds the LangiumDocument containing
the model’s updated AST to keep the model server up-to-date.

The developed concept was implemented both on the Work-
flow editor and on the generated BIGUML editor as a VS Code
Extension (Microsoft 2024). The implemented extension suc-
cessfully provides simultaneous editing in the graphical and
textual editors for package and class diagrams as visualized in a
screenshot in Figure 5 and a video online5.

6. Conclusion
In order to bring modeling tools into the cloud, it is crucial to
build these tools with a homogeneous technology stack consist-
ing of web technologies that natively allow cloud-based deploy-
ment and use in web browsers. In this paper, we proposed a
novel Typescript-only approach for generating Langium-based
modeling language grammars and subsequently generating en-
tire model management servers. Through two use cases, we
evaluated our approach and showed, how developers can build
next-generation web-based modeling tools. All software com-
ponents described in this paper will be published open-source
to enable wide industrial and academic adoption and use.

References
Bainczyk, A., Busch, D., Krumrey, M., Mitwalli, D. S., Schür-

mann, J., Dongmo, J. T., & Steffen, B. (2022). Cinco
cloud: A holistic approach for web-based language-driven
engineering. In T. Margaria & B. Steffen (Eds.), Leverag-
ing applications of formal methods, verification and valida-
tion. software engineering - 11th international symposium,
isola 2022, rhodes, greece, october 22-30, 2022, proceed-
ings, part II (Vol. 13702, pp. 407–425). Springer. doi:
10.1007/978-3-031-19756-7_23

Bork, D., Karagiannis, D., & Pittl, B. (2020). A survey of
modeling language specification techniques. Inf. Syst., 87.
doi: 10.1016/J.IS.2019.101425

Bork, D., & Langer, P. (2023). Language server protocol:
An introduction to the protocol, its use, and adoption for
web modeling tools. Enterprise Modelling and Information
Systems Architectures (EMISAJ), 18, 9–1.

A Model Management Framework for Next-Generation Web-based Modeling Tools 11

Figure 5 Blended modeling with BIGUML: the synchronized selection is highlighted.

Bork, D., Langer, P., & Ortmayr, T. (2023). A vision for flex-
ible glsp-based web modeling tools. In J. P. A. Almeida,
M. Kaczmarek-Heß, A. Koschmider, & H. A. Proper (Eds.),
The practice of enterprise modeling - 16th IFIP working con-
ference, poem 2023, vienna, austria, november 28 - december
1, 2023, proceedings (Vol. 497, pp. 109–124). Springer. doi:
10.1007/978-3-031-48583-1_7

client.IO. (2024). Jointjs. https://www.jointjs.com/. (Accessed:
24.05.2024)

David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F., Mala-
volta, I., . . . Hebig, R. (2022, 06). Blended modeling in
commercial and open-source model-driven software engi-
neering tools: A systematic study. Software and Systems
Modeling, 22. doi: 10.1007/s10270-022-01010-3

Eclipse Foundation. (2024). Eclipse GLSP. https://eclipse.dev/
glsp/. (Accessed: 01.02.2024)

Eclipse Foundation. (2024). Eclipse Graphical Language
Server Platform - Servers & Integrations. https://eclipse.dev/
glsp/documentation/integrations/. (Accessed: 24.03.2024)

Eclipse Foundation. (2024a). EMF. https://www.eclipse.org/
modeling/emf/. (Accessed: 24.06.2023)

Eclipse Foundation. (2024b). EMF.cloud. https://www.eclipse
.org/emfcloud/. (Accessed: 22.06.2023)

Eclipse Foundation. (2024c). Sirius web. https://eclipse.dev/
sirius/sirius-web.html. (Accessed: 24.05.2024)

Eclipse Foundation. (2024). Sprotty. https://projects.eclipse.org/
projects/ecd.sprotty. (Accessed: 25.03.2024)

Eclipse Foundation. (2024). Xtext. https://www.eclipse.org/
Xtext/. (Accessed: 24.06.2023)

EclipseSource. (2024). Glsp. https://eclipse.dev/glsp/. (Ac-
cessed: 14.02.2024)

Giner-Miguelez, J., Gómez, A., & Cabot, J. (2022). Describeml:
A tool for describing machine learning datasets. In Proceed-
ings of the 25th international conference on model driven

engineering languages and systems: Companion proceedings
(p. 22–26). New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/
3550356.3559087 doi: 10.1145/3550356.3559087

Giraudet, T. (2022). Langium + sirius web = heart. https://blog
.obeosoft.com/langium-sirius-web. (Accessed: 08.02.2024)

Glaser, P., & Bork, D. (2021). The biger tool - hybrid tex-
tual and graphical modeling of entity relationships in VS
code. In 25th international enterprise distributed object
computing workshop, EDOC workshop 2021, gold coast,
australia, october 25-29, 2021 (pp. 337–340). IEEE. doi:
10.1109/EDOCW52865.2021.00066

Jarke, M., Gallersdörfer, R., Jeusfeld, M. A., & Staudt, M.
(1995). Conceptbase - A deductive object base for meta
data management. J. Intell. Inf. Syst., 4(2), 167–192. doi:
10.1007/BF00961873

Jézéquel, J.-M., Barais, O., & Fleurey, F. (2011). Model
driven language engineering with kermeta. In J. M. Fer-
nandes, R. Lämmel, J. Visser, & J. Saraiva (Eds.), Gen-
erative and transformational techniques in software engi-
neering iii: International summer school, gttse 2009, braga,
portugal, july 6-11, 2009. revised papers (pp. 201–221).
Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from https://doi.org/10.1007/978-3-642-18023-1_5 doi:
10.1007/978-3-642-18023-1_5

Kelly, S., Lyytinen, K., & Rossi, M. (1996). Metaedit+:
A fully configurable multi-user and multi-tool CASE and
CAME environment. In P. Constantopoulos, J. Mylopoulos,
& Y. Vassiliou (Eds.), Advances information system engineer-
ing, 8th international conference, caise’96, heraklion, crete,
greece, may 20-24, 1996, proceedings (Vol. 1080, pp. 1–21).
Springer. doi: 10.1007/3-540-61292-0_1

Lafontant, L., & Syriani, E. (2020). Gentleman: a light-
weight web-based projectional editor generator. In E. Guerra

12 Jaeger et al.

https://www.jointjs.com/
https://eclipse.dev/glsp/
https://eclipse.dev/glsp/
https://eclipse.dev/glsp/documentation/integrations/
https://eclipse.dev/glsp/documentation/integrations/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/emfcloud/
https://eclipse.dev/sirius/sirius-web.html
https://eclipse.dev/sirius/sirius-web.html
https://projects.eclipse.org/projects/ecd.sprotty
https://projects.eclipse.org/projects/ecd.sprotty
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://eclipse.dev/glsp/
https://doi.org/10.1145/3550356.3559087
https://doi.org/10.1145/3550356.3559087
https://blog.obeosoft.com/langium-sirius-web
https://blog.obeosoft.com/langium-sirius-web
https://doi.org/10.1007/978-3-642-18023-1_5

& L. Iovino (Eds.), MODELS ’20: ACM/IEEE 23rd in-
ternational conference on model driven engineering lan-
guages and systems, virtual event, canada, 18-23 october,
2020, companion proceedings (pp. 1:1–1:5). ACM. doi:
10.1145/3417990.3421998

Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi,
P., Jurácz, L., . . . Lédeczi, Á. (2014). Next generation
(meta)modeling: Web- and cloud-based collaborative tool
infrastructure. In D. Balasubramanian, C. Jacquet, P. V. Gorp,
S. Kokaly, & T. Mészáros (Eds.), Proceedings of the 8th
workshop on multi-paradigm modeling co-located with the
17th international conference on model driven engineering
languages and systems, mpm@models 2014, valencia, spain,
september 30, 2014 (Vol. 1237, pp. 41–60). CEUR-WS.org.
Retrieved from https://ceur-ws.org/Vol-1237/paper5.pdf

Metin, H., & Bork, D. (2023a). Introducing BIGUML: A flexi-
ble open-source glsp-based web modeling tool for UML. In
ACM/IEEE international conference on model driven engi-
neering languages and systems, MODELS 2023 companion,
västerås, sweden, october 1-6, 2023 (pp. 40–44). IEEE. Re-
trieved from https://doi.org/10.1109/MODELS-C59198.2023
.00016 doi: 10.1109/MODELS-C59198.2023.00016

Metin, H., & Bork, D. (2023b). On developing
and operating glsp-based web modeling tools: Lessons
learned from bigUML. In Proceedings of the 26th in-
ternational conference on model driven engineering lan-
guages and systems, MODELS 2023. IEEE. Re-
trieved from https://model-engineering.info/publications/
papers/MODELS23-GLSP-Development-Web.pdf

Michael, J., Bork, D., Wimmer, M., & Mayr, H. C. (2023). Quo
vadis modeling? findings of a community survey, an ad-hoc
bibliometric analysis, and expert interviews on data, process,
and software modeling. Software and Systems Modeling. (in
press) doi: 10.1007/s10270-023-01128-y

Microsoft. (2024). Extension api | visual studio code. https://
code.visualstudio.com/api. (Accessed: 22.02.2024)

Microsoft. (2024). Language Server Protocol. https://
microsoft.github.io/language-server-protocol/. (Accessed:
10.02.2024)

Paige, R. F., & Cabot, J. (2024). What makes a good modeling
research contribution? Software and Systems Modeling, 1–5.
doi: 10.1007/s10270-024-01177-x

Petzold, J. (2022). Langium meets sprotty: Combining text and
diagrams in vs code. https://www.typefox.io/blog/langium
-meets-sprotty-combining-text-and-diagrams-in-vs-code.
(Accessed: 08.02.2024)

Rocco, J. D., Ruscio, D. D., Salle, A. D., Vincenzo, D. D.,
Pierantonio, A., & Tinella, G. (2023). jjodel - A reflec-
tive cloud-based modeling framework. In ACM/IEEE in-
ternational conference on model driven engineering lan-
guages and systems, MODELS 2023 companion, västerås,
sweden, october 1-6, 2023 (pp. 55–59). IEEE. doi: 10.1109/
MODELS-C59198.2023.00019

Rodríguez-Echeverría, R., Izquierdo, J. L. C., Wimmer, M., &
Cabot, J. (2018a). An LSP infrastructure to build EMF lan-
guage servers for web-deployable model editors. In R. Hebig
& T. Berger (Eds.), Proceedings of MODELS 2018 workshops

(Vol. 2245, pp. 326–335). CEUR-WS.org.
Rodríguez-Echeverría, R., Izquierdo, J. L. C., Wimmer, M.,

& Cabot, J. (2018b). Towards a language server proto-
col infrastructure for graphical modeling. In A. Wasowski,
R. F. Paige, & Ø. Haugen (Eds.), Proceedings of the 21th
ACM/IEEE international conference on model driven engi-
neering languages and systems, MODELS 2018, copenhagen,
denmark, october 14-19, 2018 (pp. 370–380). ACM. doi:
10.1145/3239372.3239383

Steinberg, D. (2009). Emf : Eclipse modeling framework (2nd
ed. ed.). Boston: Addison Wesley.

Storm. (2024). React diagrams. https://github.com/
projectstorm/react-diagrams. (Accessed: 24.05.2024)

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo,
S. V., & Ergin, H. (2013). Atompm: A web-based model-
ing environment. In Y. Liu et al. (Eds.), Joint proceedings
of models’13 invited talks, demonstration session, poster
session, and ACM student research competition co-located
with the 16th international conference on model driven en-
gineering languages and systems (MODELS 2013), miami,
usa, september 29 - october 4, 2013 (Vol. 1115, pp. 21–25).
CEUR-WS.org. Retrieved from https://ceur-ws.org/Vol-1115/
demo4.pdf

TypeFox GmbH. (2024). Langium. https://langium.org. (Ac-
cessed: 01.02.2023)

xyflow. (2024). React flow. https://reactflow.dev/. (Accessed:
24.05.2024)

About the authors
David Jaeger David Jäger is a Fullstack Software Engineer
at Inercomp, where he helps develop a web-based platform
to manage energy portfolios. You can contact the author at
david.jaeger10@gmail.com.

Adam Lencses Adam Lencses is a Fullstack Software Engineer
at Certible, where he is involved in the design, development, and
maintenance of online and live personal certification solutions.
You can contact the author at adam@lencses.com.

Martin Fleck Martin Fleck is Lead Software Architect at
EclipseSource, where he drives the development of web-based
IDEs, modeling tools, and custom engineering environments.
He is a core contributor to projects like Eclipse GLSP, EMF
Cloud, and CDT Cloud, and actively maintains and contributes
to open source technologies including Eclipse Theia. You can
contact the author at mfleck@eclipsesource.com.

Philip Langer Dr. Philip Langer is CEO of EclipseSource, sup-
porting companies in architecting and developing custom IDEs,
domain-specific tools, and modeling environments with his
extensive experience on Eclipse tool platforms and modeling
technologies. His current focus is on frameworks for web-based
IDEs, graphical modeling tools, custom C/C++ IDEs, and AI
integrations in engineering tools. Philip is the project lead of
several successful open source technologies, such as Eclipse
GLSP, EMF Cloud, and CDT Cloud. Moreover, he is an active

A Model Management Framework for Next-Generation Web-based Modeling Tools 13

https://ceur-ws.org/Vol-1237/paper5.pdf
https://doi.org/10.1109/MODELS-C59198.2023.00016
https://doi.org/10.1109/MODELS-C59198.2023.00016
https://model-engineering.info/publications/papers/MODELS23-GLSP-Development-Web.pdf
https://model-engineering.info/publications/papers/MODELS23-GLSP-Development-Web.pdf
https://code.visualstudio.com/api
https://code.visualstudio.com/api
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://www.typefox.io/blog/langium-meets-sprotty-combining-text-and-diagrams-in-vs-code
https://www.typefox.io/blog/langium-meets-sprotty-combining-text-and-diagrams-in-vs-code
https://github.com/projectstorm/react-diagrams
https://github.com/projectstorm/react-diagrams
https://ceur-ws.org/Vol-1115/demo4.pdf
https://ceur-ws.org/Vol-1115/demo4.pdf
https://langium.org
https://reactflow.dev/
mailto:david.jaeger10@gmail.com?subject=Your paper "A Model Management Framework for Next-Generation Web-based Modeling Tools"
mailto:adam@lencses.com?subject=Your paper "A Model Management Framework for Next-Generation Web-based Modeling Tools"
mailto:mfleck@eclipsesource.com?subject=Your paper "A Model Management Framework for Next-Generation Web-based Modeling Tools"

committer on Theia, Sprotty, and more. You can contact the
author at planger@eclipsesource.com.

Dominik Bork Dominik Bork is Associate Professor for Busi-
ness Systems Engineering at TU Wien. His research inter-
ests comprise conceptual modeling and model engineering as
well as their application in domains such as modeling tool
development and web modeling. A primary focus of ongo-
ing research is on the mutual benefits of conceptual model-
ing and artificial intelligence. You can contact the author at
dominik.bork@tuwien.ac.at or visit https://model-engineering
.info/.

14 Jaeger et al.

mailto:planger@eclipsesource.com?subject=Your paper "A Model Management Framework for Next-Generation Web-based Modeling Tools"
mailto:dominik.bork@tuwien.ac.at?subject=Your paper "A Model Management Framework for Next-Generation Web-based Modeling Tools"
https://model-engineering.info/
https://model-engineering.info/

