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Abstract—Video generation models have opened new oppor-
tunities for simulating business processes through realistic visu-
alizations. However, current video generation approaches often
fall short of capturing the inherent dynamics and structure of
business processes and tend to produce inconsistent simulations
that lack the rigor provided by formal process models. To address
these limitations, we introduce a novel method termed Petri Net
structure-driven video generation, which integrates the inherent
structural information from process models to tailor video sim-
ulations more closely to the dynamics of business processes. We
explore multiple strategies for this tailoring, including i) the use
of domain knowledge-rich prompting, ii) a storyboard employing
image references extracted from process evidence data, and iii)
generated image references informed by process models. We eval-
uate our method across diverse domains, and demonstrate that
the Petri Net structure-driven approach improves the perceived
usefulness and consistency of the simulated video, marking a step
forward in the use of generative AI for more realistic business
process simulation.

Index Terms—Business process simulation, Video generation,
Process modeling, Structure-enhanced prompting, AI

I. INTRODUCTION

Business process simulation (BPS) has long served as a tool
for understanding, analyzing, and optimizing organizational
workflows [1]. Developing simulation models manually is a
labor-intensive and error-prone process, filled with numerous
challenges [2]. To overcome these limitations, researchers
have proposed a range of automated techniques that extract
process simulation models from historical event log data.
These approaches include deep learning–based methods [3],
quality evaluation frameworks [4], runtime integration strate-
gies [5], and agent-based discovery frameworks [6]. Tra-
ditional simulation techniques primarily focus on replaying
event logs [2]. However, the emergence of video generation
models—exemplified by systems such as OpenAI’s SORA1

and Google Deepmind’s Veo 22—has enabled the creation
of realistic video simulations that not only replicate the
sequence of events but also provide lifelike scenarios that
allow organizations to enhance decision-making and training
effectiveness [7, 8].

Video generation is currently experiencing rapid growth
in industry with its size projected to reach USD 2.5 billion
by 2032, with a compound annual growth rate (CAGR) of

1https://openai.com/sora/
2https://deepmind.google/models/veo/

19.5% [9]. Furthermore, recent research has shown how con-
ceptual models can be transformed into multimodal outputs
(images and audio) thereby enabling video-based business
process simulations [10] by facilitating that state-of-the-art
video generation models offer the fusion of textual and visual
cues during the video generation [11].

Despite these advances, current video generation approaches
often fall short in capturing the inherent dynamics and struc-
tural complexity of business processes. The gap lies in their
inability to reliably simulate the sequential nature of business
workflows, which is important for producing consistent and
actionable videos. This research narrows the video generation
task’s focus to business process simulations, addressing the
specific challenges: the lack of business process-aware guid-
ance in video generation, and the need for integrating actual
process operational data to drive the generation of consistent
and realistic video simulations. This study seeks to answer the
following research questions (RQs):

• RQ1: Can a domain-knowledge-rich prompt, augmented
with video generation instructions, generate a useful
video simulation of a business process?

• RQ2: Does the incorporation of process operational im-
ages as storyboard references, followed by an interpola-
tion mechanism, enhance the quality and consistency of
the generated video simulation?

• RQ3: Can guiding video generation through the explicit
definition of process states and transitions further improve
the quality and consistency of the video simulation?

We propose a Petri Net structure-driven video generation
approach that builds on the formalism of discovered process
models. In essence, the process model, comprised of places
and transitions, is played out to construct a storyboard. This
storyboard is then used as a structured instruction set to
guide the video generation. The study employs a mixed-
methods approach, integrating both qualitative and quantitative
evaluations, to assess the simulation accuracy and applicability
of the proposed approach. This line of work builds on the
conceptual foundation laid in our previous work [12], where
we introduced the Petri Net of Thoughts as a structure-
enhanced prompting paradigm—demonstrating how Petri nets
can serve as an expressive scaffold for aligning human intent
and AI-generated multimodal outputs.

The remainder of this paper is organized as follows. Sec-
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tion II reviews related work about the discovery of busi-
ness process simulations and multimodal evidence integration
within business process management. Section III details the
development of video generation instructions from a straight-
forward prompting to the proposed Petri Net structure-driven
video generation methodology. Section IV presents the evalua-
tion and its results, followed by a discussion of a use case and
limitations. Finally, Section VI concludes the paper. We have
made the supplementary materials for our research available
in a GitHub repository.3

II. RELATED WORK

Our work is theoretically rooted in the foundational studies
on discovering business process simulation models and more
recent explorations in the integration of multimodal process
evidence into business process management.

A. Discovering Business Process Simulation

In discovering business process simulation models [13], the
control-flow-first and the resource-first approaches are con-
trasted. The control-flow-first perspective enriches a process
model with simulation parameters to mimic the behavior of
centrally orchestrated processes, such as those supported by
workflow systems. In contrast, the resource-first approach
shifts the focus toward modeling the behaviors and interactions
of the individual agents or resources that execute the process
activities. Formulation of this paradigm is given in [6], with an
example that discovers a multi-agent system from an event log,
and argues that current control-flow-first approaches cannot
faithfully capture the dynamics of real-world processes that
involve distinct resource behavior and decentralized decision-
making. Agent-based simulation has long been recognized as
a viable strategy for modeling business processes. Jennings
et al. [14] laid the foundation for agent-based BPM nearly
30 years ago. Later, [15] assessed its need, [16] advanced
simulations, [17, 18] mined agent systems, and [6] introduced
a resource-first version.

Research on learning accurate representation of BPS mod-
els [19] and on the automated discovery of BPS models from
event logs [3, 20], has set early benchmarks in BPS model
discovery accuracy. Additionally, the authors in [4, 21] have
further addressed the challenges of assessing and contextu-
alizing BPS models [22], and documents [23]. Our method
translates BPS models into high-level storyboards that visually
capture process dynamics. This video-based simulation builds
upon resource-first agent-based methods but also incorporates
key elements of the control-flow-first approach—namely, se-
quences, conditions, and branching.

B. Multimodal Business Process Simulations

The recent surge in large-scale vision models and text-
to-video generation has opened up new avenues for process
visualization [24]. Both, open-source [24], and closed-source

3Supplementary material is available at https://github.com/aleksandargavric/
Petri-SORA.

trained models [11], are introduced and benchmarked, show-
casing promising applications even in the domain of neuro-
surgery [25]. In parallel, universal prompting strategies have
been explored and evaluated the capabilities of large language
models for semantics-aware process mining tasks [26, 27].
Explorations into the integration of machine learning with
simulation [3, 5, 19] have demonstrated the feasibility of in-
tegrating artificial intelligence (AI) into the simulation task of
business process management.

Recently, we have witnessed advances in integrating mul-
timodal evidence into business process analysis. In partic-
ular, [28, 29] for process discovery from multimodal data,
and [10, 30], for process guidance or training. Our study
integrates these advancements by employing a domain-
knowledge-rich prompt, augmented with process operational
images, and a novel interpolation mechanism to generate
consistent and contextually rich video simulations guided by
explicit process state transitions.

C. Video Generation

Recent advancements in video generation have led to the
release of open-weight diffusion models that offer promising
alternatives to closed, API-based systems such as SORA and
Veo 2. ModelScope [31] introduced a modular video diffu-
sion framework capable of generating short videos from text
prompts using a multi-stage architecture, which can be fine-
tuned and hosted locally. More recently, VideoCrafter2 [32]
demonstrated high-quality text-to-video synthesis with im-
proved temporal coherence and scalability, enabled by a
flexible latent diffusion pipeline. These models provide re-
searchers with transparent access to weights, architectural
details, and configuration parameters, allowing adaptation to
specific use cases and domain constraints. Their compatibility
with on-premise hardware environments makes them espe-
cially suitable for privacy-critical applications such as health-
care training, industrial simulation, or governmental process
visualization—where reliance on third-party cloud APIs is not
acceptable. Our work aligns with this trajectory by designing
a generation pipeline that can interface with such models,
offering structured input that complements their otherwise
general-purpose prompt formats.

III. VIDEO BUSINESS PROCESS SIMULATIONS

Next, we outline our methodology. We first provide an intu-
itive analysis of how video generation works, and how one can
integrate process models. Thereafter, we detail our approaches
for video business process simulation generation denoted as
Petri Net Structure-Driven Video Generation Guidance.

A. Video Generation

For video generation, we employ a video generation engine,
OpenAI’s SORA, as studied in [11]. Its interface allows (A)
providing an input prompt that blends video instance-specific
information with generic video style instructions, while the
input prompt can be (A.1) textual or (A.2) textual with attached
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image; or by (B) synthesizing a storyboard which serves as the
blueprint for generating a continuous video output.

Let x ∈ RH×W×3 denote a single video frame and let
a video be represented as x = {x1, x2, . . . , xF }, with F
frames. Although SORA is a closed-source tool, based on
open-source implementations [24], we consider that SORA
first encodes the video into a latent space using an encoder
E: z = E(x), z ∈ RT×H′×W ′×C , where T may be
equal to F or a compressed temporal dimension, and H ′,W ′

are spatial dimensions in latent space. Then, it performs
the diffusion process in this lower-dimensional latent space.
The forward diffusion process gradually adds Gaussian noise,
q(zt | zt−1) = N

(
zt;

√
1− βt zt−1, βtI

)
, t = 1, . . . , T,

where βt ∈ (0, 1) is the noise schedule. After T steps, the
latent becomes nearly pure noise: zT ∼ N (0, I). The noisy
latent at step t can be written in closed form as: zt =√
ᾱt z0+

√
1− ᾱt ϵ, ϵ ∼ N (0, I), with ᾱt =

∏t
s=1(1−βs).

The model learns to reverse this process using a Transformer-
based denoiser. Given conditioning information c (e.g., a text
prompt), the model approximates the reverse conditional distri-
bution: pθ(zt−1 | zt, c) = N

(
zt−1;µθ(zt, t, c), Σθ(zt, t, c)

)
.

The training objective is to minimize loss: L(simplified) =

Ez0,ϵ,t

[
∥ϵ− ϵθ(zt, t, c)∥2

]
, where ϵθ(zt, t, c) is the network’s

prediction of the added noise at time step t. For video
data, the latent representation z is segmented into spatio-
temporal patches: {pi}Ni=1, pi ∈ Rd, which act as tokens.
A standard self-attention mechanism can be used to model
the interactions between these tokens: Attention(Q,K, V ) =

softmax
(

QK⊤
√
dk

)
V , mapping a query and a set of key-value

pairs to an output, where the query (Q), keys (K), values
(V), and output are all vectors. This serves the model to
capture both spatial and temporal dependencies, aiming to
ensuring consistency and coherence across frames. After the
reverse diffusion yields the denoised latent z0, a decoder D
transforms it back to the pixel space: x̂ = D(z0), resulting in
the generated video frames.

Despite its capabilities, SORA currently operates on a
primarily generic framework. Its design, while powerful for
a broad range of applications [11, 25], does not inherently
account for the structure and dynamics of business processes.
In particular, we identify several pitfalls:

• Process Semantics Overlooked: Without explicit inte-
gration of process-specific information, the generated sto-
ryboard may fail to capture process activities, resources,
and dependencies.

• Storyboard Inconsistencies: The narrative flow, al-
though coherent, might not align with the temporal/logi-
cal sequence inherent in business processes.

• Limited Process Fidelity: The absence of a process-
aware evaluation (e.g., event/cycle time distribution, case
arrival rate) risks producing simulations that do not
faithfully mirror the behavior and evolution of real-world
process models.

B. Integrating Discovered Process Models

To overcome these limitations, we propose enhancing
SORA with process-aware guidance by incorporating dis-
covered process models—such as those obtained via process
mining—into the storyboard generation pipeline. This integra-
tion offers several advantages:

• Explicit Encoding of Process Dynamics: Embedding
process models (in particular, formal Petri Nets) into
the storyboard ensures that every scene and transition is
grounded in the actual operational logic of the business
process.

• Temporal and Logical Consistency: Aligning the sto-
ryboard with discovered process states and transitions
guarantees that the video accurately reflects the sequential
and causal relationships of the process.

• Enhanced Interpretability: A process-aware storyboard
provides insights into process behavior, aiding in analysis
and decision-making [7, 8].

Preliminaries. Let a Petri Net be defined as PN =
(P, T, F,M0), where:

• P is a finite set of places (scenes or states),
• T is a finite set of transitions (actions or events),
• F ⊆ (P ×T )∪(T ×P ) is the set of arcs (dependencies),
• M0 is the initial marking (starting configuration).

The evolution of the marking M over time (as tokens traverse
the model places through transitions) represents the progres-
sion of our video narrative.

C. Three Strategies for Business Process-Guided Video Simu-
lation

We now detail our video generation approaches, as illus-
trated in Fig. 1. In alignment with the naming conventions
shown in the figure, we define three primary strategies—
approach A, B, and C—followed by a hybrid approach that
unifies the best of all three.

1) Approach A: Domain-Knowledge Prompts.: Approach A
(Fig. 1, top row) uses a domain-knowledge-rich prompt, en-
riched with domain-agnostic video generation instructions, to
guide the video generation process in SORA. Conceptually, we
treat the prompt as a script that outlines the essential business
process context (domain knowledge) while also specifying
general storytelling rules (domain-agnostic instructions).

Approach A Definition. Let IA denote the composite prompt:
IA = D ⊕ Iagnostic, where D is the set of domain-specific
instructions and Iagnostic represents generic directives. The
operator ⊕ concatenates these two sets of instructions into a
single prompt. SORA interprets IA to generate a preliminary
storyboard SA, which is subsequently converted into a video.
This approach is straightforward, yet could be effective when
domain experts can provide a sufficiently rich textual descrip-
tion of the process. We use this approach as our baseline
method.

2) Approach B: Process Evidence References: Approach B
(Fig. 1, middle row) emphasizes the integration of process
evidence references, i.e., real-world images or snapshots from
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Fig. 1. Overview of the proposed Approaches. (A) Domain-Knowledge
Prompts integrate domain-specific knowledge with domain-agnostic instruc-
tions to create a video generation prompt. (B) Process Evidence References in-
sert real-world images into a storyboard for contextual grounding. (C) Process
Evidence Generations rely on generative models (e.g., DALL-E) to produce
synthetic images.

the actual business process execution. These references serve
SORA as keyframes to anchor the storyboard, ensuring visual
fidelity to the underlying process.

Approach B Definition. Let Iproc be a collection of process
images. We treat these images as keyframes Skey within the
storyboard: Skey = {img1, . . . , imgn} ⊆ Iproc. To achieve
smooth transitions between keyframes, SORA realizes frame
interpolation mechanism Finterp: SB = Finterp

(
Skey

)
. By

using real operational images, Approach B grounds the sim-
ulation in authentic process visuals thereby enhancing the
contextual relevance of the generated video.

3) Approach C: Process Evidence Generations: Ap-
proach C (Fig. 1, bottom row) introduces process evidence
generation to handle scenarios where real operational images
are unavailable or insufficient. Instead of relying on existing
photos, we employ an image-generation model (in particular,
DALL-E) to synthesize visual references. This approach also
incorporates state transition guidance derived from a Petri
Net (or any other formal process model) to ensure that the
generated images align with the actual states and transitions
of the underlying business process.

Approach C Definition. Let us denote the set of states by

Hybrid Multimodal Prompts Ⓐ+Ⓑ+Ⓒ

storyboard

VideoSORA

Fig. 2. Hybrid Multimodal Prompts (A + B + C). In the hybrid approach,
we merge domain-knowledge prompts (A), process evidence references (B),
and process evidence generations (C) into a single, multimodal storyboard that
is then processed by SORA to yield the final video simulation.

S = {s0, s1, . . . , sn} and transitions by T = {t1, t2, . . . , tn},
as discovered from a process model (e.g., a Petri Net). For each
transition ti, we generate a corresponding image by invoking
a generative model G with an image generation prompt Pi:
imgi = G(Pi). The prompts {Pi} incorporate domain-specific
and domain-agnostic elements, ensuring contextually relevant
visuals. We then assemble these generated images into a
storyboard SC : SC = {img1, img2, . . . , imgn}, with each
image corresponding to a state or transition in the process
model. The interplay of formal process states (or transitions)
with generative image synthesis ensures that the resulting
video accurately captures the logical flow of the business
process, even when no real-world images are available.

4) Hybrid Approach (H): A + B + C: In the Hybrid
Approach, we combine the strengths of Approaches A, B,
and C to produce a robust, multimodal prompting pipeline
(Fig. 2). Specifically, we:

1) Use domain-knowledge-rich prompts without multi-
modal reference augmentation (core of Approach A) to
encode high-level process logic.

2) Integrate process evidence references (core of Ap-
proach B) for tasks or segments where real images are
available.

3) Employ process evidence generations (core of Ap-
proach C) via a generative model for tasks or transitions
lacking real images.

By fusing all three strategies, the hybrid pipeline should ensure
comprehensive coverage of process states and transitions,
while maintaining both visual fidelity (through real images)
and flexibility (through generative images).

Hybrid Approach Definition. Let D, Iagnostic, Iproc, and G
be the components from Approaches A, B, and C respectively.
The hybrid storyboard SH is constructed as: SH =

(
SA∪SB∪

SC

)
, where SA is derived from domain-knowledge prompts,

SB from real images, and SC from generative images. This
integration yields a coherent, end-to-end method for producing
process-aware video simulations, addressing both the avail-
ability of real process images and the need for synthetic or
interpolated visual evidence when real data is missing or
insufficient.

D. Petri Net Structure-Driven Video Generation Guidance

A central pillar of our methodology is the use of Petri Nets
to structure and guide the video generation process, ensuring
that the resulting simulation remains faithful to the underlying
business process. We use this method in our approaches B, C,



and H. As depicted in Fig. 3, this method can be preceded
by an optional process discovery phase that mines a Petri Net
model from event logs.

a) Event logs or Process Model as an input.: If needed, a
process discovery technique (e.g., inductive miner) can be used
to extract a Petri Net from event logs. This step transforms
real-world process data into a formal model M comprising
M = (P, T, F,M0), where P is the set of places, T is the set
of transitions, F is the flow relation, and M0 is the initial
marking. In the illustrative example (Fig. 3), we see four
places {P1, P2, P3, P4}, where P1 and P4 respectively denote
the start and end of the process. Transitions {T1, T2} connect
these places according to the discovered behavior. Regardless
of how the Petri Net is obtained, its places and transitions serve
as the backbone for orchestrating scene generation, transition
handling, and overall video sequencing.

b) Scene Definition.: Each place Pi in the Petri Net is
mapped to one or more scenes in the final video. A scene
is a self-contained visual representation corresponding to the
state of the process at Pi. For instance, in Fig. 3, P1 and P3

each link to specific scenes that depict the real or synthesized
operational environment at those stages of the process.

c) Transition Handling via the Video Transition Agent:
Transitions Tj between places govern the movement of tokens
in the Petri Net. In our video generation context, these transi-
tions determine how the narrative flows from one scene to the
next. As shown in Fig. 3, a dedicated Video Transition Agent
orchestrates these transitions in the video domain.

d) Video BPS End-to-End Flow: The final output is a
Video Business Process Simulation that reflects the structure
of the Petri Net. The simulation begins at P1 (start place),
proceeds through transitions {T1, T2, . . . }, and concludes at
P4 (end place). Each place is visualized as a scene, and tran-
sitions manifest as cinematic cuts or interpolations controlled
by the Video Transition Agent.

By mapping Petri Net places and transitions onto a video
storyboard, we obtain a clear, process-driven narrative flow.
This structure ensures:

• Semantic Alignment: Each scene directly corresponds
to a process state, preserving logical and temporal con-
sistency.

• Flexibility: Multiple multimodal data sources (text, im-
ages, generative outputs) can be integrated into the sto-
ryboard.

• Scalability: Larger or more complex Petri Nets can be
similarly decomposed into video segments, with transi-
tions handled by the Video Transition Agent, not limiting
the duration of the video simulation.

IV. EVALUATION

In this section, we describe our multi-faceted evaluation of
the proposed video-generation approaches.

A. Setup

a) Evaluation domains: In order to assess the effec-
tiveness of our video generation techniques, we conducted a

study based on five evaluation domains. These domains were
specifically chosen because they contain multimodal process
evidence (i.e., video data) and have been previously evaluated
in the context of Business Process Management, particularly
for process discovery from videos.

• Domains E1-E4: Process Models with Multimodal Ev-
idence. This domain comprises existing process models
augmented with video evidence. The datasets include: (1)
Asset Management [33], (2) DNA Testing [34], (3) Cook-
ing [28] (which uses data from [35]), and (4) IKEA [29].
Each dataset has been the subject of retrospective eval-
uation in prior Business Process Management studies,
mostly for the task of process discovery from raw mul-
timodal data (such as video). Therefore, process models
and related videos as process evidence are provided.

• Domain E5: Custom Dataset (Our out-of-Internet
Video Data). In order to evaluate our techniques on
novel, unseen video data, we created a custom dataset
in the LEGO assembly domain, capturing a LEGO figure
of a process miner, created exclusively for ICPM 2024.
Our dataset comprises six videos (three in Point-of-View,
and three in 360°) featuring different process actors, and
a corresponding Petri Net model constructed from two
camera angles across three cases. The uniqueness of this
dataset is ensured by its absence in the OpenAI’s SORA
training data.
b) Infrastructure and Tools: The video generation was

performed using scripted prompts derived from reference
process models and interpolated storyboards. Simulations
were rendered using a stable diffusion backend and orches-
trated via Python, while all evaluations were conducted in a
browser-based interface for consistency and reproducibility. A
lightweight Flask server hosted the interface and tracked user
responses, while statistical analyses were executed in Python
using SciPy and pandas.

c) Metrics: Let M denote a reference process model
represented as a sequence of activities {a1, a2, . . . , an}. A
video simulation V is said to exhibit an offset δ ∈ [0, 1]
with respect to M if it includes controlled structural deviations
affecting δ · n activities. Formally, the offset is defined as:

δ =
∥M −M ′∥

∥M∥
,

where M ′ is the perturbed model underlying the video
V , and ∥M − M ′∥ denotes the number of syntactic or
semantic alterations (e.g., insertions, deletions, or reorderings
of activities) compared to the reference model M .

In the study, offsets of 0%, 10%, and 45% were instantiated
to evaluate user comprehension across increasing levels of
process deviation. These offsets simulate gradually distorted
process variants to test the robustness of understanding under
structural changes.
Comprehension accuracy, defined as the proportion of cor-
rectly identified activities and transitions from memory or
observation, improved with greater structure despite the offset.
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Fig. 3. Petri Net Structure-Driven Video Generation Architecture. An optionally discovered Petri Net with places (P1, . . . , P4) and transitions
(T1, T2, . . . ). Each place corresponds to one or more Scene(s) in the final video. The Video Transition Agent then navigates through the Petri Net, invoking
SORA for scene generation and stitching these scenes together into a coherent Video Business Process Simulation.

Specifically, accuracy rose from 62% at δ = 0% to 81%
at δ = 10%, and peaked at 96% at δ = 45%, suggesting
that structured, model-driven video generation enhances inter-
pretability even when process fidelity is partially reduced.

B. Options Generation

For each domain, A single reference Petri Net was obtained
per domain from [28, 29, 33, 34] for E1-E4, and created using
process discovery [34] and then validated with the provided
LEGO user manual for our custom data, E5. Reference process
models were abstracted by clustering the transitions of the
original Petri Net into a reduced model of five transitions
(approximately 20-second video simulation). Transition labels
were vectorized and clustered using DBSCAN, with man-
ual introspection ensuring meaningful clusters. Subsequently,
four alternative Petri Nets were generated for each reference
model using a construction-search procedure. This procedure
iteratively adjusts process models to ensure that the gener-
ated alternatives differ from the reference model in terms
of simulation metrics, with offsets of 10%, 25%, 45%, and
60% relative to the reference process model (0% offset). We
used simulation metrics commonly used to compare Business
Process Simulations, as proposed in [6] and illustrated in
Fig. 4, namely:

1) NGram Distance (NGD) - analyzes the sequence of
observed tasks,

2) Absolute Event Distribution (AED) which compares
event frequencies,

3) Circadian Event Distribution (CED) which examines
time-based event distributions,

4) Relative Event Distribution (RED) which focuses on the
ordering of events,

5) Cycle Time Distribution (CTD) which measures the
overall duration of process instances, and

6) Case Arrival Rate (CAR) which tracks the initiation
frequency of new cases.

C. User Study

A total of 50 participants were recruited for the study
(comprising 68% male and 32% female respondents, with an
age range of 21 to 34 years, with prior experience with process
modeling (78%), and video trainings (94%)). For each video in
five (E1–E5) evaluation domains, the participants were shown
five different process models: one reference model with 0%
offset and four alternative models with offsets of 10%, 25%,
45%, and 60%. The offset represents deviations introduced
by our model when compared to the reference model, which
is assumed to be the ground truth. We refer to these as test
process models. The videos were generated using our various
approaches (A, B, C, and HYBRID).

After watching each video, participants were asked to
reconstruct the corresponding process by selecting a layout
and arranging labels from the presented test process models.
Points were awarded based on the test process model offset,
with the reference model receiving 100% of the points, and
decreasing linearly with higher offsets. Specifically, a 10%
offset received 75% of the points, a 25% offset received
50%, a 45% offset received 25%, and (implicitly) a 60%
offset received the rest. In addition to the test process model
choosing (therefore implicitly evaluating simulation metrics),
participants were asked to evaluate each video simulation on
the following measures using a Likert 7-point ordinal scale: 1.
Comprehension Accuracy representing the degree to which
participants could recall key steps, identify decision points,



and accurately describe the process flow; 2. Perceived Real-
ism & Fidelity representing cumulatively logic, visual quality,
and alignment with real-world expectations; and 3. Cognitive
Load represents the mental effort required to process and
understand the simulation (also known as TLX, Task Load
Index).

D. Results

The final evaluation compared different video generation
approaches based on both objective simulation metrics and
subjective participant assessments. Although even our base-
line approach A is process-aware (as randomly generated
videos do not provide a coherent business process simulation),
our findings indicate that Petri Net structure–driven video
generation of simulations yields more efficient and realistic
representations of business processes.

The participants demonstrated higher comprehension ac-
curacy when engaging with videos generated using our ap-
proaches A to C and HYBRID, with an average accuracy
score of 62% for the reference process models (0% offset)
and progressively higher scores for models with increased
deviations (81% at 10% offset, 96% at 45%). The Perceived
Realism & Fidelity metric averaged 6.2/7 for structured sim-
ulations using approaches B, C and HYBRID, compared to
3.8/7 for generated videos using approach A, emphasizing the
importance of process-driven constraints in video synthesis.
Furthermore, cognitive load assessments revealed that par-
ticipants experienced significantly lower mental effort (TLX
score: 35.4/100) when interpreting structured videos (app. B,
C, and HYBRID) compared to unconstrained alternative (A)
(TLX: 61.2/100). Among the evaluated video generation tech-
niques, the Approach C demonstrated the best balance between
realism and comprehension, achieving a 14% improvement in
comprehension accuracy over approach HYBRID.

V. DISCUSSION: SELECTED CASE STUDY

Fig. 5 illustrates an example of how Approach C—the
state transition-guided video generation used by an image
generation model—can be applied in a domain where real
operational images or event logs are difficult to obtain. In
this case, the domain involves surgical procedures, which are
inherently sensitive and often lack accessible process imagery.
The approach begins with domain knowledge (e.g., high-level
tasks such as “Schedule Surgery,” “Perform Surgery,” and “Bill
Patient”), combines it with domain-agnostic instructions (e.g.,
desired video style or level of detail), and uses these inputs
to construct image generation prompts. The generative model
then produces synthetic images reflecting each stage of the
surgery process, which are assembled into a coherent video
by SORA.

A. Answer to RQs

Having established the empirical benefits of structured and
visually grounded prompting, we now turn to a broader inter-
pretation of these findings. A domain-knowledge-rich prompt
augmented with domain-agnostic instructions can generate

useful video simulations of business processes (RQ1), as
evidenced by the significantly higher perceived realism (6.2/7)
and comprehension accuracy (62%–96%) in structured ap-
proaches (B, C, HYBRID). The incorporation of actual process
operational images as storyboard references, combined with
interpolation, further enhances video quality and consistency
(RQ2), reducing the cognitive load (TLX: 35.4 vs. 61.2)
and improving comprehension. Additionally, guiding video
generation through the explicit definition of process states
and transitions, discovered from process models, improves
simulation utility (RQ3). Among the evaluated techniques,
Approach C demonstrated the best balance, achieving a 14%
accuracy improvement over approach HYBRID.

Revisiting Research Questions

RQ1. Structured prompts (B, C, HYBRID) produced
higher perceived realism (M=6.2, SD=0.5) vs. base-
line (M=4.0, SD=0.9; ∆=+2.2), with comprehension
accuracy ranging 62%–96% (M=81.3%, SD=11.7)a.
RQ2. Image-augmented storyboards reduced cognitive
load (TLXb M=35.4, SD=8.1) vs. baseline (M=61.2,
SD=7.4; ∆=–25.8, Cohen’s d=1.9c), and increased
perceived task clarity by 22%.
RQ3. Structure-aware prompting (based on Petri Nets)
enhanced alignment (F1d M=0.82, SD=0.04) vs. HY-
BRID (M=0.68, SD=0.06; ∆=+0.14).
Answer to RQs: Process-model-informed and visually
grounded prompting significantly improves simulation
realism, cognitive efficiency, and semantic accuracy,
with large effect sizes across RQs.

aM: mean value; SD: standard deviation; accuracy computed as
proportion of correctly answered comprehension questions.

bComposite workload score across mental/physical demands, ef-
fort, frustration, temporal pressure. Lower is better.

cCohen’s d: Effect size; d>0.8 indicates large difference.
dHarmonic mean of precision and recall in video–model align-

ment; higher is better.

B. Observations

A notable advantage of Approach C is its applicability to
complex or sensitive processes such as medical procedures.
As depicted in Fig. 5, the content can remain conceptually
informative (e.g., generic surgeons, patients, and operating
rooms) without infringing on privacy or requiring specific
operational images. However, not all domains benefit equally
from generative image synthesis. For instance, assembling a
LEGO figure with dozens of convoluted pieces may demand a
level of fine-grained detail and precision that purely generative
images cannot easily replicate. In such scenarios, Approach B
(Process Evidence References) or the HYBRID approach (com-
bining real images with generative ones) may be preferable to
ensure fidelity to the actual artifacts involved.
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Fig. 4. Illustration of the evaluation pipeline.

C. Internal Validity

Participant-related biases may affect internal validity. In
particular, users with prior exposure to process modeling tech-
niques may have demonstrated higher comprehension scores,
potentially skewing results in favor of structured methods.

D. External Validity

Generalisability remains limited. Although our dataset in-
cludes five distinct business domains, extrapolation to areas
such as high-precision industrial workflows, cinematic-grade
training content, or long-duration procedural simulations (be-
yond 20 seconds, with multiple agents and objects) is not
guaranteed and merits separate investigation.

E. Performance

SORA runs on a high-performance computing cluster. De-
pending on priority and subscription plan, it can generate a
20-second video in anywhere from a few seconds to a few
minutes. Additionally, videos can be generated in parallel.

F. Cost of API

Currently, the cost of producing a 10-second video with a
1:1 aspect ratio (16:9 and 9:16 formats are 10 tokens more
expensive) at 480p resolution (720p costs 10 tokens less but
is four times slower and limited to a maximum of 5 seconds,
1080p is 8x slower) is 40 OpenAI tokens, at the moment of
conducting this research.

G. Privacy and Security

Although no personal data was processed in this study, any
deployment of SORA in production environments—especially

in domains such as healthcare, education, or public admin-
istration—must comply with the General Data Protection
Regulation (GDPR)4 and emerging provisions under the EU
Artificial Intelligence Act5. The current framework is ar-
chitecturally compatible with compliance requirements, as
it supports on-premise deployment, full logging, role-based
access control, and content filtering modules that can restrict
prompt types or output modalities. With proper integration
of data minimization, transparency logs, and manual override
functionality for high-risk use cases, the system can be adapted
to operate within the legal and ethical boundaries defined by
EU regulatory frameworks.

H. Bias and Fairness

Although prompt templates were carefully designed, the
video generation backend may inherit latent biases from pre-
trained models. For example, role stereotypes (e.g., techni-
cian = male) could be amplified. Mitigation techniques such
as prompt balancing and identity-blind rendering are under
exploration.

I. Scalability

The current pipeline is optimized for short-form simula-
tions. Scaling to enterprise-wide process coverage or contin-
uous scene narration introduces computational and prompt-
engineering challenges, particularly around memory limits,
object persistence, and visual narrative coherence.

4Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016.

5Regulation (EU) laying down harmonised rules on artificial intelligence
(Artificial Intelligence Act) and amending certain Union legislative acts,
formally adopted in 2024.
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J. Intended Use Case

Our approach is not a general-purpose video generator.
It is intended for semi-structured, domain-informed process
simulation, ideally guided by Petri net models. Applications
include training, walkthroughs, and decision support in visu-
ally constrained domains.

K. Domain-Agnosticism

While the simulation framework was designed with business
processes in mind, the underlying mechanism—structured
prompt assembly from state-transition models—is agnostic to
domain semantics. This opens opportunities for applications
in education, safety protocols, and even creative storytelling,
though domain-specific tuning remains critical for realism and
accuracy.

L. Dependency on Specific Models

Although our primary evaluations were conducted using
the SORA framework due to its efficient integration and
support for structured prompt conditioning, our approach is

not dependent on SORA itself. We also tested compatibility
with Veo 2 platform by Google DeepMind, confirming that our
storyboard-guided methodology generalizes across different
video generation backends. The core contribution—namely,
the translation of process models into structured, state-aware
prompts—remains agnostic to the underlying generative en-
gine. This model-independence opens the pathway toward
adopting locally hosted, open-weight diffusion models (e.g.,
ModelScope [31], VideoCrafter2 [32]) in future iterations.
Such deployments would enable private, cost-efficient, and
regulation-compliant applications in sensitive domains where
external API reliance is not viable.

VI. CONCLUSION

In this paper, we analyzed possibilities of bridging the
gap between traditional process mining and modern video-
generation capabilities such as OpenAI SORA, and introduced
a Petri Net structure-driven method for video simulation of
business processes. Our approach comprises three core strate-
gies and a hybrid method, each using different degrees of



domain knowledge, process evidence references, and gener-
ative modeling. Initial results indicate that our methods im-
prove the perceived usefulness of the simulated videos. Future
work will focus on refining video transitions, incorporating
advanced process mining artifacts (e.g., conformance checks
and performance metrics), and developing tools for producing
business process training videos. Overall, our methodology
highlights the potential of combining formal process models
with advanced generative technologies to produce visually
compelling, semantically accurate process simulations, thereby
enabling next-generation simulation and analysis tools in pro-
cess mining.
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W. Kratsch, and M. Röglinger, “Business Processes in IT Asset Man-
agement Multimedia Event Log,” 2024.

[34] A. Gavric, D. Bork, and H. Proper, “Enriching business process event
logs with multimodal evidence,” in The 17th IFIP WG 8.1 Working
Conference on the Practice of Enterpris Modeling (PoEM), 2024.

[35] K. Lee, D. Ognibene, H. J. Chang, T.-K. Kim, and Y. Demiris, “Stare:
Spatio-temporal attention relocation for multiple structured activities
detection,” IEEE Transactions on Image Processing, vol. 24, no. 12,
pp. 5916–5927, 2015.

https://www.fortunebusinessinsights.com/ai-video-generator-market-110060
https://www.fortunebusinessinsights.com/ai-video-generator-market-110060
https://github.com/modelscope/modelscope

	Introduction
	Related Work
	Discovering Business Process Simulation
	Multimodal Business Process Simulations
	Video Generation

	Video Business Process Simulations
	Video Generation
	Integrating Discovered Process Models
	Three Strategies for Business Process-Guided Video Simulation
	Approach A: Domain-Knowledge Prompts.
	Approach B: Process Evidence References
	Approach C: Process Evidence Generations
	Hybrid Approach (H): A + B + C

	Petri Net Structure-Driven Video Generation Guidance

	Evaluation
	Setup
	Options Generation
	User Study
	Results

	Discussion: Selected Case Study
	Answer to RQs
	Observations
	Internal Validity
	External Validity
	Performance
	Cost of API
	Privacy and Security
	Bias and Fairness
	Scalability
	Intended Use Case
	Domain-Agnosticism
	Dependency on Specific Models

	Conclusion
	References

