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Abstract—Scientific workflows constitute a pivotal resource for
the scientific computing community, as they provide a standard
interface to define, execute, and analyze the results of scientific
computations. The advent of the Post-Moore era exposes the
scientific computing research community with the challenge of
scaling HPC facilities, to address the demands of modern scien-
tific applications. While quantum computing, on the one hand,
promises noteworthy theoretical speedups for different scientific
applications, executing a whole scientific workflow on quantum
hardware is infeasible since not all computations can achieve a
speedup on quantum hardware. As a consequence, computational
scientists defined the concept of a hybrid quantum-classical
workflow, which is capable of exploiting the capabilities of
quantum and classical hardware. Since the adaptation of classical
scientific workflows to the new hybrid quantum-classical scenario
can be challenging for scientists, we propose RIGOLETTO, a
workflow definition language allowing scientists to define where
to execute each task on a hybrid quantum-classical system. As
a proof-of-concept, we report on two scientific workflows and
identify open challenges in the definition of hybrid quantum-
classical workflows.

I. INTRODUCTION

Computational scientists provide scientists from different
disciplines, as well as policy-makers, with important tools
to understand scientific phenomena and/or support decision-
making in different areas, as shown by the recent COVID-
19 pandemic [1]. Among the many tools and frameworks for
scientific computing, scientific workflows are crucial. Scien-
tific workflows allow the definition of scientific simulations in
high-level languages, improving accessibility to non-computer
scientists and ensuring the reproducibility of scientific sim-
ulations. Since scientific computations require a cumbersome
amount of computational resources, workflows are executed on
HPC infrastructures. Workflow execution is managed by work-
flow management systems, that provide interfaces between the
workflows’ tasks and available computational resources.

With the advent of the Post-Moore era [2], [3], computa-
tional scientists are now facing the challenges of scaling the
execution of scientific computations beyond the limits of clas-
sical computational hardware. As a consequence, the scientific
community is investigating methods to seamlessly integrate
non-Von Neumann-hardware in scientific workflows’ execu-
tion, with the ultimate goal of exploiting the capabilities of
different hardware setups to provide computational resources

required by scientific workflows. This form of computing is
called Post-Moore computing.

Among non-Von Neumann-computing, quantum computing
stands out due to its theoretical speedup for different scientific
computations and its natural modeling of different scientific
problems [4]. However, since not all tasks can guarantee a
speedup when executed on quantum devices, it is necessary to
enable coordinated execution of both classical and quantum
computation in hardware-software ecosystems, also known
as hybrid quantum-classical systems. Scientific workflows,
including both classical and quantum, are defined as hybrid
quantum-classical workflows [5].

Scientific workflows are currently defined by employing
high-level workflow definition languages (WDL), such as
SWEL (Scientific Workflow Execution Language) [6] for data-
intensive workflows, and CWL (Common Workflow Lan-
guage) [7] for scientific workflows. However, to enable their
execution on hybrid quantum-classical workflows, it is neces-
sary to extend classical WDLs and provide specific language
constructs to define (1) if tasks can be executed on quantum;
(2) for which type of machine to optimize input code; and (3)
execution specific-parameters of quantum computation.

In this work, we propose RIGOLETTO, a workflow defini-
tion language for hybrid classical-quantum applications. First,
we identify the desired requirements for a WDL targeting
hybrid classical-quantum applications and the main parameters
of the target domain, based on which, we define the properties
of RIGOLETTO. After, we provide examples of RIGOLETTO
use on two scientific workflow applications, showing their
execution on two types of machines.

We focus on universal quantum computers, more precisely
on superconducting IBM machines and on ion-traps AQT
machines. Also, we focus on hybrid quantum-classical appli-
cations with quantum tasks implemented using IBM Qiskit.

The paper is structured as follows: first, we describe the
background and the related work in Section II. In Section III,
we describe the main requirements, the properties, and the
metamodel of RIGOLETTO, while in Section IV we provide
two real-world applications of RIGOLETTO. In Section V,
we describe the remaining challenges and future developments
for RIGOLETTO. Finally, we describe threats to validity in
Section VI and conclude our paper in Section VII.
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Fig. 1: A Hybrid Quantum-Classical Workflow, from [5].

II. BACKGROUND

In this section, we briefly introduce the relevant background to
this research, primarily scientific workflows, workflow man-
agement systems, hybrid quantum-classical workflows, and
related works.

A. Scientific Workflows

Scientific Applications in different domains (i.e., finance,
biology, chemistry, engineering) can be decomposed into a set
of elementary tasks (i.e., aggregate data from different sources,
average a set of samples, apply a method to a specific dataset).
These tasks can then be combined to define workflows, which
can be represented as directed acyclic graphs (DAGs) [8], [9],
[10] where nodes represent the tasks and edges represent data
and control dependencies between tasks.

Workflow models representing scientific applications are
called scientific workflows. Workflows and tasks can be stored
in public repositories (i.e., Pegasus workflow gallery1), allow-
ing re-use of validated code, repeatability of simulations (i.e.,
the possibility to easily repeat the setup and execution of a
simulation to increases confidence in the simulation’s results),
and reproducibility of computation (i.e., the possibility to
reproduce and verify computation results), creating oppor-
tunity for new insights and reducing measurements errors.
Also, workflows are fundamental for the development of
standardized, robust, and accurate simulations of different
phenomena.

B. Workflow Management Systems (WMS)s

The execution of scientific workflows on HPC infrastructures
requires different software layers, to enable (1) scheduling
of workflow tasks onto different computing resources, (2)
managing of data, including intermediate data products (ei-
ther streaming data, or scientific datasets), (3) interoperation

1https://pegasus.isi.edu/workflow gallery/

between different heterogeneous resources (e.g., Cloud/Edge
nodes, academic clusters), and (4) fault tolerance (e.g., check-
pointing of execution, re-execution of tasks).

C. Hybrid Quantum-Classical Workflows

Following from our definition in [5], a hybrid quantum-
classical workflow is composed of both classical and quantum
tasks, that are executed respectively on classical and quantum
hardware.

An example of Hybrid Quantum-Classical Workflow is
given in Fig. 1, coming from our previous work [5]. Yellow
nodes represent classical tasks, while green nodes are quantum
tasks. Rectangles are instead decision nodes, that, based on
the logic codified in the WDL, decide whether to execute the
classical or the quantum task.

While the execution of classical tasks has been widely
discussed in the scientific workflow literature, we identify
three specific execution models for hybrid quantum-classical
tasks:

• Circuit Execution: this execution models a single sam-
pling from a quantum circuit execution. It can be used to
model sampling from a probability distribution modeled
by the underlying circuit;

• Task Execution: in this execution model, multiple sam-
plings from the same circuit are performed. The number
of samplings is sometimes referred to as ‘shots’. The goal
of this execution model can be to calculate an expectation
value or the histogram of the probability distribution. It
can be used to model executions of quantum subroutines,
such as Grover, Shor, or Deutsch-Jozsa.

• Hybrid Execution: represents computations involving
continuous interaction between classical and quantum
hardware, in contrast to what happens with task ex-
ecution, where interaction happens only in the state
preparation and the post-processing. Examples of this



model are Variational Quantum Algorithms [11], where a
parametrized quantum circuit with a vector of parameters
Θ⃗ is used to represent the solution to a specific problem.
Θ⃗ values are found through iterative optimization on
classical hardware, with the goal of finding the values
of Θ⃗ that bring us (close to) the optimal solution.

D. Related Work

Potential applications of quantum computing to current sci-
entific workflows’ performance are described [26], [27], [28].
Also, its native modeling of many scientific phenomena has
been described in [29], [30].

Different frameworks for the development of quantum
applications have been proposed, either for low-level lan-
guages such as QASM [12] or Q-Pragma [13], or high-
level frameworks employing Python, such as Qiskit [19],
PennyLane [20], and TKET [21]. Each framework provides
its binding to different quantum hardware and its transpiler,
as well as support to HPC infrastructures (i.e., GPU) to speed
up classical computation. However, none of these frameworks
provide methods for the definition of hybrid quantum-classical
workflows.

Many WDLs have been proposed in the literature. Examples
are DAX for Pegasus [8] or AWDL for ASKALON [9], which
are based on XML. Other WMS, such as Makeflow [14]
and SnakeMake [15], rely on Make syntax. Alternatively,
well-known languages such as Python and YAML are used
for workflow definition. Tools such as Airflow [22] employ
Python for workflow definition, while Pachyderm [16] and
Nextflow [17] employ a YAML-based language. Each of them
supports different scientific applications, such as molecular
dynamics [31], astrophysics [32], and bioinformatics [33].
However, these WMSs support only the classical execution
and do not allow the execution of hybrid quantum-classical
workflows. Other WMS, such as Python-based Orquestra [24]
and Covalent [23], provide features for the definition and
execution of workflows on hybrid quantum-classical systems.

Proposals and open challenges for hybrid quantum-classical
workflows have been discussed in [5], [34]. Both works,
however, do not consider the design of a workflow definition
languages. The de-facto standard for workflow definition
languages is CWL [7], [25], which is based on a YAML-
or JSON-style syntax. CWL allows defining all steps of a
workflow as well as each intermediate result required by
them. At the time of writing, however, CWL does not provide
language constructs to integrate quantum computations in hy-
brid quantum-classical workflows. The same applies to similar
WDL proposals, such as GWDL [18] and Snakemake [15].

Table I compares RIGOLETTO with state-of-the-art pro-
posals for scientific workflows. We can see, that languages
used on typical WMS platform are mostly targeting classical
tasks and classical HPC infrastructures. Platforms that include
quantum tasks, such as Orquestra and Covalent, are based on
Python, which might pose limits to the integration of new
features and systems that do not provide Python APIs. More
generic WDLs, such as CWL and GWDL, instead, do not

provide abstractions and models for the execution of quantum
tasks.

In this work, following the inspiration of CWL, we de-
scribe the properties and requirements for a generic WDL
for the definition of hybrid quantum-classical workflows, that
we name RIGOLETTO. We provide first usage examples of
RIGOLETTO on two real-world use cases and identify open
issues and challenges in the design of a hybrid quantum-
classical WDL.

III. RIGOLETTO

In this section, we describe the requirements and the
main characteristics of our proposed language, RIGO-
LETTO (woRkflow defInition lanGuage fOr quantum-
cLassical sciEnTific applicaTiOns), as a first step towards
a workflow definition language for hybrid quantum-classical
workflows. In Fig. 3 we describe how RIGOLETTO should
be integrated into existing WMSs: the user defines (1) the
structure of a hybrid quantum-classical workflow and (2) the
definition of individual tasks, which can be provided using
frameworks such as Qiskit or PennyLane. Both workflow
structure and tasks’ implementations are provided as input to
the WMS, to a component called Classic-Quantum Mapper,
that is responsible for deciding on which computational node
(either classical or quantum) to execute which task, based on
the information on the available hardware coming from the
hardware catalog. The WMS will then communicate with a
hybrid quantum-classical middleware, which provides APIs
to execute and monitor tasks on the target hybrid quantum-
classical system.

A. Requirements

The main requirements of a hybrid classical-quantum work-
flow definition languages that we identify are:

• Expressivity: RIGOLETTO must be capable of modeling
the execution models defined in Section II-B, as well as
all the parameters required by each execution model (e.g.,
number of shots required, target backend);

• Interoperability: different Cloud platforms provide ac-
cess to quantum hardware, e.g., IBM Quantum, Amazon
BraKet, and Google Quantum Platform. RIGOLETTO
should allow the definition of workflows that can be exe-
cuted on these different platforms, and it should provide
means to define the aggregation and post-processing of
output produced by these different platforms;

• Low redundancy: RIGOLETTO has to work in cooper-
ation with existing workflow definition languages. As a
consequence, the resulting specification should be capable
of allowing interaction between classical and quantum
hardware without interfering with the underlying WMS.

B. Language Properties

In the following, we describe the properties of RIGOLETTO.
Based on the previously defined requirements, we notice that
the circuit execution model is equivalent to the task execution
model with a single execution. Therefore, we define two



(a) Circuit Execution (b) Task Execution

(c) Hybrid Execution

Fig. 2: Hybrid Execution Models, from [5].

Workflow Classical HPC Quantum Quantum Quantum Quantum Quantum
Definition Tasks Infrastructure Tasks Execution Models Execution Parameters Simulation Hardware

Low level languages
QASM [12] ✓ ✓ ✓ ✓
Q-Pragma [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓
XML-based
Pegasus WMS [8] ✓ ✓ ✓
ASKALON [9] ✓ ✓ ✓
Make-based
Makeflow [14] ✓ ✓ ✓
SnakeMake [15] ✓ ✓ ✓
YAML-based
Pachyderm [16] ✓ ✓ ✓
Nextflow [17] ✓ ✓ ✓
GWDL [18] ✓ ✓ ✓
Python-based
Qiskit [19] ✓ ✓ ✓ ✓ ✓ ✓
PennyLane [20] ✓ ✓ ✓ ✓ ✓ ✓
TKET [21] ✓ ✓ ✓ ✓ ✓
Airflow [22] ✓ ✓ ✓
Covalent [23] ✓ ✓ ✓ ✓ ✓
Orquestra [24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
JSON-based
CWL [25] ✓ ✓ ✓
RIGOLETTO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: State-of-the-Art Frameworks for Definition of Hybrid Quantum-Classical Applications.

JSON objects: task and hybrid, modeling, respectively,
the task execution model and the hybrid execution model
of Section II-B. We describe each object in the following
sections.

1) Task: For each task, firstly, we define whether we allow
execution on quantum hardware. Afterward, it is important to
define hardware-dependent parameters, i.e., the provider and
the type of the quantum machine (usually accessed through
the Cloud), execution related-parameters such as the number
of shots, and how to process the output of the execution (i.e.,
if we are interested in the expectation or in the histogram of

the samples). We define the parameters as follows:

• function-name: name of the function that implements
the target task;

• quantum: boolean attribute, defining whether the task
can be executed on quantum devices. Ideally, this value
should be set by the underlying framework, depending
on the application requirements and/or the availability of
quantum resources;

• provider: enumeration of the available providers of
quantum hardware. This value depends on the software



Fig. 3: Usage of RIGOLETTO within Hybrid Quantum-Classical WMS.

bindings that are available in the system, i.e., IBM,
BraKet, AQT, Qandela. In the current version of RIGO-
LETTO, we allow only three values: IBM, AQT, and Aer.
While the first two are Cloud providers, the latter is a
local quantum simulator.

• type: enumeration of the available quantum hardware.
This property is used by the system to select the most ap-
propriate compiler for the underlying quantum hardware;

• backend-name: array containing the unique identifiers
of the preferred backend to execute the quantum task;

• token: alphanumeric token, used for authentication pur-
poses by the quantum hardware provider;

• shots: integer value determining the number of times
that the quantum task is executed. Please note that the
circuit model can be modeled by setting the shots value
to 1;

• postprocess: this property can take two possible val-
ues: expectation and samples, respectively, mod-
eling whether the output of the execution should be
obtained as the expectation value or the histogram of all
samples should be collected.

2) Hybrid: A hybrid object is used to model continuous
interactions between classical and quantum hardware. In the
current RIGOLETTO version, we only support the execution
of variational quantum algorithms, such as Variational Quan-
tum Eigensolver and Quantum Approximate Optimization
Algorithms. Therefore, the selected properties are related to
the execution parameters of variational quantum algorithms,
namely the ansatz and the optimizer [11]. We extend
the task object, adding the following properties:

• ansatz: enumeration of the available parametrized
quantum circuits. In the current version, we focus on the
parametrized quantum circuits provided by Qiskit;

• optimizer: enumeration of classical optimizers, that
will be used to optimize the parameters of the circuits in
different interactions;

• opt_iters: number of iterations of the optimizer,

used as termination criteria for the variational quantum
algorithms.

Notably, for each optimizer, other parameters can be con-
sidered, such as tolerance threshold, learning rate for gradient-
based optimizers, and size of the trust regions for non-gradient-
based optimizers. These parameters will be considered in
future versions of RIGOLETTO.

C. Metamodel

In the following, we present a metamodel describing the
abstract syntax of our RIGOLETTO workflow definition lan-
guage. Many different ways to represent the abstract syntax
(i.e., the metamodel) of a modeling language have been
proposed in the literature [35]. Due to its ease of understanding
and graphical compactness, we use a diagrammatic way of
representing the RIGOLETTO metamodel using a UML class
diagram.

ExecutionSetup
function-name : string
quantum : boolean
provider : Provider
type : Type
backend-name : string
token : string
shots : int
Postprocess : Postprocess

Task0..*

name : String
NamedElement

QuantumClassicalWorkflow 0..*

IBM
AQT
Aer

<<ENUMERATION>>
Provider

SUPERCONDUCTING
ION_TRAPS

<<ENUMERATION>>
Type

EXPECTATION
SAMPLES

<<ENUMERATION>>
Postprocess

ClassicalTask
ansatz : Ansatz
omptimizer : Optimizer
Opt_iters : int

HybridTask
EFFICIENT_SU2
PAULI_TWO
REAL_AMPLITUDES 
QAOA_ANSATZ

<<ENUMERATION>>
Ansatz

COBYLA
SPSA 
NELDER_MEAD 
SLSQP

<<ENUMERATION>>
Optmizer

Fig. 4: RIGOLETTO metamodel.

Fig. 4 represents the RIGOLETTO metamodel. A
QuantumClassicalWorkflow is composed of many
ExecutionSetups that, themselves, are composed of



Tasks. Each Task is specialized into ClassicalTasks
and HybridTasks; the latter one extending the properties
of the Task class by specific properties specifying
hybrid quantum-classical workflows. Furthermore, several
enumerations are given to allow the valid specification of
the Provider, Postprocess, Optimizer, Type, and
Ansatz.

IV. USE CASES

In this section, we describe examples of usage of RIGO-
LETTO. We focus on two use cases, coming from molecular
dynamics and machine learning applications, coming from our
earlier work, respectively [4] and [36].

A. Molecular Dynamics Simulation

The target Molecular dynamics (MD) workflow described in
Fig. 5 employs Metadynamics [37], i.e., well-chosen collective
variables (CVs) are computed to capture important molecular
motions in different regions of interest. A CV can be defined
as a function of the atomic coordinates in one frame of the
MD simulation that helps to reconstruct the free-energy surface
for enhanced sampling. Since trajectories are reduced to time
series of a few such CVs, analysis of MD simulation can
be performed more efficiently. A CV can be the interatomic
distance or can involve complex mathematical operations on
many atoms. The CV that we will use in this work is the
Largest Eigenvalue of the Bipartite Matrix (LEBM), that
Johnston et al. [38] showed to be an efficient measurement
to monitor changes in the conformation of two amino-acid
segments I and J .

To capture the structural changes between two segments of
amino acids segments, we focus only on the positions of α-
Carbon (Cα) backbone atoms. Those backbone atoms are then
used to form a bipartite matrix, whose maximum eigenvalue
is a proxy for discovering structural changes in the molecular
system. Formally, given two amino acid segments I and J , if
dij is the Euclidean distance between Cα atoms i and j, then
the symmetric bipartite matrix BIJ = [bij ] is defined as:

bij =


dij , if i ∈ I and j ∈ J

dij , if i ∈ J and j ∈ I

0, otherwise.
(1)

In the next sections, we define the decomposition of the MD
simulation in the target workflow described in Fig. 5 and the
definition of quantum tasks using RIGOLETTO.

1) Workflow Decomposition: In the first step, the user
inputs the parameters of the MD simulation, including a tra-
jectory file, which models the structure of the target molecule.
The trajectory file is then modeled in the second step. From
the trajectory file, atom segments are extracted in step 3.
Afterward, in step 4.1, we need to transform the classical data
into a format that quantum machines can process. This process
is called data encoding. Different algorithms for data encoding
are available [34], and the selection of the most appropriate
encoding is specific to the target problem. In this case, we
apply amplitude encoding. We use the encoded data to prepare

a quantum state, and we apply it to a quantum algorithm to
calculate interatomic distance in step 4.2. Based on the values
of interatomic distances, we build matrix BIJ , which is then
encoded in a quantum state in step 5.1. In step 5.2, we apply
Variational Quantum Eigensolver to calculate the LEBM of
BIJ . More details on the selected algorithms and the design
choices are provided in [4]. Results are then postprocessed
using error mitigation.

2) Definition with RIGOLETTO: In this workflow, we
identified two quantum tasks: (1) the calculation of distances
dij , which are stored in the bipartite matrix BIJ , and the
calculation of the CVs, in this case, the eigenvalues of BIJ ,
respectively described in Fig. 6 and Fig. 7. After specifying
the function implementing the quantum task, in both cases, we
allow quantum execution by setting the quantum attribute
to true. For the distance calculation, we set AQT as a
quantum device provider, and consequently set the type to
ion-traps, since AQT provides ion traps machines and
simulators. Please note that the value of type is not dependent
on the provider, but on the type of machines and simulator that
the providers expose. Finally, we set the name of the backend
where we want to execute the function2 Finally, we set the
access token (as requested by the provider) and the number of
shots, which we set to 250 in the case of dist-calc since
AQT limits the number of shots that can be performed on their
machines.

Concerning the calculation of eigenvalues, the function
eigenvalues that performs the calculation employs a vari-
ational quantum algorithm, VQE, that follows the hybrid
execution model described in Section II-C. As a consequence,
in Fig. 7, we set up the additional parameters required for
hybrid execution, namely, the ansatz, the optimizer and
the opt_iter, respectively to EfficientSU2, COBYLA,
and 1000 iterations. Afterward, we collect the expectation
value of the quantum task.

B. Hybrid Quantum-Classical Machine Learning

We focus on a hybrid quantum-classical workflow that models
the training of a Quantum Neural Network (QNN). QNNs have
come up as one of the leading algorithms that could achieve a
quantum advantage on NISQ technology, due to their simple
architecture and training process [11], which is why we choose
them for our studies [36], [39]. Similar to classical Neural
Networks, a QNN is modeled as a parametrized quantum
circuit U(Θ⃗), whose gates can be compared to the nodes
of the neural network, and the input set of parameters Θ⃗
that is applied to the gates can be seen ad the weights of
the neural network. The goal of the training is to find the
Θ⃗∗ that minimizes the loss function. This is done through a
combination of classical optimization of Θ⃗ and execution on
quantum hardware of U(Θ).

2In the future, the language should be able to retrieve a list of available
machines from the provider and automatically select the most appropriate for
the execution.



Fig. 5: A Hybrid Quantum-Classical Molecular Dynamics Simulation Workflow, from [5].

{
"task":
[
{

"function-name": "dist-calc",
"quantum": true,
"provider": "AQT",
"type": "ion-traps",
"backend-name": "name",
"token": "ANY",
"shots": 250,
"postprocess": "expectation"

}
]

}

Fig. 6: Example Specification of Quantum Task Execution for
Molecular Dynamics Simulations.

{
"hybrid":

[
{

"function-name": "eigenvalues",
"quantum": true,
"provider": "IBM",
"type": "superconducting",
"backend-name": "name",
"token": "ANY",
"shots": 1000,
"postprocess": "expectation",
"ansatz": "EfficientSU2",
"optimizer": "cobyla",
"opt_iters": 1000

}
]

}

Fig. 7: Example Specification of Hybrid Execution for Molec-
ular Dynamics Simulations.

The complete workflow structure is described in Fig. 8. We
describe its decomposition in different tasks and how we define
the execution of quantum tasks with RIGOLETTO.

1) Workflow Decomposition: In the first step, the applica-
tion takes as input a classical dataset. Afterward, the dataset
is pre-processed, i.e., typical operations applied to improve
the quality of the dataset (e.g., removing null values) are
performed; Then, in step 3, we apply different dimensionality
reduction methods, such as LDA or PCA. This is particularly
important, considering the limited amount of qubits available
on quantum machines. When working with classical data on a
quantum computer, a feature encoding method V is required to
encode the data onto a quantum state (usually initially in state
|0⟩), as |ψ⟩ = V |0⟩. This is done in step 4.1. Then, in step
4.2, U(θ⃗) is prepared with initial values for the parameters θ⃗.
The expectation value for the observable O is then calculated
as shown in equation (2).

f(x, θ⃗) = ⟨ψ|U†(θ⃗)OU(θ⃗) |ψ⟩ (2)

After executing the circuit, the parameters θ⃗ are optimized
on a classical computer, using a cost function C(f(x, θ⃗), y)
and an optimizer. The parameters are then transferred to
the quantum computer, where the circuit is executed again.
The process is repeated until a certain termination criterion
is reached (e.g., maximum number of iterations, tolerance
threshold). The different choices for feature map, ansatz, and
optimizer can highly impact the results. Finally, in step 5, data
are post-processed to mitigate the noise.

2) Definition with RIGOLETTO: In the current version
of RIGOLETTO, we support only parameters that are com-
mon to all variational quantum algorithms, namely, the
ansatz, the optimizer, and the number of iterations of
the optimizer, as shown in Fig. 9. The data encoding,
that applies a quantum feature map as described in [40],
is currently handled in the training function, imple-
mented in the target application. Concerning the ansatz,
in the current implementation, the ansatz class must be
part of the qiskit.circuit.library package. The
same applies to the optimizer, whose class must be part of
qiskit.algorithms.optimizers. In the example, we
use EfficientSU2 as ansatz and COBYLA as optimizer.
The number of iterations is set to 1000.

V. OUTLOOK

In this section, we describe the lessons we learned and
possible improvements and open challenges in the design of
RIGOLETTO.



Fig. 8: Hybrid Quantum-Classical Machine Learning Workflow.

{
"hybrid":

[
{

"function-name": "training",
"quantum": true,
"provider": "IBM",
"type": "superconducting",
"backend-name": "name",
"token": "ANY",
"shots": 1000,
"postprocess": "expectation",
"ansatz": "EfficientSU2",
"optimizer": "cobyla",
"opt_iters": 1000

}
]

}

Fig. 9: Example Specification of Hybrid Execution for QNN
Training.

A. Customizability

The applications that we selected could be implemented using
the classes provided by IBM Qiskit, making the design of
RIGOLETTO more accessible for us. However, the design
of more complex quantum applications may require users
to define their own classes and methods to address specific
applications’ needs. Future versions of RIGOLETTO should
allow users to specify new classes and methods to integrate
them into the workflow execution. To this end, we would
need to define an execution engine of hybrid quantum-classical
workflows, allowing users to specify paths and modules for
their classes.

B. Integration with WMSs

We developed RIGOLETTO considering two specific use
cases, that we implemented from scratch. However, due to
the availability of different scientific applications for existing
WMS, integration of RIGOLETTO with existing WMS would
allow the re-use of existing classical scientific workflows
and enhance them by introducing quantum computations.

Integration of RIGOLETTO with different WMS would re-
quire the implementation of different source-to-source com-
pilers or transformators, allowing to transform RIGOLETTO
specifications into the language of the target WMS. A first
step toward this integration could be the transformation into
CWL [7], which is considered as the reference for WDL.
Also, target WMS should be extended to include the required
language abstractions, i.e., different quantum hardware and
data transformation. We provide an in-depth discussion of
these challenges in [5].

C. Quantum Framework Agnosticism

Since we developed target use cases using Qiskit framework,
the model of RIGOLETTO is strongly influenced by the
structure of Qiskit API. However, a plethora of quantum
development frameworks are available on the market, e.g.,
Qiskit, PennyLane, TKET. Each framework has its own way
of implementing the language constructs that are necessary for
the execution of hybrid quantum-classical workflows. In the
current version, RIGOLETTO is built upon the abstractions
provided by Qiskit, since our applications are based on this
framework. In future releases, RIGOLETTO should be able to
interoperate with different frameworks, allowing to standardize
execution of a wider range of applications.

D. Integrated Development Environment

In the current stage, the definition of hybrid quantum-classical
workflows is performed using a classical text editor, that is
validated using a JSON validator to ensure that the syntax is
respected. In future developments, we plan to provide an IDE
to support the developers in the design of hybrid quantum-
classical workflow. Additionally, we could provide a graphical
interface for hybrid quantum-classical workflows, similar to
Sequanix [41] for Snakemake. In this respect, we could build a
language server [42] for the RIGOLETTO workflow definition
language that would allow easy integration into arbitrary IDEs
and widely-used editors like VS Code that could realize textual
or blended modeling of hybrid quantum-classical workflows.

VI. THREATS TO VALIDITY

This research is not free from limitations and threats to
validity. In the following, we briefly elaborate on the most



critical threats and the mitigation strategies we correspond-
ingly applied.

• Target Framework: RIGOLETTO is currently tightly cou-
pled with Qiskit abstractions. The identified properties
might not be applied to other frameworks or may require
extensions to integrate different applications.
=⇒ In our future research, we plan to extend RIGO-
LETTO to also natively support applications designed
using other target frameworks.

• Selected Applications: We focused on two different ap-
plications, namely, molecular dynamics and machine
learning. Different applications might require different
abstractions and execution models.
=⇒ In our future research, we plan to extend the use
case base evaluation expecting to shed light on further
requirements for our metamodel.

• Data Encoding: In the current stage, data encoding is
handled in the application, and it is not supported explic-
itly by RIGOLETTO.
=⇒ In our future research, we plan to integrate the data
encoding into an IDE for RIGOLETTO.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present the foundations of RIGOLETTO, a
JSON-based language for the definition of hybrid quantum-
classical workflows. First, we define hybrid quantum-classical
workflows, and define the requirements and RIGOLETTO
properties, together with the metamodel. Afterward, we show
its application to two real use cases and identify challenges
and threats to the validity of this study.

In the future, we plan to extend RIGOLETTO by integrating
different quantum frameworks and applying RIGOLETTO to
different hybrid quantum-classical workflows. Moreover, we
plan to develop tool support to enable the efficient use of
RIGOLETTO.
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