
Leveraging LLMs for Domain Modeling: The
Impact of Granularity and Strategy on Quality

Iris Reinhartz-Berger1[0000−0002−1419−4905], Syed Juned
Ali2[0000−0002−0710−8052], and Dominik Bork2[0000−0001−8259−2297]

1 University of Haifa, Haifa, Israel
iris@is.haifa.ac.il

2 TU Wien, Business Informatics Group, Vienna, Austria
{syed.juned.ali, dominik.bork}@tuwien.ac.at

Abstract. The information systems engineering community is increas-
ingly exploring the use of Large Language Models (LLMs) for a variety
of tasks, including domain modeling, business process modeling, soft-
ware modeling, and systems modeling. However, most existing research
remains exploratory and lacks a systematic approach to analyzing the im-
pact of prompt content on model quality. This paper seeks to fill this gap
by investigating how different levels of description granularity (whole text
vs. paragraph-by-paragraph) and modeling strategies (model-based vs.
list-based) affect the quality of LLM-generated domain models. Specifi-
cally, we conducted an experiment with two state-of-the-art LLMs (GPT-
4o and Llama-3.1-70b-versatile) on tasks involving use case and class
modeling. Our results reveal challenges that extend beyond the chosen
granularity, strategy, and LLM, emphasizing the importance of human
modelers not only in crafting effective prompts but also in identifying
and addressing critical aspects of LLM-generated models that require
refinement and correction.

Keywords: Domain modeling · Conceptual modeling · LLM · Genera-
tive AI · UML.

1 Introduction

Domain modeling plays a central role in designing and developing complex sys-
tems that address diverse human, organizational, and technological needs. Over
time, the discipline has witnessed significant advancements in supporting or au-
tomating various modeling tasks. Among these, Large Language Models (LLMs)
have recently emerged as powerful tools for natural language understanding and
generation, offering promising applications in domain modeling [8,19]. By lever-
aging their ability to process and analyze large volumes of textual data, LLMs
hold the potential to assist in generating accurate and comprehensive models.

Effective modeling requires not only domain knowledge but also method-
ological rigor. In our previous study [1], we demonstrated that novice modelers
(namely, IS students) tend to adopt one of two primary strategies: starting from
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lists of model elements (e.g., classes) or directly constructing models. Addition-
ally, they often rely on complete textual descriptions rather than incrementally
building models from individual paragraphs. These tendencies raise critical ques-
tions about how different modeling strategies and granularity levels influence the
quality of the resulting models. In this context, model quality is assessed in terms
of semantic properties, particularly requirements satisfaction and redundancy,
and syntactic properties, particularly syntactic correctness [15,14].

To explore the impact of granularity and modeling strategy on the quality of
the LLM-generated domain model, we used two state-of-the-art LLMs, GPT-4o
(GPT for short) and Llama-3.1-70b-versatile (Llama for short), to assist with
modeling tasks across three distinct application domains. The research is guided
by the following research questions:

[RQ1] To what extent does the description granularity (whole text vs. paragraph-
by-paragraph) affect the quality of LLM-generated domain models?

[RQ2] To what extent do different modeling strategies (model-based vs. list-
based) influence the quality of LLM-generated domain models?

[RQ3] Are there differences in the observations noted in RQ1 and RQ2 across
[RQ3.1] different LLMs (GPT and Llama)?
[RQ3.2] different application domains?
[RQ3.3] different tasks (Use Case Modeling and Class Modeling)?

The remainder of this paper is structured as follows. Section 2 provides a brief
overview of related work on domain modeling and LLMs. Section 3 describes the
research methodology, including the experimental design and evaluation metrics.
Section 4 presents the results and discusses their implications as well as threats
to validity. Finally, Section 5 concludes the paper by summarizing key findings
and outlining directions for future research.

2 Related Work

Next, we review key works related to automated domain modeling in general and
specifically using LLMs. We also discuss prompting techniques in this context.

2.1 Automated Domain Modeling

Automated domain modeling has been an active research area even before the
emergence of LLMs. Traditionally, these methods use textual descriptions of
domains and apply statistical or rule-based methods combined with natural
language processing (NLP). Such methods have been used to directly derive
complete domain models [10,18,17,24], or provide modeling assistance or recom-
mendations during the modeling process [4,20]. Burgueno et al. [4], for example,
use vector representations, i.e., word embeddings, to capture the lexical and
semantic information from textual documents to suggest model elements for a
given partially completed model. Several other approaches combine NLP and
machine learning techniques to automate the model creation process [18,24].
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Rule-based methods use manually designed grammatical templates to extract
domain models from textual descriptions. Robeer et al. [17], for example, present
an algorithm with 23 heuristics to automatically identify model elements from
user stories. Herchi et al. [11] combine NLP techniques like sentence splitting,
tokenization, and syntactic parsing to decompose the input text and then use
linguistic rules (e.g., all nouns are converted to entity types) to extract UML
concepts. Jahan et al. [12] present a rule-based approach for automated domain
modeling and report that their approach effectively produces relevant, simplified
diagrams for straightforward user stories, whereas the LLM tends to create more
complex diagrams that can go beyond the simplicity of the original user stories.

2.2 LLM-based Domain Modeling

With the advancement of LLMs across various tasks, their application in do-
main modeling has gained significant attention. Table 1 compares studies in this
area, emphasizing the granularity they address, whether they explicitly support
refinement or updates to outcomes from prior interactions, the prompt content,
and the expected modeling artifacts. Prompt content may encompass task de-
scriptions, domain descriptions, and/or format specifications for the syntax of
the expected output.

Fill et al. [9] conducted experiments with GPT-4 for creating ER models,
UML class diagrams, and BPMN models. They concluded that very large model
parts can be correctly generated by ChatGPT. However, modeling experience
is still required to validate the results. Bajaj et al. [3] concluded that GPT-3
outperforms classical tools commonly used in practice for extracting use cases.
Chen et al. [8] present a comparative analysis of GPT-4 and GPT-3.5 for auto-
mated domain modeling, utilizing various prompt engineering techniques on a
dataset comprising ten diverse domain modeling examples. Each example was
accompanied by a reference solution created by modeling experts. The authors
use the task, domain, and expected output format descriptions to create class
diagrams. They conclude, that, while the LLMs demonstrate impressive domain
understanding capabilities, they are still impractical for fully automated domain
modeling. They further report that LLMs offer the lowest performance in iden-
tifying relationships compared to their performance with classes and attributes.

In another work, Chen et al. [6] explore the use of GPT-4 for creating goal
models and report that the amount of domain information in the textual descrip-
tion has a limited effect on the responses of GPT-4. The responses have to be
evaluated carefully as many elements generated by GPT-4 may be either incor-
rect or rather generic. Further, the authors conclude that immediate interactive
feedback can improve the syntax and semantics of the goal model and expand
the initial draft for simple requests. In [7], the authors compare the effective-
ness of prompt engineering and fine-tuning for domain-specific modeling tasks.
Their findings reveal that approaches focusing on prompt improvements outper-
form fine-tuning-based methods, even without explicit training on the dataset.
Furthermore, the performance gap between prompting and fine-tuning becomes
wider when the training dataset is small.
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Table 1: Comparison of existing studies in LLM-based domain modeling
Paper Granularity Refinement Prompt Content Modeling Artifact

[9] Whole Text Not Supported Task, Domain, Format Class Diagrams,
ER Diagrams,
BPMN Models

[3] Whole Text Not Supported Task, Domain Use Case Diagrams

[8] Whole Text Not Supported Task, Domain, Format Class diagrams

[6] Whole Text Partially Task, Domain, Format Goal Models

[7] Concept Names Not Supported Task, Concept Names Taxonomy Graphs

[2] Single User,
Story Paragraph

Not Supported Task, User Story Class Diagrams

[5] Whole Text,
Modeling Element

Not Supported Task, Domain Class diagrams

[19] Whole Text Not Supported Task, Domain Class Diagrams

Ours Whole Text,
Paragraphs

Supported Task, Domain, Format Use Case Diagrams,
Class Diagrams

Arulmohan et al. [2] use GPT-3.5 to extract domain models from user sto-
ries. The authors apply OpenAI’s prompt engineering techniques1 to create the
prompts for the LLM. They separately extract the concepts and relationships and
report that while LLMs demonstrate impressive performance, traditional NLP
techniques outperform them in this task. Camara et al. [5] also assess GPT-
3.5 in an interactive mode using prompts enriched with OCL constraints. They
report that GPT-3.5 struggles to handle models larger than 8-10 classes, but
performs well with syntax. However, it faces challenges with model semantics.
Most notably, the authors report that multiple iterations with explicit requests
for modification are required to align the model with the user’s intent. Thus,
developing a model usually involves an ongoing dialogue with ChatGPT rather
than a simple request-response interaction.

In a recent work, Silva et al. [19] proposed a framework to break the task
of model generation into separated tasks of class, attribute, and relationship
generation using a tree-of-thought framework that allows an LLM to explore
several possibilities in the solution space and then choose the best alternative.
Their approach performs well to accurately predict the classes, but, similar to
the findings in [8], struggles with relationships. Moreover, they do not provide a
comparative analysis with existing works rendering the generalizability of their
approach unclear.

2.3 Prompting Techniques for Domain Modeling

White et al. [21,22] provide a catalog of prompt engineering techniques that
have been applied to solve common problems when interacting with LLMs. The
authors conclude that these prompt patterns significantly enrich the capabilities
that can be achieved in a conversational LLM. Furthermore, they conclude that
1 https://platform.openai.com/docs/guides/gpt-best-practices

https://platform.openai.com/docs/guides/gpt- best- practices
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prompt patterns are generalizable to many different domains. Kim et al. [13]
formulate prompt templates and conduct comprehensive experiments to assess
the impact of in-context examples on LLM-based evaluation. Their experiments
reveal that providing clear and straightforward instructions akin to those ex-
plained to humans proved to be more effective compared to unstructured and
unclear prompts.

2.4 Synopsis

Based on the analysis of existing related studies, we identify the following key
observations. First, the quality of the generated domain models is largely in-
fluenced by the prompt. Iterative improvements to the initial results are always
required but are not explicitly supported in existing works. Second, most studies
do not consider the granularity of the domain description. Typically, the entire
text is used to generate the models without breaking it into smaller pieces that
can fit better within the content window and be incrementally used to build the
final domain model. Some works, e.g., [2], do break the task into sub-tasks of
generating the classes and relationships separately. However, they do so with the
entire domain description. Moreover, they do not combine the domain models
generated from each (story) paragraph to produce a consolidated model.

To address these gaps, this study focuses on the granularity of domain de-
scriptions used in input prompts and the strategies employed for model gen-
eration. Accordingly, explicit support for model improvements through update
operations is incorporated into the incremental generation process.

3 Research Methodology

3.1 Experimental Design and Scenarios

Fig. 1 provides a high-level overview of the experimental design, which involves
eight scenarios, generated from three binary variables: granularity (whole text
vs. by-paragraph), modeling strategy (model-based vs. list-based), and task. In
the context of granularity, "whole text" refers to the complete domain descrip-
tion provided in its entirety, without any segmentation or breakdown. This is
the full context given to the model in one go. "By-paragraph" means the domain
description is split into individual paragraphs, and each paragraph is treated as
a separate input to the model. The idea is to process and analyze each part
sequentially or independently. Each paragraph typically focuses on a specific
sub-topic or aspect of the domain. In the case of strategy, while we note that
different techniques or instructions can be provided to the LLM about how to
construct a model or list, in this work, we utilize the LLMs understanding or
capability of constructing a list or a model from the domain description by pro-
viding straightforward instructions as shown in Table 3. We utilized two common
domain modeling tasks: functional modeling via use case diagrams (UCD) and
structural modeling via class diagrams (CD). The eight scenarios are summa-
rized in Table 2, while Fig. 2 shows the required interactions with the LLMs
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Fig. 1: High-level overview of the experimental design

for each scenario. For scenarios 5 to 8, we instructed the LLMs to first generate
separate lists of actors and use cases for use case modeling, and lists of classes
for class modeling. These lists were subsequently used as the basis for model
generation.

The scenarios were applied to three distinct application domains using two
LLMs: GPT-4o and Llama-3.1-70b-versatile. The investigated application do-
mains were: R4A (Rating for All) for viewership data analytics, PTr (Perfect
Trip) for tourism management, and WSc (Witchery School) for school accep-
tance management. To avoid introducing additional confounding variables, the
domains were kept to a comparable size and described using seven paragraphs of
text each, referring to different aspects of the domains. The entire experimental
material can be found in [16].

3.2 Templates and Tasks

Building on our findings in [1], we employed a set of five templates designed to
support the key tasks of domain modeling: Create List and Update List were
used to respectively create and incrementally update a list of elements, such as
use cases, actors, or classes; Generate Model was used to generate a model (e.g.,
use case or class diagram) from the previously created and potentially updated
lists; and Create Model and Update Model facilitated the direct creation and
incremental refinement of models. In all scenarios, we requested that the models
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Table 2: The experimental scenarios
Scenario Granularity Strategy Task # of prompts

1 Whole Model UCD 1

2 Whole Model CD 1

3 By-paragraph Model UCD 7

4 By-paragraph Model CD 7

5 Whole List UCD 3

6 Whole List CD 2

7 By-paragraph List UCD 15

8 By-paragraph List CD 8

Fig. 2: The required LLM interactions for the different experimental scenarios

be presented in the common format of PlantUML, while we did not provide
a concrete format for the lists. Table 3 provides an overview of the templates,
including their descriptions and format.

Fig. 3 illustrates the model generated by GPT for Scenario 4 in the Perfect
Trip (PTr) domain. The LLM (GPT in this case) was asked to create and refine
(update) a class diagram based on the sequential input of each paragraph from
the PTr description. The resulting model, which considers all seven paragraphs,
effectively identifies core relevant classes such as User, Member, Trip, Place,
Visit, Opinion (interpreting Review), and Recommendation. However, it also
includes several irrelevant classes derived from the description. These classes,
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Table 3: Templates Used for IS Modeling Tasks
Template Description Prompt
Create List Create a list of elements

(e.g., use cases, actors, classes)
based on the description.

Create a list of <elements> from
the following description. The de-
scription: <desc>

Update List Modify or refine an existing
list of elements to incorporate
new information or correct er-
rors expressed in the concern.

Modify the list of <elements> to
address the following concern. The
concern: <conc>

Generate Model Create a model (e.g., use case
diagram or class diagram)
from the list of elements gen-
erated for previous prompts.

Generate a <model> from the list
of <elements> generated in the
previous prompt. Present the re-
sponse in the following format:
PlantUML.

Create Model Create a model directly from
a given description.

Create a <model> from the fol-
lowing description. Present the
response in the following for-
mat: PlantUML. The description:
<desc>

Update Model Modify an existing model to
address a specific concern.

Modify the <model> to address
the following concern. Present the
response in the following format:
PlantUML. The concern: <conc>

while mentioned in the text, pertain more to the system’s functionality and are
better suited for inclusion in a use case diagram rather than a class diagram.
Examples of such misclassified elements include MZ System, VP of Content, VP
of Culture, and World Tourism Organization, which are actors interacting with
the system, as well as Search, which represents a potential use case. The model
has further inaccuracies regarding attributes, associations, and missing classes.

3.3 Evaluation Procedure

The final output for each scenario, representing the last modeling step, was
evaluated by two undergraduate students who had previously served as teaching
assistants (TA) in an IS modeling course. Each TA assessed the outputs of one
to two application domains. The evaluation criteria included both semantic and
syntactic criteria:

– Requirements Satisfaction: The extent to which the outcomes align with
the requirements outlined in the provided descriptions, including both cor-
rectness and completeness.

– Redundancy: The identification of unnecessary elements or relationships
that were not mentioned in the descriptions. This can be partially associated
with LLMs’ hallucination.
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Fig. 3: A model generated by GPT for Scenario 4 in the PTr domain

– Syntactic Correctness: Identification of errors in the syntax of the model
(UCD or CD) or in the PlantUML format.
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To assess satisfaction of requirements, we first extracted model fragments
from the descriptions, rather than generating complete reference solutions. This
approach provides flexibility and allows for variations in the solutions. The ex-
tracted model fragments were of three types: use case fragment (including its
actors), class fragment (including its attributes and operations), and association
fragment (including the associated classes and potential attributes of the asso-
ciation class). Table 4 exemplifies part of the PTr description that is relevant to
the creation of a class diagram, along with the expected model fragments.

Table 4: Examples of Specification and Expected Fragments for the Perfect Trip
Domain
Specification Expected Fragments
Perfect Trip’s repository includes infor-
mation on places of interest in different
cities of the world. For each place, the
file contains a unique serial number, the
name of the place, a description, the price
level (high/medium/low), the correspond-
ing landmark on Google Maps expressed as
a URL, and the city in which the place is
located.

class.Place;
attribute.serialNumber;
attribute.placeName;
attribute.description;
attribute.level;
attribute.linkToGoogleMaps;
operation.calcWeightedScores

class.PriceLevel;
value.high; value.medium; value.low

association.City-Place
City codes are unique and composed of the
country number and a distinctive combina-
tion of three letters representing the city’s
name. For example, the city code for Tel
Aviv is 972TLV, where 972 denotes the
State of Israel’s code.

class.City;
attribute.cityCode;
attribute.cityName

class.Country;
attribute.countryCode;
attribute.countryName

aggregation.Country-City
Restaurants and hotels are special kinds of
places.

class.Hotel; inherits.Place
class.Restaurant; inherits.Place

For each restaurant, the relevant kitchen
styles should be kept.

class.Kitchen style;
attribute.styleNumber;
attribute.styleName

association.Kitchen style-Restaurant
For each hotel, besides the previously men-
tioned details, we aim to include its star
rating (ranging from 0 to 5), supported ac-
commodation styles (AI - all-inclusive, BB
- bed & breakfast, HB - half board, FB -
full board and RO - room only). Note that
a hotel may offer some or all accommoda-
tion styles.

class.Hotel;
attribute.starRating;
attribute.AI;
attribute.BB;
attribute.HB;
attribute.FB;
attribute.RO

With the extracted model fragments in hand, the evaluators were asked to
assess the final models generated by the LLMs by scoring them against the var-
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ious requirements and providing detailed comments on their assessments. To
ensure the quality of the evaluations, two of the authors of this paper reviewed a
sample of four models each (eight in total) and approved the TAs’ assessments.
The evaluation of the model in Fig. 3, based on the partial list of requirements
outlined in Table 4, identified a missing enumeration class for the price level.
Overall, the model achieved a requirements satisfaction score of 71.2%, a redun-
dancy rating of 1 (very high), and a syntactic correctness score of 0 (no issues
identified).

4 Results

The results were aggregated, such that each outcome (i.e., scenario per LLM)
got a score on each evaluation criterion and analyzed to determine the impact of
the experimental factors on model quality. As each criterion respond to multiple
RQs, we indicate the related RQ in brackets within the subsequent text.

4.1 Requirements Satisfaction Results

Our scores for requirements satisfaction results for all experimental factors range
from 15.4% to 98.6% as shown in Fig. 4. This wide range highlights the variability
in LLM performance under different conditions. The Kolmogorov-Smirnov tests
confirmed that the data adhered to normality assumptions. Consequently, t-tests
were performed, showing no significant differences in mean scores for granularity
(by-paragraph vs. whole, p = 0.6409) [RQ1], modeling strategy (list vs. model, p
= 0.3472) [RQ2], or LLM (GPT vs. Llama, p = 0.7035) [RQ3.1]. ANOVA tests
on domain (WSc, PTr, R4A) showed no significant effect on the requirements
satisfaction score (p = 0.8794) [RQ3.2]. However, a significant difference was
found between tasks (CD vs. UCD, p = 0.0013), with UCD showing higher mean
scores [RQ3.3].

Fig. 4: Results of Requirements Satisfaction
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A deeper analysis of requirements with low average scores (below 70%) across
all scenarios or high standard deviations (above 33%) highlighted several con-
structs that posed challenges for the LLMs. In use case modeling, the most
prominent issues were identifying include and extend dependencies and misin-
terpreting system boundaries. The latter often led to missing actors, use cases,
or associations between specific actors and use cases [RQ3.3]. In class modeling,
the LLMs struggled particularly with association classes, inheritance relation-
ships, and enumeration types. These findings are aligned with other studies in
the literature, as reviewed in Section 2.2. Common errors included overlooking
or misplacing attributes of associations, incorrectly identifying super- and sub-
classes, and mislocating attributes of super-classes. Additionally, attributes of
enumeration types were frequently misidentified as string attributes.

4.2 Redundancy and Syntactic Correctness Results

Wilcoxon tests revealed significant differences in Redundancy between granu-
larity levels (Z = -2.4392, p = 0.0186) [RQ1] and tasks (Z = -2.3629, p =
0.0223) [RQ3.3]. Granularity at the by-paragraph level resulted in higher re-
dundancy compared to the whole-description approach. This observation can
be explained by the partial context provided to the LLM in the by-paragraph
granularity, which “encourages” it to supplement or invent information that may
already exist or be introduced differently in subsequent paragraphs. The seg-
mented processing may lead the LLM to produce redundant content to ensure
comprehensiveness.

For tasks, class modeling (CD) exhibited greater redundancy than use case
modeling (UCD). This can be attributed to the inherently abstract and struc-
tural nature of CD tasks, which often involve defining and describing relation-
ships, hierarchies, and attributes in detail. To ensure the correctness of these
complex constructs, the LLM may over-communicate or reiterate information.
In contrast, UCD tasks tend to have more explicit requirements, providing clearer
guidance and reducing opportunities for redundancy [RQ3.3].

Syntactic errors were observed across all combinations of Granularity, Strat-
egy, LLM, and Domain. Many of these errors stemmed from the LLM’s difficulty
in distinguishing between information relevant to use case modeling (UCD) and
class modeling (CD). Consequently, some outputs improperly combined classes
with use cases or actors, resulting in a violation of the PlantUML syntax. The
most extreme instance occurred in Scenario 3, where Llama produced a model
containing only classes and actors, despite the task being to create a use case
diagram. Additional syntactic errors included outputs where actors lacked cor-
responding use cases and vice versa, as well as comments in parentheses being
misinterpreted as operations rather than attributes. These issues highlight the
LLM’s struggle to maintain strict adherence to modeling conventions and empha-
size the need for post-processing mechanisms to improve the generated models.
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4.3 Discussion and Implications

In the following, we report on the implications of our findings to LLM-based
domain modeling.

The severe limitations observed in LLM-generated outcomes regarding re-
quirements satisfaction, redundancy, and syntactic correctness emphasize the
need for active human involvement in the domain modeling process. Specifi-
cally, LLMs struggle with accurately identifying relationships, such as include
and extend dependencies in use case diagrams, and associations, inheritance re-
lations, and association classes in class diagrams. These challenges align with
findings from other recent studies [8,5,19], highlighting that, despite their poten-
tial, LLMs are not yet capable of autonomously generating high-quality domain
models. Consequently, practitioners must act as both facilitators and validators
to align models with the intended requirements. This reliance on human involve-
ment not only underscores the limitations of current LLMs but also calls for more
targeted research for developing LLM-assisted (rather than LLM-generated) do-
main modeling approaches.

Implication I: LLM-assisted, rather than LLM-generated, domain mod-
eling methods should be developed to enable iterative interactions with
the LLM and incorporate validation processes to enhance model accuracy
and ensure alignment with requirements.

The findings also suggest that while by-paragraph granularity does not sig-
nificantly affect requirements satisfaction, it does increase redundancy, raising
concerns about LLMs’ ability to handle large, complex domain descriptions. This
highlights the need for improved methods that support engineering prompts for
real-world domain descriptions, which are typically multifaceted and more ex-
tensive. Our findings further show that if the descriptions include information
relevant to different aspects of the domain, such as the domain functionality and
structure, the LLMs often become "confused" and include incorrect elements
(e.g., placing classes in use case diagrams or actors in class diagrams). Addi-
tionally, they sometimes attempt to enforce the creation of model elements, like
representing actors or use cases as classes, as shown in the example in Fig. 3.

Implication II: Domain descriptions can be split and provided sequen-
tially to LLMs, which may have a marginal effect on requirements satis-
faction but could significantly impact redundancy. This requires careful
consideration of how the descriptions are split to minimize redundancy
and maintain model correctness.

The lack of significant differences in the mean scores for the strategy vari-
able (list-based vs. model-based) suggests that the choice of modeling strategy
does not substantially impact the correctness of LLM-generated models. This
finding implies that both strategies are similarly effective in guiding LLMs to
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produce correct domain models. However, this result also highlights the flexibil-
ity of LLMs in adapting to different approaches without significant performance
variation, which could be advantageous for modelers with varying preferences or
expertise. Nonetheless, future research could explore other strategies and differ-
ent qualities, such as usability, scalability, or time efficiency.

Implication III: Model-based and list-based modeling strategies result
in models of similar quality, allowing modelers to choose the approach
that best suits their preferences and expertise.

4.4 Threats to Validity

The discussion of threats to the validity of this research is aligned with the major
threat categories introduced by Wohlin et al. [23]. With respect to conclusion
validity, our results are limited to the scope and extent covered by our scenarios.
In total, we focused on eight scenarios (cf. Table 2) which we applied to three
distinct application domains using two LLMs. In total, this resulted in 48 models
being created through the execution of 132 prompts.

Construct validity threatens the validity of our assessment of the LLM-
generated models, as the evaluation was primarily conducted by graduate stu-
dents. To address this, we briefed the students, who were already experienced in
evaluating modeling tasks through their role as teaching assistants. We further
prepared them by providing expected model segments, offering feedback on their
initial evaluations, and guiding them on any questions they had. Additionally,
two authors of this paper reviewed and approved samples of their evaluations to
ensure the quality of the assessment.

We do not see a strong human-focused threat regarding the internal validity
as we prompted the LLMs systematically with identical prompts. Unlike many
other studies, we did not rely on human modelers or prompters.

Finally, to address external validity concerning the generalizability of our
findings, we used three different application domains to ensure that the results
are not incidental. This was intended to enhance the potential transferability of
our conclusions. The chosen domains were common and expected to be familiar
to LLMs. Furthermore, the fact that we used two LLMs, amongst the vast array
of LLMs from different vendors, can be an external validity threat in our work.
However, we chose two state-of-the-art LLMs to mitigate this threat. Moreover,
while we acknowledge that the rapid development of LLMs poses a threat that
our results will soon become outdated, it is important to emphasize that advances
in LLMs do not necessarily translate into corresponding improvements in domain
modeling. The primary focus of LLM development lies in enhancing general
reasoning capabilities, rather than specifically targeting domain modeling or
model-driven engineering. Although improved reasoning can support domain
modeling tasks, existing studies have shown that even the substantial leap from
GPT-3.5 to GPT-4 yielded comparable results and revealed similar limitations
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in this context [19,8]. This suggests that achieving qualitatively different results
may require training LLMs specifically for domain modeling tasks.

5 Conclusion

The use of LLMs for domain modeling is still in its early stages, with initial,
explorative results. A systematic and maturated approach to utilizing LLMs in
modeling is still greatly needed. In this paper, we presented our investigation into
the impact of different levels of granularity (whole text vs. by-paragraph), mod-
eling strategies (model-based vs. list-based), and tasks (use case modeling vs.
class modeling) on the quality of LLM-generated domain models, with a partic-
ular focus on semantic and syntactic correctness. Our results demonstrated that
state-of-the-art LLMs produce domain models of varying quality, with signifi-
cant findings regarding the impact of granularity on redundancy (by-paragraph
resulted in more redundancies) and the effect of task on requirements satisfac-
tion (class diagrams resulted in less satisfied requirements). The value of this
paper goes beyond these experimental findings, by providing a comprehensive
discussion and raising implications for LLM-assisted domain modeling. These re-
search challenges must be addressed before LLMs can be considered co-modelers
in the domain modeling process – similar to the role Copilot plays in software
engineering.

Future research includes improving LLM-assisted domain modeling methods
to handle larger and more complex domain descriptions. This requires developing
more effective strategies for interactions and integrating robust validation pro-
cesses to enhance model quality. Furthermore, exploring the integration of LLMs
with human modelers in a collaborative co-creation environment will be crucial
for advancing LLM-assisted modeling. Research into new prompt engineering
techniques that minimize redundancy and improve model correctness will also
be key to ensuring that LLMs can be effectively applied in real-world domain
modeling scenarios. In addition, we plan to explore the assistance of LLMs in
behavioral modeling tasks, such as generating state diagrams, to assess their
potential beyond functional and structural modeling. Finally, we plan to explore
the process of LLM-assisted domain modeling by analyzing both intermediate
and final generated models, as well as the paths explored during the modeling
process.

Acknowledgment: The authors would like to sincerely thank Neta Man-
delbaum and Matan Meirovitz for their invaluable assistance in evaluating the
LLM-generated domain models.
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