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Abstract. Conceptual models (CMs) offer a structured way to organize
and communicate information in information systems. However, current
models lack adequate semantics of the terminology of the underlying do-
main model, leading to inconsistent interpretations and uses of informa-
tion. Ontology-driven conceptual modeling languages provide primitives
for articulating these domain notions based on the ontological categories,
i.e., stereotypes put forth by upper-level (or foundational) ontologies.
Existing CMs have been created using ontologically-neutral languages
(e.g., UML, ER). Enriching these models with ontological categories can
better support model evaluation, meaning negotiation, semantic inter-
operability, and complexity management. However, manual stereotyping
is prohibitive, given the sheer size of the legacy base of ontologically-
neutral models. In this paper, we present a graph language modeling
framework for conceptual models that combines finetuning pre-trained
language models to learn the vector representation of OntoUML models’
data and then perform a graph neural networks-based node classifica-
tion that exploits the model’s graph structure to predict the stereotype
of model classes and relations. We show with an extensive comparative
evaluation that our approach significantly outperforms existing stereo-
type prediction approaches.

Keywords: Ontology-Driven Conceptual Models · Graph Neural Net-
works · Pre-trained Language Model · Representation Learning.

1 Introduction

Conceptual models were introduced to increase understanding and communi-
cation of a system or domain among stakeholders in information systems for
design, analysis, and development purposes. Ontologies proved useful in assess-
ing whether different conceptual modeling procedures will likely lead to good
representations of real-world phenomena and evaluate the ontological soundness
of a conceptual modeling language and its corresponding concepts and gram-
mar. Foundational ontologies emerged to consistently define fundamental con-
cepts in conceptual modeling, e.g., types and taxonomic structures, roles and
relational properties, part-whole relations, and multi-level structures. The Uni-
fied Foundational Ontology (UFO) was developed to provide foundations for all
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these major conceptual modeling constructs. UFO has been applied to design
a general-purpose language OntoUML for ontology-driven conceptual modeling
(ODCM) as a revised version of UML such that its modeling primitives re-
flect the ontological distinctions put forth by UFO, and its metamodel includes
semantically-motivated syntactic constraints that reflect the axiomatization of
UFO. Empirical evidence shows that OntoUML significantly contributes to im-
proving the quality of conceptual models [29,11]. Semantically rich conceptual
models created from OntoUML enable various crucial applications such as i)
better support for semantic interoperability of the systems as shown in [13];
ii) for supporting ontological analysis, meaning explication and negotiation, and
conceptual clarification using the fundamental ontological distinctions embodied
in a foundational ontology as a conceptual toolbox; iii) for more sophisticated
conceptual model modularization mechanism [14]; and iv) database design [4].
Therefore, we notice sufficient value from generating semantically rich models.

Many CMs exist, however, they are often created using ontologically-neutral
languages like UML and ER. Enriching the elements of such models with on-
tological categories would add the aforementioned benefits. However, given the
sheer size of these legacy models, manually enriching them is a prohibitive task.
For this reason, in our previous work [1], we presented an automated approach
using a trained Graph Neural Network (GNN) on a set of OntoUML models to
predict the ontological category of classes and relations in a model. In the present
work, we aim to resolve the limitations of our and other stereotype prediction
approaches and significantly improve the prediction accuracy for a larger set of
less frequent stereotypes. We propose a novel framework for CMs that couples
the strengths of transformer-based language models [28] with GNNs [15].

We transformed the stereotype prediction of a class or a relation in an On-
toUML model into a node classification task. We first transform an OntoUML
model into a Knowledge Graph (KG) using a transformation mechanism de-
scribed in [1]. In particular, the transformation converts an OntoUML model
into a type of KG termed as Conceptual Knowledge Graph (CKG) that can
comprehensively capture the CM’s graph structure and the ontological stereo-
types of the model. Next, the node information, which includes node label and
meta properties, is encoded as vectors (i.e., node embeddings) using pre-trained
language models (PLM) such as GLoVE, BERT [22,8]. The natural language
semantics carry significant information about the category of a class or a rela-
tion. E.g., a class “Person” is generally of the type kind in OntoUML models.
Therefore, the vector representation, i.e., the node embeddings of the elements
in an OntoUML model that capture such linguistic semantics, can train a neural
network to predict a model element’s ontological stereotype.

We note three limitations in [1] that we aim to resolve in this work. Firstly, the
node embeddings lack relevant contextual information, i.e., the natural language
representation of the nodes’ data is generated using only the individual node
data. It does not use the other nodes of the model. E.g., the node embedding
of the class “Person” in Fig. 1 should depend upon the neighboring nodes such
as “Patient,” “Adult,” “Child,” or “Physician,” which add crucial contextual
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information about the meaning of the class “Person.” We resolve this issue by
extending the node data by adding contextual data from the neighboring nodes.
Secondly, PLMs such as BERT or GLoVE are trained on generalized natural
language text and, therefore, are not particularly aware that the node labels
are specific to an OntoUML model. We resolve this limitation by finetuning the
PLM for OntoUML models’ data and then using the generated node embeddings
to classify the stereotype of each node. Finally, [1] misses out on using the
stereotype information of the nodes already labeled with a stereotype. E.g., let’s
consider “Person” and “Adult” as already labeled nodes and “Child” as an
unlabeled node in Fig. 1. We can use the stereotype of “Person” and “Adult” to
predict the stereotype “Child”. In other words, the stereotype information of a
node’s contextual nodes can be used for the node’s stereotype prediction.

In this work, we present our improved solution that tackles the above limi-
tations of the previous work to achieve automated ontological category predic-
tion. Consequently, we developed a Graph Language Modeling framework for
Conceptual Models (GLaM4CM) that enables conceptual modeling applica-
tions by combining PLMs and GNNs on the KG representation of CMs, i.e.,
CKGs. GLaM4CM uses the CKGs as an intermediary to achieve conceptual
modeling tasks such as model autocompletion, classification, and ontological en-
richment using node stereotype classification, which is the task that we use to
evaluate our framework in this paper. Since OntoUML and UFO are among the
most used modeling languages and foundational ontologies in ODCM, our pro-
posal makes a clear contribution to advancing the state of the art. We present
an experimental evaluation to validate our approach and to provide a detailed
comparative impact analysis of various design choices in our solution architec-
ture based on the OntoUML FAIR model dataset described in [4]. We make the
code available on Github∗ for (i) CKG creation and context generation (ii) fine-
tuning PLMs and training GNN on the OntoUML CKGs and, (iii) reproducing
the results of our work.

In the remainder of this paper, Section 2 introduces relevant background.
Section 3 discusses the existing graph language modeling solutions and how our
proposal advances the state of the art. Section 4 presents the three contributions
of this paper, namely, i) a graph language modeling framework for an automated
stereotype prediction task; ii) an extensive evaluation of the different parameters
involved in modeling the nodes’ context; and ii) a comparative analysis of our
approach with existing approaches. Section 5 reports the results of an experi-
mental evaluation of our approach. Section 6 discusses the obtained results, their
implications, and threats to validity before we conclude this paper in Section 7.

2 Background

We now provide the relevant background for developing our GLaM4CM frame-
work and its application for ontological stereotype prediction.

∗https://github.com/junaidiiith/GLM-Stereotype-Prediction



4 S. Ali and D. Bork

Conceptual Knowledge Graphs Conceptual models facilitate detection
and correction of system development errors [30]. However, error detection tech-
niques are constrained when applied to ontologically-neutral modeling languages
like ER and UML as they lack an adequate semantic specification of their termi-
nology, which leads to inconsistent interpretations and uses [21,12]. Ontologies
proved useful in assessing whether different conceptual modeling procedures will
likely lead to good representations of real-world phenomena and evaluate the
ontological soundness of a conceptual modeling language and its correspond-
ing concepts and grammar. ODCM extends or supports conceptual modeling
techniques by ontological theories that further formalize the conceptual model-
ing grammars [29], thereby strengthening the ontological commitment of these
languages and thus improving the semantic quality of the conceptual modeling
language. Knowledge Graphs represent a collection of interlinked descriptions of
entities – e.g., objects, events, and concepts. KGs provide a foundation for data
integration, fusion, analytics, and sharing [24] based on linked data and semantic
metadata. KGs have been recently used for the representation [25,26] of CMs.
Such KG-based representations can act as the intermediary representation of
CMs to enable ML-based applications on CMs. Conceptual Knowledge Graphs
(CKG) are termed as “ontologically enriched KGs representing CMs” [1].

Transformer-based node classification Transformer architecture [28] based
language models have proven to be useful in supporting natural language process-
ing (NLP) tasks that operate by leveraging a neural network model that learns
a representation of words that captures the contextual relationships between
words in a text. BERT, which stands for ”Bidirectional Encoder Representa-
tions from Transformers”, is particularly powerful it captures how each word or
token relates to the entire sentence by processing it forward and backward [8].
These transformer-based models are generally trained on a massive text corpus,
called the pretraining phase to produce a PLM that provides rich contextual
embeddings of text that can be used for various NLP tasks. In the finetuning
phase, a PLM is further trained on a smaller dataset and adapted to specific
NLP tasks by the model’s parameters adjustment to make it proficient for at
NLP tasks such as text classification, sentiment analysis, or question answering
for a specific dataset.

In the context of graph data, a BERT model can be adapted for node label
classification. By representing nodes in a graph as sequences of text or encoding
their local neighborhood information into text, we can apply BERT to learn
meaningful representations of graph nodes that incorporate local graph structure
and semantics of the graph data. Based on the idea of transforming node labels
as a sequence of texts, BERT can be finetuned on the graph data. In our work, we
finetune pre-trained BERT models for two tasks, i.e., masked language modeling
(MLM) and sequence classification (SC). In masked language modeling, some
node labels may be masked, i.e., hidden, and the model is tasked with predicting
those masked labels based on the contextual text. In sequence classification, a
node label is predicted by a classification neural network layer that uses the node
embedding produced by the BERT model. Note that the pre-trained embeddings
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from the pretraining phase are enriched with dataset (i.e., OntoUML) and task-
specific (i.e., MLM and SC) embeddings during finetuning.

Graph Neural Networks are neural models that learn graph representa-
tions via message passing between graph nodes. A node aggregates information
from its neighborhood. GNNs leverage the inherent structure and connectivity
of the graph to make informed predictions about the labels or properties of in-
dividual nodes. Thereby, GNNs capture the local and global context of each
node, allowing them to assign appropriate labels based on the learned repre-
sentations. This approach is particularly valuable in diverse applications, such
as social network analysis, recommendation systems, biology, and knowledge
graphs, where nodes represent entities and relationships. Recently, variants of
GNNs such as Graph Convolutional Networks (GCN), Graph Attention Net-
works (GAT), and Graph Recurrent Networks (GRN) have demonstrated good
performance on many deep learning tasks. GraphSAGE [15] generalized the ag-
gregation function (compared to GCN, which uses “mean” as the aggregation
function) that generates node embeddings by sampling and aggregating features
from a node’s local neighborhood. GNNs can be combined with embeddings from
pre-trained or language models-based BERT embeddings such that embeddings
capture node-specific information, and the GNN can propagate the information
by leveraging the graph structure.

3 Related Work

Next, we discuss existing works for ontological stereotype prediction and NLP
approaches to support conceptual modeling tasks.

Ontological category prediction Barcelos et al. [3] present a rule-based
solution to infer the ontological stereotype of OntoUML classes. They present 37
different rules that use the UFO semantics to predict the ontological stereotype
of OntoUML classes. They restrict the inference for eight categories of classes,
namely, kind, subkind, phase, role, category, mixin, roleMixin and phaseMixin [3]
and show, that the 37 rules can only predict the stereotype of a class accurately
in 15-20% of the cases. However, the rules can predict with good confidence that
the correct stereotype is within the top three predicted classes for each node.

Keet et al. [17] proposed a method leveraging a decision tree for DOLCE [5]
categories to select the ontological category for their models. A survey by Trojahn
et al. [27] indicates that several works enrich the domain ontologies with foun-
dational ontology concepts. Felipe et al. [18] propose mapping rules between the
noun synsets of Wordnet and the top-level constructs of UFO. RDF2Vec [23] con-
siders entities’ lexical terms for learning node embeddings; however, they treat
an entity composed of multiple words as a single entity, which limits generality.
OWL2Vec [6] considers word compositions and adds OWL constraints. Junior
et al. [16] propose an approach that automatically classifies domain entities into
top-level concepts using informal definitions and the term’s word embedding.

Word embeddings for Conceptual Modeling A conceptual model’s lex-
ical terms contain natural language semantics. Therefore, conceptual modeling
tasks can benefit from NLP techniques. Efstathiou et al. [9] released a word2vec
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model trained over 15GB of textual data in the software engineering context.
Lopez et al. [19] present a word2vec model trained on model-driven engineering
(MDE) and conceptual modeling data corpus [19].

Synopsis Considering ontological stereotype prediction, [3] is the closest to
our work. However, there are several distinctions. Their approach i) is based
on a manually created set of non-exhaustive 37 rules compared to our data-
driven approach, i.e., it uses deep learning-based patterns to infer the stereotype
from the natural language semantics and graph structural information within
the OntoUML model; ii) is restricted to predicting stereotypes only for classes
whereas our approach also considers relations; and iii) uses only eight ontological
stereotype classes, whereas our approach works for 21 classes, which includes
many less frequent classes that are naturally harder to predict. Based on the
related work, we present a comparative analysis of our approach with [3] and
also show the comparison of using the word embeddings from [9,19] with the
embeddings generated by finetuned language models from our framework.

4 The GLaM4CM Framework
We now introduce our end-to-end framework, including its architecture and the
steps involved in training and finetuning language models and training GNNs.

4.1 CKG transformation and Context Generation

First, we elaborate on transforming an OntoUML model into a CKG and gener-
ating the node data using the neighbors’ node data. Fig. 1 shows an example of
an OntoUML model of a medical facility (left) and the transformed CKG (right).
Note that only the node label and stereotype information are shown in the CKG
for simplicity. Other attributes such as node type, i.e., Class or Relation, also
form part of the node data (cf. the textual descriptions of the nodes “Person”
and “Symptom”). Further information can be similarly added. The CKG rep-
resents classes and relations such as “reportedBy” as nodes with a stereotype
label. Generalization relations, e.g., “Child” to “Person” relations, do not have
a stereotype and are thus not transformed into a CKG node.

We create textual data for each node that captures its neighboring context.
Given a directed graph G and a node n within G, the first step is to identify all
the nearest neighbors, denoted as Nb, of node n within specified k hops. These
neighbors are typically nodes within k hops or edges away from node n in the
graph. Next, we create a string of shortest paths from node n to each neighbor
Nb as a concatenation of the node labels of all the nodes present in the shortest
path. This string effectively captures the sequence of node labels that need to be
traversed to reach each neighbor within the specified k hops from node n. Fig. 1
shows paths starting from node “Person” which cover nodes and edges in blue for
k = 1 and the additional green nodes and edges for k = 2. The node description
follows a specific format of ⟨ node type ⟩ ⟨ node label ⟩: ⟨ node stereotype ⟩
and the edge description is replaced by the keyword “generalizes” if the edge
is between two class nodes or “relates” if the edge is between a class node and
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Fig. 1: An OntoUML model CKG transformation and context generation

a relation node. Note that some relation nodes do not have a label and only
stereotype information, such as the relation node with “mediation” stereotypes
in Fig. 1, which makes predicting the stereotype of such a node difficult. Adding
neighboring information can help in predicting the stereotype for such nodes.

4.2 Problem Description

In the following, we formally describe the node stereotype prediction problem for
a set of OntoUML models. Let G = {G1, G2, . . . , Gn} represent a set of CKGs
that represent OntoUML models, where Gi = (Vi, Ei) is a graph with a set of
nodes Vi and edges Ei. Each node in Vi is associated with a text content denoted
as Xi. The node data vector is obtained from a language model using the node’s
textual content. To transform the node text labels into node embeddings, a node
mapping function ϕ(·) is employed. In this context, ϕ(·) represents a PLM such
as BERT, which generates embeddings for text sequences. A graph nodes’ text
labels Xi are encoded into a node embedding Hi = {hi1,hi2, . . . ,hi|Vi|}, where
hij = ϕ(Xij) for each node j in Gi. Subsequently, a GNN is utilized for node
classification on each graph. The objective is to assign a label from a predefined
set of labels Y to each node within a graph. This task can be formally described
as finding a function σ(·) : Rdh → Y, where kh is the dimension of the node
embeddings, and σ(hij) provides the predicted label for node j in graph Gi. The
objective of the problem is i) to learn a node mapping function ϕ(·) which maps
a node text to a vector by finetuning a pre-trained language model (note that
node mapping function is pre-trained the language model itself if no finetuning
is required), and ii) the GNN function σ(·) to optimize the accuracy of node
classification across the set of graphs G.

4.3 GLaM4CM Architecture

We start with a set of Graphs G = {G1, G2, . . . , Gn} as shown in Fig. 2. Next,
we extract the node data in the form of node paths and the node stereotype
information as described in Sec. 4.1. Then, we prepare the training and testing
dataset from the set of node paths and labels for the MLM and SC tasks. We
first divide the nodes of each graph into 80% training and 20% test nodes. Note
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Fig. 2: Graph Language Modeling Framework for Conceptual Models

that the path string consists of node stereotype information of the neighboring
nodes. Therefore, we only keep the node stereotype information if the context
node is in a training set and remove the information if the context node is in a
testing set to simulate a graph where 20% of the stereotype labels of a graph are
unknown. For example, if in Fig. 1 we treat the “Child” node as a training node
and the “Physician” node as a test node, Fig. 1 shows that the node path string
of the “Person” node contains the “phase” information for the “Child” class but
does not contain the “phase” information for the “Physician” class. In case of
the MLM task, we mask the stereotype label of the training node such that the
node data forms the format ⟨ node type ⟩ ⟨ node label ⟩: ⟨ [MASK] ⟩ and in case
of sequence classification task, we remove the stereotype label from the node
path string such that string follows a format ⟨ node type ⟩ ⟨ node label ⟩. An
example of both formats can be seen in Fig. 2 for the class node “Person”. The
figure shows the expected stereotype “kind” after the node path string which
forms the training labels.

Once we have the training and testing dataset, a pre-trained BERT model
will be finetuned to the MLM and the SC tasks. After finetuning the BERT
model for the MLM task, we can further finetune the BERT MLM model for the
same SC task. This can be useful because the MLM task learns the contextual
relationships between words in training data sequences and captures how each
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Table 1: Stereotypes with a frequency greater than 100

Stereotype Frequency Stereotype Frequency Stereotype Frequency

subKind 1522 category 461 derivation 195
kind 1268 event 396 participation 180

mediation 1264 characterization 357 datatype 132
role 1114 roleMixin 346 collective 129

relator 746 mode 333 type 128
material 554 phase 306 quality 128

componentOf 496 formal 272 memberOf 120

word relates to the entire sentence, thereby effectively modeling the nuances
and subtleties of sequences in the training dataset. Afterward, another model
can use this learned knowledge about contextual relationships in the OntoUML
dataset to classify the text sequence. However, it is important to note that the
effectiveness of using a two-step approach, i.e., first MLM finetuning and then
classification, depends on the task and dataset and, therefore, does not guarantee
better performance compared to directly using only a BERT for SC. After the
finetuning, we can receive the node embeddings from the BERT models. Till now,
BERT models were agnostic to the graph structural information of the CKG.
Therefore, we now execute a GNN-based node classification using the finetuned
BERT node embeddings.

5 Framework Evaluation

We now elaborate the experimental setup to evaluate the ontological stereotype
prediction accuracy of GLaM4CM on a partially complete graph, i.e., when a
subset of the CKG nodes do not have an OntoUML stereotype label.

5.1 Experimental Set Up

We use the OntoUML models dataset from [4] with 144 models and test our
solution for three cases with respect to the number of classes. We select all the
stereotypes that occur more than 1000 and 100 times across all the models,
which gives us four and 21 stereotypes, respectively (cf. Table 1). We also select
the eight stereotypes used by [3] to compare our approach against theirs. In this
work, we show the results for 21 stereotypes classification case. Due to lack of
space, we provide the complete set of results separately†.

Our framework allows the extraction of node paths from the graph based
on the hyperparameter k, which is the maximum number of hops between two
nodes. We test our framework with the values k = 1, 2, 3. Note that the case
k = 0 does not use any contextual information. Our framework produces node
embeddings from four different models, namely, 1) pre-trained BERT model;
2) finetuned MLM model; 3) finetuned SC model; and 4) finetuned for first
MLM and then SC model. Furthermore, we compare the quality of the node
embeddings produced by the BERT models in our approach compared to three
other GLoVE language models, namely, i) the GLoVE model from [1] trained

†https://bit.ly/onto-stp-cls



10 S. Ali and D. Bork

on OntoUML data; ii) GLoVE model from [19] trained on MDE and conceptual
modeling research papers data; and 3) GLoVE model from [9] trained on data
from the software engineeering domain. We use the generated node embeddings
to train a GraphSage GNN model for the node classification task. We test our
framework with different hyperparameter values, such as the type of GNN model,
the number of GNN layers, and the learning rate (lr). After experimentation,
we eventually chose the GraphSage model from [1], two GNN layers, and a
lr = 0.01 as the best hyperparameter values for training. We perform a five-fold
cross-validation to provide robust results.

In our experiments, we test the prediction accuracy of our ML models on the
nodes in the test set in each graph for a set of graphs on which ML models are
trained. In this configuration, the ML model has seen the graphs during training.
However, we also test how well the trained ML model transfers its learning to
unseen graphs because even though different OntoUML models may differ in
their graph structure and the nodes’ data, they may still share some common
patterns that an ML model can learn to generalize even to unseen graphs. For
example, given a generalization with two specializations like “MedicalProcedure”
as a generalization of “RemoteMedicalProdure” and “PresenceMedicalProduce,”
the generalization can be a “kind” and the specialization can be a “subkind.”
Therefore, we split our set of 144 graphs into 90% seen and 10% unseen graphs
and then calculate the prediction accuracy of the ML model on the test nodes
in both seen and unseen graphs. It is important to note that the nomenclature
“seen” does not mean the ML model has seen these graphs previously before
training. In our experiments, “seen” simply means the graphs used to train the
ML models with 80% of nodes as training nodes and 20% nodes as testing nodes.

Lastly, we compare our approach with the most recent existing rule-based
inferencing approach [3] which infers the stereotype of the classes in an OntoUML
model, given a percentage of classes already labeled. We compare our approach
with the same setting of 80% of the nodes already labeled. They present their
results in the form of accuracy@n metric that evaluates the average number
of times the actual class yi is present in the top-n predicted classes out of all
predicted classes ŷ for all N nodes defined as Accuracy@n = 1

N

∑N
i=1 δ(yi, ŷ)

where δ(yi, ŷ) = 1 if yi ∈ ŷ and 0 otherwise.
We note that even though we use the same dataset, stereotypes, and per-

centage of already labeled nodes (80%), a direct comparison has a shortcoming.
Due to the unavailability of the information to reproduce the same graphs used
in [3], our results hint at the comparative performance of the two approaches.
Furthermore, they divide their model files into two sets—one that follows an
Open World Assumption (OWA) and the other that follows a Closed World As-
sumption (CWA)—and provide the accuracy scores for both these approaches.
Our approach is independent of such assumptions, and we compare our results
with the average score of the two scores provided for both cases in [3].

5.2 Results

Performance on seen graphs For seen graphs, our approaches involving first
getting embeddings from MLM and SC finetuning stages and then training a
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Table 2: Different models accuracy comparison for top 21 stereotypes
Approach Test Accuracy Seen Test Accuracy Unseen

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

SE [9] + GNN 0.498 0.555 0.553 0.537 0.363 0.435 0.397 0.375
Onto [1] + GNN 0.574 0.634 0.618 0.599 0.356 0.422 0.379 0.356
MDE [19] + GNN 0.563 0.644 0.624 0.597 0.374 0.489 0.446 0.435
BERT + GNN - 0.401 0.384 0.356 - 0.390 0.363 0.336

SC - 0.801 0.816 0.792 - 0.646 0.625 0.609
MLM + SC - 0.814 0.810 0.799 - 0.656 0.636 0.634

SC + GNN - 0.815 0.831 0.817 - 0.634 0.625 0.621
MLM + SC + GNN - 0.827 0.822 0.813 - 0.661 0.643 0.627

Table 3: Accuracy comparison with rule-based approach
Approach accuracy@1 accuracy@2 accuracy@3

Rule-based [3] 0.181 0.303 0.917

SC + GNN 0.820 0.917 0.956

MLM + SC + GNN 0.820 0.920 0.957

GNN model using these embeddings outperforms the other approaches that
involve non-finetuned embeddings (cf. Table 2). The results clearly show the
positive impact of using finetuned embeddings on the contextual information
available in the node paths. We show the combined importance of contextual
information and pre-trained language model finetuning. Adding contextual in-
formation in the form of node paths increases the prediction accuracy for all
the approaches, including those that do not involve finetuned embeddings—i.e.,
GLoVE and pre-trained BERT. Moreover, the accuracy of using finetuned em-
beddings is significantly higher than pre-trained embeddings. Interestingly, the
BERT embeddings without finetuning (BERT + GNN) perform worse than em-
beddings from GLoVE models (SE, Onto, MDE). This result is very much in line
with the fact that the pre-trained BERT model does not have any knowledge of
OntoUML models’ specific knowledge as it is trained on general natural language
text. However, we see that finetuning the BERT model for MLM and SC pro-
duces rich contextualized embeddings that provide significantly higher accuracy,
thereby outperforming the state-of-the-art [1] by more than 25% (from 57.4%
with Onto + GNN and k = 0 to 83.1% with SC + GNN and k = 2).

Next, we see that using GNNs improves the classification accuracy (cf. Ta-
ble 2). These results are consistent with the idea that BERT language models
learn contextualized node embeddings but do not directly or only implicitly
capture graph structural information. In contrast, GNNs can better capture the
graph’s structural information. Finally, we also note the impact of contextual
information in the paths and find that using k = 2 provides the best results.
The accuracy decreases with k = 3, which indicates that for larger values of k,
the neighborhood of the majority of the nodes ends up having a lot of common
nodes, thereby reducing the distinguishing characteristic of a neighborhood.

Performance on unseen graphs We now evaluate how well the ML models
transfer the learning to unseen graphs. In Table 2, the GNN models trained using
node embeddings from pre-trained embeddings or GLoVE model embeddings do
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not generalize well with a maximum accuracy of 48.9%. However, using BERT-
based finetuning models improves the prediction accuracy by more than 20%,
indicating that the finetuned embeddings generalize much better and capture
latent features that support the ML model in predicting the node stereotype.
We note that using GNN models improves the prediction accuracy for unseen
graphs. However, the prediction accuracy does not improve as well as they did for
seen graphs. Using GNNs with finetuned embeddings for seen graphs increased
the prediction accuracy score by almost 2% (from 81.6% by SC and k = 2 to
83.1% by SC + GNN and k = 2). In contrast, in case of unseen graphs, the
prediction accuracy increased by less than 1% in case of k = 1, 2 (from 65.6% by
MLM + SC and k = 1 to 66.1% by MLM + SC + GNN and k = 1) and in fact
decreased in case of k = 3. This result may be because the linguistic semantics
are shared more across OntoUML graphs than the graph structural information.

Comparative evaluation with Rule-based Inference Lastly, we compare
our approach with the rule-based approach in [3]. We choose the top two best
results from all the configurations, and use the GNN-based classification on
finetuned embeddings for seen graphs. Our approach significantly outperforms
the rule-based approach that predicts the exact stereotype class in 18.1% and has
the correct class as one of the top two predicted classes in 30% of the cases. We
see that the rule-based approach provides a quite good accuracy@3 score, i.e.,
the correct stereotype is amongst the top three predicted ones. Overall, we see
that our approach outperforms the rule-based approach by more than 60% in
case of accuracy@1 and accuracy@2 and by around 4% in case of accuracy@3.

6 Discussion

In the following, we aim to discuss our results, the degree of automation provided
by our work for modeling, the transferability aspects, i.e., how can a model
trained for one domain transfer the learning for a different domain, and finally
discuss some further applications of our framework.

Illustrative Example-based Results Analysis In Fig. 3, we show how
GLaM4CM learned to correctly predict the stereotype from the data itself with-
out the need for any explicit rules to infer the stereotype. The example uses the
ontology from [10] that provides an ontological analysis of cyber-security cases.
GLaM4CM was able to predict stereotypes accurately, notably identifying the
“Upload Private Media Object to Digital Platform” as an “event” and ”Ac-
cessible Digital Platform” as a “role.” The correct ”event” prediction could be
attributed to the model’s understanding of the term ”Upload,” highlighting the
model’s capability to recognize patterns beyond frequent stereotypes. Similarly,
it distinguished “Accessible Digital Platform” as “role” instead of “subKind” by
considering contextual clues from related classes. This indicates the model’s abil-
ity to learn ontological rules, such as those from OntoUML. The shortcomings
of a rule-based approach, as can be seen from our results, are that the rules are
hardly exhaustive and, even if the rule-based approach does provide good top-k
suggestions, such a benefit is not useful enough. Even if a rule-based approach
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Fig. 3: GLaM4CM-based Ontological Stereotype Prediction Example

provides the suggestion for the top 3 possible stereotypes with high confidence, if
the confidence on top 1 or top 2 is poor, these suggestions are not quite useful for
the domain expert because the expert can, given adequate modeling experience,
narrow down on the top-3 with some effort by herself.

Degree of Automation for ODCM The paper presents a modeling as-
sistant, not for fully automating ODCM research, but as an ontological concept
recommender aiding UML modelers in transitioning to OntoUML and assist-
ing OntoUML modelers during model creation. Our approach does not replace
the need for domain experts in UML structural class diagram modeling but sup-
ports them with recommendations based on data-driven patterns linking natural
language to ontological semantics—for instance, identifying ”Person” as “kind”
and “Student” as “role” relative to “Person.” While one could use rules to de-
fine these relationships, our comparative evaluation indicates that rule-based
methods are outperformed by our data-driven approach.

Cross-domain Learning Transfer Despite having only 144 OntoUML
models for training, our model’s ability to make correct predictions in a zero-
shot scenario—where it has not seen an example of the test input—is notably
promising, with over 65% accuracy. This is particularly significant given that
current research shows industry-standard large language models average 60-75%
accuracy in zero-shot generalization across different domains [33,32]. Our ap-
proach achieving 65% accuracy aligns with these findings and signals a positive
outlook on transferability rather than poor performance. The field is actively de-
veloping methods such as fine-tuning [31] and in-context learning [7] to enhance
zero-shot generalization, and we plan to integrate these advancements into our
approach. We are also confident that, as the adoption of OCDM increases and
we get access to more ODCM models, the performance of our approach will even
further improve.

Overall, we showed that our GLaM4CM framework combines pre-trained lan-
guage models to learn contextually rich embeddings of OntoUML model nodes’
data. It is important to note that our framework provides flexibility by being
usable with i) different PLMs like BERT, distill-bert, LSTM, or GPT, among
others, ii) different GNN models like GCN, GATConv, or GINConv among oth-
ers, and iii) different modeling languages provided a CKG transformation exists
as proposed in [2,25].

Further Applications Although this paper focuses on the accuracy of pre-
dicting OntoUML stereotypes using node classification, we want to elaborate on
several application areas enabled by our GLaM4CM framework.
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AI-based ODCM. GLaM4CM can be used to predict an ontologically sound
metamodel element recommendations given a partially constructed metamodel.

Metamodel domain classification. CKG embeddings capture domain informa-
tion using domain ontologies; therefore, these embeddings can be finetuned for
classifying the domain of the metamodel. Metamodel domain classification can
further support domain-based clustering of conceptual models.

Semantic Search. Learned representations of conceptual models can directly
use the trained embeddings in semantic search for models. Semantic search can
provide an efficient way of accessing and searching on and within these models,
considering the ontological semantics of the queried model’s semantics in search
results. This would enable queries like search all models that use UFO and that
have a concept ‘professor’ with the stereotype ‘role’ assigned.

Threats to Validity Our research is not exempted from the following
threats to validity: Conclusion Validity: Dataset size. The training dataset for
the experiment consists only of 144 OntoUML models. Each model belongs to
a specific domain, and the labels consist of domain-specific information, which
makes it difficult for the model to learn generalized patterns. We mitigated this
by performing a five-fold cross-validation so that the ML models learn general
patterns and not domain-specific ones. Construct Validity: Node Path String
Content. The node path string of a node n contains stereotype information of
its neighboring nodes. If the neighboring node of n is a testing node, then the
stereotype information of the testing node should not be present in the node
path string. We mitigated this threat by adding the stereotype label only if
the neighboring node is a training node. Internal Validity. The risk of overfit-
ting or suboptimal configuration can impact the internal validity of the findings.
Therefore, we performed an exhaustive search for different GNN models, lan-
guage models, context path lengths, and hyperparameters of GNN models to
mitigate these issues. External Validity. To enhance the generalizability of the
results beyond the specific dataset we used, the approach should be tested on
a more diverse set of datasets, potentially including larger graphs with varying
characteristics. We aim to explore a more diverse dataset in our future work.

7 Conclusion
In this paper, we presented GLaM4CM, a Graph Language Modeling frame-
work for Conceptual Models and showed its genericity by using different ML
models, different extents of contextual information during learning, and com-
bining finetuned BERT models with GNN. We used the ontological stereotype
prediction task for OntoUML models to experimentally evaluate the prediction
accuracy for different configurations that analyze the impact of i) adding con-
textual information, i.e., neighboring nodes data, ii) the quantity of contextual
information, i.e., experimenting with different path lengths with k hops, iii)
the language modeling architecture used to capture the natural language fea-
tures, i.e., pre-trained BERT-based language models and GLoVE models, iv)
using GNNs on the learned linguistic features, and, finally, v) using the learned
ML models on unseen graphs to evaluate the learning transferred to new graphs.
Our extensive evaluation showed that GLaM4CM significantly outperforms other
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GNN-based and rule-based approaches. In our future work, we aim to explore
possibilities to integrate our stereotype predictor into either an existing On-
toUML tool (https://ontouml.org/ or a new web-based OntoUML modeling
editor by extending the currently developed GLSP-based UML editor [20]. Fur-
thermore, concerning GLaM4CM itself, we aim to apply GLaM4CM on several
applications like (meta-)model classification or model completion. We also aim
to create an accessible user interface for modelers to plug and play different mod-
eling languages, PLMs or GNN models for different conceptual modeling tasks.
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