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Abstract. Conceptual Models (CMs) are essential for information sys-
tems engineering since they provide explicit and detailed representations
of the subject domains at hand. Ontology-driven conceptual modeling
(ODCM) languages provide primitives for articulating these domain no-
tions based on the ontological categories put forth by upper-level (or
foundational) ontologies. Many existing CMs have been created using
ontologically-neutral languages (e.g., UML, ER). Connecting these mod-
els to ontological categories would provide better support for meaning ne-
gotiation, semantic interoperability, and complexity management. How-
ever, given the sheer size of this legacy base, manual stereotyping is a
prohibitive task. This paper addresses this problem by proposing an ap-
proach based on Graph Neural Networks towards automating the task
of stereotyping UML class diagrams with the meta-classes offered by the
ODCM language OntoUML. Since these meta-classes (stereotypes) rep-
resent ontological distinctions put forth by a foundational ontology, this
task is equivalent to ontological category prediction for these classes. To
enable this approach, we propose a strategy for representing CM vector
embeddings that preserve the model elements’ structure and ontological
categorization. Finally, we present an evaluation that shows convincing
learning of OntoUML model node embeddings used for OntoUML stereo-
type prediction.

Keywords: Ontology-Driven Conceptual models - Graph Neural Net-
works - Representation Learning.

1 Introduction

Conceptual Models (CMs) are essential for information systems engineering in
complex domains since they provide explicit and detailed representations of the
subject domains. Ontology-driven conceptual modeling languages provide prim-
itives for articulating these domain notions based on the ontological categories
put forth by upper-level (or foundational) ontologies. These Ontology-Driven
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Conceptual Models (ODCMs) are believed to provide better support for seman-
tic interoperability of the systems as shown in [I3] that methodologies and
modeling languages based on theoretically principled foundational ontologies
can mitigate a number of semantic interoperability problems that arise in con-
crete application scenarios. The fundamental ontological distinctions embodied
in a foundational ontology have been used a conceptual toolbox for supporting
ontological analysis, meaning explication and negotiation, and conceptual clari-
fication [2]. ODCM has been further applied for more sophisticated conceptual
model modularization mechanism for complexity management [I4] and database
design [3].

There exist, however, many CMs that have been created using ontologically-
neutral languages (e.g., UML, ER). Connecting models created with these lan-
guages to ontological categories would bring the aforementioned benefits to them.
However, given the sheer size of this legacy base, manually doing this is a pro-
hibitive task. For this reason, an automated approach for suitably addressing
this task would significantly advance the state of the art in the field.

Recently, advanced Artificial Intelligence approaches based on deep learn-
ing (DL) and Natural Language Processing (NLP) techniques have been used in
conceptual modeling to support intelligent modeling assistants [24], model trans-
formation [§], and metamodel classification [35]. However, these approaches limit
the CM representation to the CM elements’ labels and do not sufficiently exploit
the CM structure and real-world semantics to learn the vector representation of
these models. For example, Weyssow et al. [35] transform a CM into a tree-based
structure where each class has its attributes and associations as children. As a
result, they cannot capture the model’s graph structure. Konick et al. [20] limit
the representation learning of CM to labels. Due to the lack of such knowledge
transfer from a CM to its encoding prior to training, the learned ML models do
not generalize well to be used as a more robust vector representation of a CM.

To address the problem of predicting the ontological categorization of a CM,
we need semantically richer representations of these models. For that, we need
encodings that make the semantics of these models and their constituents ac-
cessible to the representation learning algorithms. Knowledge Graphs (KG) can
effectively organize and represent knowledge to be efficiently utilized in advanced
applications by applying different kinds of reasoning (e.g., rule-based and ML-
based). KG representation of CMs can comprehensively capture the CM’s graph
structure and relations between model elements. Therefore, instead of extracting
the information from CMs and applying ML algorithms to the extracted data, we
can use an intermediary KG representation of models and apply Al techniques
to learn their semantically richer representations. In particular, we propose a
type of KG that captures the ontological categorizations of the elements con-
stituting an ODCM. This is termed in the following a Conceptual Knowledge
Graph (CKG). CKGs embeddings preserve both the model’s original structure
and its elements’ ontological categorization (Contribution 1). We then employ
these embeddings to enable a Graph Neural Network (GNN)-based approach for
automating the task of stereotyping UML CMs (class diagrams) with the meta-



Enabling Representation Learning in ODCM using GNNs 3

classes offered by the ODCM language OntoUML [I5] (Contribution 2). Since
these meta-classes (stereotypes) represent ontological distinctions put forth by
the Unified Foundational Ontology (UFO) [15], this task is equivalent to a task
of ontological category attribution for these classes.

We employ our representation learning approach to learn the model nodes’
vector-based representation (embeddings). These embeddings can assist mod-
elers with intelligent conceptual modeling tasks, like ontology mapping, model
auto-completion, and model search. Since OntoUML and UFO are, respectively,
among the most used modeling languages and foundational ontologies in ODCM,
our proposal makes a clear contribution in advancing the state of art in this field.
We present an experimental evaluation to validate our approach and provide a
detailed comparative impact analysis of various design choices in our solution
architecture. We use the OntoUML FAIR model dataset described in [3].

The remainder of the paper is structured as follows: Section 2] briefly presents
relevant background, including a brief discussion about UFO/OntoUML, Knowl-
edge Graphs, (Graph) Representation Learning, and GNNs. Section [3| discusses
how our proposals for i) CM vector representations (embeddings), and i) onto-
logical categorization prediction advance the state of art in these two enterprises.
Sectionpresents the two contributions of this paper, namely, i) an approach for
transforming OntoUML models to CKGs; and #i) an approach for using GNN-
based representation learning that employs these CKGs for OntoUML stereotype
prediction. Section [5| reports the results of an experimental evaluation of our ap-
proach. Section [f] discusses the obtained results and their implications, as well
as threats to validity. Section [7] concludes the paper.

2 Background

In the following, we provide a brief background on conceptual modeling, ontolo-
gies, knowledge graphs, and graph-based machine learning.

Conceptual modeling is the activity of representing aspects of the physical
and social world for communication, learning, and problem-solving among hu-
man users [34]. Conceptualizations are entities that are abstractions (of a part)
of reality. A modeling language provides a set of modeling primitives that can
represent these conceptualizations. CMs represent abstractions using CML prim-
itives, and ontologies define the conceptualizations. An Ontology makes the
structure of domain conceptualization accessible through an explicit and formal
description. ODCM extends or supports conceptual modeling techniques by on-
tological theories that further formalize the conceptual modeling grammars [34],
thereby strengthening the ontological commitment of these languages and thus
improving the semantic quality of the CML.

Knowledge Graphs (KGs) represent a collection of interlinked descriptions
of entities — e.g., objects, events, and concepts. KGs provide a foundation for
data integration, fusion, analytics, and sharing [29] based on linked data and se-
mantic metadata. KGs have been recently used for the representation [30/32] of
CMs. Such KG-based representations can act as the intermediary representation
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of CMs to enable ML-based applications on CMs. Existing works (cf. [28]) for
creating KGs from structured and semi-structured data exist. Recently, a generic
approach has been proposed that is able to transform arbitrary CMs into CKGs
called CM2KG [30]. However CM2KG focuses only on the element labels and
metamodel information. We define the notion of Conceptual Knowledge Graphs
(CKGs) as follows: Conceptual Knowledge Graphs (CKG) are ontologically en-
riched KGs representing CMs. KGs are a suitable representation for applying
ML and solving question answering, recommendation, and information retrieval.
With CKGs, we aim to enable Al-based applications that exploit the full seman-
tic richness of ontologically enriched conceptual models.

Representation learning makes learning algorithms less dependent on
manual feature engineering by using DL methods to learn the underlying ex-
planatory factors hidden in the low-level sensory dataf4]. In NLP, representation
learning is applied to learn natural language (NL) words’ representations and
then use these representations in various tasks, e.g., sentence sentiment anal-
ysis. Language models (LM) are trained to learn the vector representations of
NL words. Initial works in LMs include GloVe [25], which learns non-contextual
word embeddings by learning a global (context-free) embedding for each word.
Pre-trained transformer-based LMs such as BERT [I0] can learn robust contex-
tual text embeddings and perform better than traditional non-contextual LMs.
Moreover, LMs such as BERT apply a masked language modeling approach,
where a language model is trained to predict missing words in a text based on
the surrounding context. The model is presented with text with some words ran-
domly masked (or hidden) out, and it must generate the missing words based
on the remaining words in the sentence.

Graph representation learning (GRL) creates a mapping that repre-
sents nodes or entire (sub)graphs as points in a low-dimensional vector space
that reflects the original graph’s structure, like global positions of nodes in the
graph and the structure of local graph neighborhoods [I7]. Graph representa-
tion techniques for an Encoder-Decoder framework [I7] involve two key map-
ping functions: an encoder function, which maps each node to a low-dimensional
vector, and a decoder function, which decodes the graph information from the
learned embeddings. E.g., the decoder might predict an edge between nodes or
a node class. GRL optimizes the encoder and decoder mappings to minimize the
error between the decoder mapping node embedding from the encoder and the
expected statistic value. E.g., if a decoder maps the node embedding to node
degree, then GRL minimizes the error between the decoder predicted degree and
the node’s degree in the initial graph.

The quality of the learned representation, i.e., how well it encodes the in-
tended meaning of the data, depends upon the data quality, the architecture of
the DL model, and the learning objectives. E.g., different descriptors of a graph
element, e.g., label, degree, and node type, will learn node representations to
different extents. Different approaches like node2vec [12] and random walk [26]
focus on node-level representation learning and graph representations [17].
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Graph Neural Networks are neural models that learn graph representa-
tions via message passing between graph nodes by information aggregation of a
node from its neighborhood. In recent years, variants of GNNs such as Graph
Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph
Recurrent Networks (GRN) have demonstrated good performance on many DL
tasks. GraphSAGE [16] generalized the aggregation function (compared to GCN,
which uses “mean” as the aggregation function) that generates node embeddings
by sampling and aggregating features from a node’s local neighborhood. Once
the representations are learned, GNNs achieve state-of-the-art performance in
link prediction, node classification, graph classification, and graph mining [36].

3 Related Work

Several works have recently proposed ML-based solutions for various conceptual
modeling tasks (cf. [6]7]). To use ML, CMs need to be transformed into vectors.
In the following, we provide an overview of the existing means to represent
CMs in a vector. We thereby mainly focus on encoding the conceptual model
characteristics (see Table [I]).

Koninck et al. [20] present representation learning techniques for BPMN busi-
ness processes. They use BPMN model elements’ label information and apply
doc2vec-like [21] vector representations of activities, traces, and logs and finally
aggregate these representations to produce the entire model’s vector represen-
tations. Luettgen et al. [23] present a similar representation learning technique
using word embeddings for business processes’ data to improve the encoding.
In their work, they add contextual information using the attributes of the ac-
tivities instead of only the BPMN elements’ labels. Both presented works use
the learned representations for model discovery, trace clustering, process model
selection, and process monitoring.

Burgueno et al. [8] present a Long Short Term Memory Neural Networks
(LSTM)-based approach to infer model transformations from UML class dia-
grams to ER models. Before feeding the models into LSTM, they transform
the input CM into a tree-based representation to capture the model elements
(e.g., classes, attributes) and their associations. Their approach also captures
contextual information and hierarchy, which is not preserved by using only the
object’s labels and attributes. Similarly, Weyssow et al. [35] present a meta-
model concepts recommendation system. They use the data from a dataset of
Ecore-based metamodels and train language models over the model elements’
data (name and attributes) to learn the word embeddings of the words present
in the metamodels. These learned word embeddings are then used to learn the
model representations.

Huo et al. [I8] propose an approach to detect business process anomalies using
graph encodings of process event log data coupled with graph autoencoders. The
authors choose GNNs to improve the encoding of the business process’s graph
structure during representation learning. Berquand et al. [5] present a KG-based
approach to enhance data linkage, reusability, and interpretability of engineering
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Table 1: Comparison of related works proposing an encoding for CM knowledge

Work CML MP Gs os
201 BPMN t X X
23] BPMN v X X
1] UML, ER v t X
35] ECore v + X
18] BPMN t v X

Ours OntoUML v 4 v

v Captured XNot Captured t Partially captured

MP: meta-properties, GS:graph structure, OS: ontological semantics

models. Furthermore, they augment the KG with a reasoner, an inference engine,
and an NLP layer to apply logical reasoning and extract crucial insights.

Table [If shows that the ontological semantics are not considered in the CM’s
transformation into a vector-based representation. All presented works focus
on using labels and attribute data to create a model’s vector representation.
Moreover, a tree-based structure only partially captures the structural informa-
tion of the CMs graph structure and does not capture longer dependencies, i.e.,
dependencies exceeding each element’s direct neighbors, whereas GNNs allow
capturing such information to larger depths.

Existing works align or map foundational ontologies with domain ontolo-
gies [33]. Felipe et al. [22] propose mapping rules between the noun synsets of
Wordnet and the top-level constructs of UFO. Several works use representation
learning on ontologies as graphs to achieve ontology mapping [31]. RDF2Vec [27]
considers entities’ lexical terms for learning node embeddings; however, they
treat an entity composed of multiple words as a single entity, which limits gen-
erality. OWL2Vec [9] considers word compositions and adds OWL constraints.
Junior et al. [19] propose a DL approach that automatically classifies domain
entities into top-level concepts using their informal definitions and the word em-
bedding of the terms. However, their work does not consider graph structure
contextual information and only relies on textual labels associated with each
entity to predict the foundational ontology concept. Graphmatcher [11] is an
ontology matching system that uses a graph attention approach to compute a
higher-level representation of a class together with its surrounding terms. Re-
garding representation learning, [I1] is similar to our approach, however, their
work does not consider ontological semantics from foundational ontologies.

Therefore, in this work, we present a GNN-based representation learning
approach for OntoUML models that not only captures the elements’ label and
attribute information but also considers the CM’s ontological semantics from a
foundational ontology, CML’s meta-properties and the graph structure informa-
tion of the model.

4 OntoUML Embeddings and Stereotype Prediction

This section presents the two contributions this paper aims to make. In Sec-
tion [4:I] we present an approach to transform OntoUML models into Conceptual
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<<mode>> :life stage {disjoint, complete}
Symp <<kind>> <<phase>>
severity : Severity Scale Person | 4 | child
start date : Date name : String
duration : Time age : Natural
height : Cm < <<phase>>
1.* <<characterization>> | Weight : Kg Teenager

1

<<role>> < <<phase>>
Patient — Adult
1
1.x <<mediation>>
<<relator>>
Treatment
okl FDSt,: I_)ollar 1..* <<mediation>> 1 * <<ro_|e_>>
duration : Time Physician / Has stereotype X Does not have stereotype

O Project X O atribute X O dass VvV
Package ) () Generalization X O Relation /'

Fig.1: An example OntoUML model (left) and transformed CKG (right)

Knowledge Graph embeddings. Section then discusses how the learned em-
beddings can be used for OntoUML stereotype prediction.

4.1 Transforming OntoUML models into CKGs embeddings

We will now describe the Onto UML2CKG transformation that aims to bridge the
CM knowledge encoding gap by incorporating ontological knowledge and graph-
structural knowledge in CKG creation — a prerequisite for the GNN-based node
embedding learning (see Section [4.2]). The transformation is composed of two
sequential steps (cf. Figure : i) knowledge encoding by transforming an input
OntoUML model into a CKG; and i) transforming the CKG into a vector space
to enable GNN-based processing of the CKG.

We will use the example OntoUML model in Fig. [[]to illustrate our approach.
The example shows classes and relations with ontological semantics from UFO
captured by the stereotype attribute of the classes and relationships, e.g., kind,
role, and mediation. In this step, we transform an input OntoUML model into a
CKG as shown on the right of Fig.[l}] A CKG is a directed graph that consists of
nodes and edges. Each node consists of multiple attributes, and each attribute
is associated with its value. The attributes capture the label information, meta-
properties like isAbstract, isDerived, and the stereotype meta-attribute, which
captures UFO-based ontological information for an element. Note that there
will, of course, be many more meta-properties present; however, we show only
isAbstract and isDerived for simplicity.

Serialized OntoUML models are structured into projects, which contain pack-
ages, and each package has OntoUML classes. OntoUML classes are related to
each other by generalization relationships, which connect abstract to concrete
classes and relation relationships of different types, namely, association, com-
position, and aggregation. Each class further contains attributes. The stereotype
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meta-attribute is associated with class and relation. To transform the input
model into a CKG, we create a graph from the model’s JSON serialization.
During our transformation, we consider the six different structures as nodes as
shown in Fig. [l} for e.g., project as V1, package as Vo and class V3. We consider
project and package as a node in our transformation because these structures
link multiple models present in a project. We model generalization and relation
relationships also as nodes because this allows us to associate each element in the
input model with its attributes. E.g., treating the mediation relation between
“Treatment” and “Physician” classes as a node allows us to separately add prop-
erties to the node as shown for node Vo in Fig. [, Furthermore, this makes our
approach suitable for stereotype prediction on the classes and relations. Each re-
lationship is associated with a source and a target class. To model relationships
as nodes, we create connections from the source class to the relationship node
and from the relationship node to the target class.

Once we have transformed the input model into a CKG, we need to initialize
a feature vector for each node in the CKG that will be trained using GNNs
to capture the node’s semantics. We consider each node’s semantics from its
NL label, its meta-properties, and its associated stereotype. Fig. [I] shows a class
with the label “Symptom”, stereotype “mode” and meta-properties associated
with this class like “isDerived” and “isAbstract”. The GNN algorithm captures
the graph structure properties (e.g., node degree) during training of the node
embeddings.

The label of each node can contain ontological semantics encoded in NL
words. We need a vector representation of a word that captures its contextual
information, which can further support predicting the ontological stereotype
associated with the label. Therefore we choose BERT as the language model
that learns robust contextual word embeddings. However, BERT is a pre-trained
model on a large corpus of domain-independent data and, therefore, lacks any
OntoUML-specific semantics. To produce domain-specific word embeddings, we
therefore also use a GloVe-based language model trained on OntoUML model
data exclusively. To that end, we extract all the node and attribute labels data
from each OntoUML model in our data set [3], create a data corpus from all
the models, and use this corpus to train a GloVe model to learn OntoUML
models-specific node label embeddings. To transform the meta-properties into
a numerical vector, we create a vector with a set of meta-properties. We then
assign a binary value for each meta-property, indicating the presence of that
meta-property in a CKG node. We concatenate the two vectors (label and meta-
properties, see Fig. [2)), and use it as the initial representation of a CKG node.
This vector-based representation is still incomplete because it does not yet cap-
ture the graph structure and information contributed by the node’s neighbors.
Once each node in the CKG is associated with a feature vector, each node is also
associated with its stereotype label information. We need to train the graphs for
a node classification task that predicts the correct OntoUML stereotype for each
node. Therefore, we mask (i.e., hide) the stereotype label for 20% of the nodes.
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<<mode>> life stage (disjolnt, complete} Language model-based ~ meta-properties concatenated
Symptom <<kind>> <<phase>> word embeddings vector vector
severity : Severity Scale Eers i Child V= T I = 111
start date : Date name : String i= . =
duration : Time age : Natural T —
height : Cm <<phase>> Untrained CKG Trained CKG
<<characterization>> | Weight : Kg Teenager [
1 initial embeddings: v, final embeddings: v,
<<role>> <<phase>> l \i ~ N T
Patient Adult h B
aten 4—‘ u (1 . ) m 5 ) N \@
1 3 i ||| 7 []] e [ @
1.5 | <<mediation>> CKG N\ CKG fed to Predict - —,
<<relator>> : N \
Treatment Creation @ N\ @ GNN stereotype @ \
total cost : Dollar . . | <<role>>
duration : Time 1> <<medation>> 1.* | physician GNN Layers

Input OntoUML Model V,—embedding of nodei  Sv;- stereotype of node i O node without stereotype O node with stereotype

Fig. 2: OntoUML Node Representation Learning Architecture

A transformed CKG with masked labels is shown in Fig. [2] with the nodes as V;,
Sv;,. We train the GNN to predict the masked label for each node correctly.

4.2 Using GNN for OntoUML Stereotype Prediction

In the following, we will explain the GNN-based training phase of the CKG
nodes’ vector embeddings which produces OntoUML node and edge embeddings.
Fig. 2] shows all the steps that lead to GNN-based representation learning of
OntoUML CMs. Steps 1 and 2, described in Section [£.1] produced GNN suitable
representation of the OntoUML CKG.

The CKG is fed to several GNN layers. These layers are responsible for up-
dating or optimizing and thereby “learning” the embeddings. The GNN captures
the structure and semantics of the involved nodes, edges, and even entire graphs
by aggregating contextual information between neighboring nodes. Fig. [2| shows
multiple layers which propagate information in each layer and extract high-level
information about the nodes. These layers are usually stacked to obtain bet-
ter representations [37]. Based on the information aggregation, the GNN model
predicts a node’s stereotype (class label). The objective function tries to mini-
mize the error in each node between the predicted stereotype label and the true
stereotype label. The error is measured by evaluating the binary cross-entropy
loss as follows:

L=~ (5N wioggi) + (1 = yi).dog(1 — 4.) W

where N represents the number of nodes in the CKG while y; and y; repre-
sent the ground truth, and GNN predicted stereotype of the node, respectively.
The error is then used to update the node embeddings. Once the training is
completed, the final updated embeddings form the learned node embeddings of
the CKG, and the stereotype label predicted based on the final learned embed-
dings forms the final predicted node label as shown in Fig. [2l The results of
the training are saved, and test accuracy provides an estimate of the quality of
learned node representations. We used a batched graph approach for training
the model. However, the model can be trained on each graph with a batch size
of 1. Depending upon the batch size, the GNN model can learn model-specific or
model-agnostic patterns. We will describe the different configurations in detail
in Sect. Bl
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5 Experimental Evaluation

A commonly-agreed encoding for ODCM models like OntoUML is missing. In
the following experimental evaluation, we account for this research gap by com-
prehensively discussing and comparing alternative configurations of the GNN
architecture and the impact of incorporating specific aspects of the CKG dur-
ing the training on the model quality. Eventually, we will report on the results
of the best-performing configurations when using the trained GNN model for
OntoUML stereotype prediction of a partial OntoUML model.

By transforming the models of our OntoUML dataset [3] into CKGs, we
produced a CKG dataset composed of 131 models with 32492 nodes and 287259
edgeﬂ (cf. Table [2)). Each OntoUML class and relationship can have properties
connected by edges to the corresponding node. Therefore we see a larger number
of edges in Table

Table 2: Dataset statistics

Attribute Nodes FSF # models # nodes # edges # labeled nodes
(PN)

Unfiltered 131 32492 287259 10400

With PNs FSF 100 101 26472 267199 8982
FSF 1000 40 12720 200913 3027

Unfiltered 131 19872 250086 10400

Without PNs FSF 100 113 18006 243159 9479
FSF 1000 72 12127 202562 4052

Table 3: Stereotypes with a frequency greater than 100

Stereotype Frequency Stereotype Frequency Stereotype Frequency

subKind 1460 category 412 derivation 184
kind 1155 event 384 participation 170
mediation 1151 roleMixin 337 datatype 126
role 1030 mode 316 type 118
relator 694 characterization 287 collective 113
material 524 phase 267 quality 105
componentOf 436 formal 218 memberOf 101

Each model has a fraction of the total nodes with a stereotype label. After
doing a frequency analysis of each stereotype, we selected stereotypes with more
than 100 occurrences over all models. We call the stereotypes in this set frequent
stereotypes. During training, we consider only the nodes associated with a fre-
quent stereotype. We call this node filtering frequent stereotype filtering (FSF).
FSF with value N implies selecting nodes with a stereotype with stereotype fre-
quency more than N.; E.g.; FSF 1000 implies nodes with stereotype frequency
more than 1000, e.g., “kind” in Table |3| will be selected. The stereotypes form
the different labels that the GNN needs to predict. Note that the connections
of nodes without stereotypes with the labeled nodes can still provide crucial
semantics. We only mask these nodes, so they are not considered for stereotype

fNote that the edges in Table [2|do not denote the OntoUML relations as they were
transformed into CKG nodes to enable their prediction.
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prediction. After FSF, we further filter the graphs if less than 20% of the total
nodes have a frequent stereotype. We consider FSF 100, which gives 21 different
classes, and FSF 1000, which gives four different classes.

In OntoUML models, a stereotype is not defined for nodes of type “At-
tribute”, which reduces the number of nodes with frequent stereotypes. Therefore
we distinguish the cases of training the GNN model with and without attribute
nodes (AN). Table |2 shows the dataset statistics with a total number of nodes
with stereotype labels based on attribute nodes consideration and FSF. Our
dataset has around 9000 labeled nodes for classifying nodes in 21 classes and
around 4000 for classifying nodes in four classes.

We explained that the textual data is transformed into vectors using two
different language models, i.e., GloVe and BERT; therefore, we compare the ef-
fect of both LMs on prediction accuracy. Moreover, we also analyze the effect of
incorporating the meta-properties on stereotype prediction accuracy by train-
ing the GNN, with and without the meta-properties vector. We used a batched
training approach that trains the GNN model over batches of CKGs of models.
Deep Graph Library |§| provides a way to combine a set of the graph in a batch of
fixed size from a set of graphs; therefore, we use two different batch sizes, once
with each graph individually and once with all the graphs together (batch size
40, 72, 101, and 131). Note that the different batch sizes result from different
configurations, as in Table 2l We use two different variants of GNN models, i.e.,
Graph Convolution Network (GCN) and GraphSage with max pooling as the
aggregation functiorﬂ for GraphSage. GCN uses a weighted sum of the infor-
mation from all node’s neighbors. We train our models with two hidden layers,
each of size 128. Therefore, we treat i) the GNN model, i7) the language model,
i11) meta-properties, iv) attribute nodes, and v) batch size as the different con-
figuration parameters. Next, we present the best-performing configurations and
then elaborate on the impact of different configuration parameter values.

5.1 Stereotype Prediction Accuracy

We evaluate the prediction accuracy individually using the percentage of cor-
rectly predicted stereotypes for each of the discussed configurations.

Table [] shows the best five configurations with their accuracy values, once
with four classes and once with 21 classes corresponding to FSF 1000 (Case 1)
and FSF 100 (Case 2). We get a maximum accuracy of 94% with four classes
and 67% with 21 classes, and we see that GraphSage outperforms GCN in both
cases for all top five configurations.

5.2 Configuration Impact Analysis

Besides the overall accuracy, we are interested to learn how the individual config-
uration parameters influence the prediction accuracy. Table [5|shows the average

$Deep Graph Library: https://www.dgl.ai/
"This function aggregates the information from a sample of node’s neighbors.
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Table 4: OntoUML representation learning results

GNN Model LM MP AN BS Accuracy

Node classification in four classes (Case 1)

GraphSage BERT Yes No 1 94.06%
GraphSage GloVe Yes No 1 93.88%
GraphSage BERT Yes Yes 1 93.81%
GraphSage GloVe Yes Yes 1 93.15%
GraphSage GloVe Yes Yes 40 90.20%

Node classification in 21 classes (Case 2)

GraphSage GloVe Yes Yes 1 67.05%
GraphSage GloVe Yes No 1 61.59%
GraphSage GloVe Yes Yes 101 59.70%
GraphSage GloVe Yes No 113 59.10%
GraphSage GloVe No No 1 44.85%

LM: Language model MP: meta-properties AN: Attribute Nodes BS: Batch Size

Table 5: Configuration parameter impact analysis

Variable Case 1 A Accuracy* Case 2 A Accuracy*
GNN Model 27.45% points T+ GCN — GraphSage 22.57% points T GCN — GraphSage
Metamodel Properties 21.17% points T No — Yes 18.34% points T No — Yes
Language Model 3.74% points BERT — GloVe 29.91% points * BERT — GloVe
Attribute Nodes 0.49% points + No — Yes 4.80% points | No — Yes
Batch Size 9.78% points T 72 — 1 3.48% points 1+ 113 — 1

change in accuracy of the learned GNN model on the best five configurations,
going from one parameter value to another for case 1 and case 2. We find that
the choice of the GNN model, the language model, and using meta-properties
(in the feature vector) impact the accuracy more than adding attribute nodes.
The accuracy increases by 27.45% points for Case 1 and 22.57% points for Case
2, going from GCN to GraphSage. This increase can be attributed to the pool-
ing aggregation of GraphSage, which uses the information only from the most
relevant neighbor to learn a node’s embedding, thereby reducing the noise in the
embedding. Similarly, using the meta-properties also increases the accuracy by
more than 18% points in both cases. Meta-properties seem to add more represen-
tational semantics to the nodes. Using GloVe over BERT slightly improves the
accuracy for Case 1. However, for Case 2, GloVe outperforms BERT by around
29% points. The training of GloVe-based word embeddings using the OntoUML-
specific domain semantics seems to impact the accuracy positively. Adding at-
tribute nodes has a poor impact on accuracy, in case 2, almost —5%points. This
may be because they add noise during training to the labeled nodes and do not
carry enough relevant information to contribute towards the representation of
the nodes connected to them. Finally, training the model on individual graphs
using a batch size of 1 rather than a single huge graph increases the accuracy.
It seems the GNN model is better capable of learning individual model patterns
instead of identifying patterns across multiple non-related models. Due to lack
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of space, we provide details and comparison plots of all configuration parameters
in our drive repositoryiﬂ

6 Discussion

In the previous section, we presented the performance results of the GNN model
for a node stereotype prediction task in OntoUML models. We showed the dif-
ferent possible training configurations and the impact of individual parameters
on the prediction accuracy of the GNN model. We trained the GNN Graph-
Sage model to predict the stereotype of an OntoUML model element from four
classes and 21 classes with 94% and 67% accuracy, respectively. These results
are very promising. The embeddings are learned using message passing in GNN,
which implies that the representation of each node reflects its semantics and its
relationship with the neighboring nodes. Moreover, the embeddings capture the
graph’s structural features and stereotype-based ontological semantics, which
supports the model in predicting the correct stereotype of the model elements
with good accuracy. The stereotype of an OntoUML model element carries rich
ontological semantics, and a representation that captures such semantics can be
applied in various conceptual modeling tasks where model semantics are crucial.
Therefore, the node embeddings learned using the stereotype prediction can now
be used for tasks like OntoUML model completion or model search by applying
graph-similarity metrics. E.g., cosine similarity between the representation of two
graphs can provide an estimate of model similarity, which can be further used
to search for similar models or detect model clones. An accuracy of 94% with-
out any hyperparameter tuning of the GNN model shows sufficient potential to
be improved using different graph encodings that better capture the ontological
semantics and more advanced variants like Graph Attention Transformer.

Of course, this research is not free from threats to validity.

Dataset size — The training dataset for the experiment consists only of 131
OntoUML models. Each model belongs to a specific domain, and the labels
consist of domain-specific information, which makes it difficult for the model to
learn generalized patterns. We mitigated this by training the OntoUML models
over the entire batch of models such that the GNN model learns general patterns
and not domain-specific ones. Our batch approach further mitigates this issue as
the batch of all the graphs consists of more than 30000 nodes and 10000 labeled
nodes.

Labels distribution — Each model consists of nodes with labels; however, cer-
tain node types (e.g., Generalization and Attribute) do not have any stereotype,
which makes up for about 50% of the nodes. Moreover, the stereotype distribu-
tion (see Table shows that the top four stereotypes make up about 21% of the
nodes in the dataset. This leads to an uneven distribution of the node classes and
affects the classifier model during training. We mitigated this by first training
the model on classes with higher frequency, i.e., top four stereotypes, and then

ttp://shorturl.at
Thttp://sh 1.at/EHKNT
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training the model on the top 20 classes with at least 100 nodes having that
stereotype.

Validation with Pure UML models - We validated our approach on OntoUML
models using a fraction of our dataset as a test set. We followed a masked label
prediction approach due to which, OntoUML models were suitable for training
our GNN models because we could mask a node’s stereotype and train the GNN
model to predict the masked node, which will not be possible with pure UML
models. However, UML models can also be transformed into CKG as our CM to
CKG approach is modeling language agnostic and therefore can be used to test
on our framework but therefore, testing our approach on pure UML models is
part of our future work.

7 Conclusion

In this work, we presented an OntoUML model representation learning approach
using an OntoUML to CKG transformation. This transformation encodes the
model knowledge, including not only the model elements labels but also UFO-
based foundational semantics from the elements’ stereotype, meta-properties,
the metamodel information, and it preserves the model’s graph structure. Our
work contributes toward learning semantically richer CMs’ embeddings that ele-
vate ML-based conceptual modeling tasks. In our approach, a GNN learns model
primitives’ vector embeddings trained on a node classification task to classify the
stereotype of the CKG node. We achieved this representation learning using an
open OntoUML models dataset. We exhaustively explored the dependence on
different parameters related to the encoding of knowledge, i.e., meta-properties,
attribute nodes, and language model, to understand the impact of these param-
eters on GNN model training. In the future, we plan to extend our approach
towards a larger dataset of the model and use the learned representations on
applications like a CMs search [I] where the model similarity is not restricted
to the model labels but extends to graph structure information, ontological, and
metamodel semantics. Finally, we plan to explore different GNN variants suitable
for representation learning of conceptual modeling language primitives.
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