

Historization of Enterprise Architecture Models Via

Enterprise Architecture Knowledge Graphs

Robin Bråtfors, Simon Hacks, and Dominik Bork

To appear in:

15th IFIP WG 8.1 Working Conference on the Practice of Enterprise

Modelling (PoEM'2022)

© 2022 by Springer.

Final version available soon:

www.model-engineering.info

http://www.model-engineering.info/

Historization of Enterprise Architecture Models
Via Enterprise Architecture Knowledge Graphs

Robin Br̊atfors1, Simon Hacks2, and Dominik Bork3

1 KTH Royal Institute of Technology, Stockholm, Sweden
bratfors@kth.se

2 University of Southern Denmark, Odense, Denmark
shacks@mmmi.sdu.dk

3 TU Wien, Business Informatics Group, Vienna, Austria
dominik.bork@tuwien.ac.at

Abstract. Enterprise Architecture (EA) is the discipline that aims to
provide a holistic view of the enterprise by explicating business and IT
alignment from the perspectives of high-level corporate strategy down
to daily operations and network infrastructures. EAs are consequently
complex as they compose and integrate many aspects on different archi-
tecture layers. A recent proposal to cope with this complexity and to
make EAs amenable to automated and intuitive visual analysis is the
transformation of EA models into EA Knowledge Graphs. A remaining
limitation of these approaches is that they perceive the EA to be static,
i.e., they represent and analyze EAs at a single point in time. In the paper
at hand, we introduce a historization concept, a prototypical implemen-
tation, and a performance analysis for how EAs can be represented and
processed to enable the analysis of their evolution.

Key words: enterprise architecture, historical analysis, knowledge graph

1 Introduction

IT and Communication Technology (ICT) is a crucial part of most modern
organizations, and many resources are invested to make them more efficient.
However, to achieve the full benefits of those investments, the business strategy
and the ICT of the organization need to be aligned, which can be achieved by
means of Enterprise Architecture (EA) [1]. EA is a discipline that aims to give
a comprehensive view on the architecture of an organization, i.e., the structure,
processes, and infrastructure of the organization [2]. An EA provides a holistic
view of the enterprise and lays out the insight to balance different requirements
and turn theoretical corporate strategy into real daily operations.

There is no agreement on an exact definition of EA, the literature shows
varying definitions [3]. This uncertainty can add challenges when it comes to the
quality assessment of EA, as different definitions naturally have different metrics
for what is good and what is bad. Providing a standardized way to measure the
quality of EA would therefore help with improving that quality and clarify the

2 Robin Br̊atfors et al.

definition of EA. EA debt is a concept introduced by Hacks et al. [4], which
depicts how much the current state of an EA deviates from a hypothetical ideal
state. The extent of that deviation naturally indicates the quality of the EA.

But to accurately ascertain that deviation one needs to be able to measure
the EA debt. A way to do that was proposed by Salentin and Hacks [5] with
the concept of EA smells. These smells are derived from the concept of code
smells and, in similar fashion, highlight specific flaws within an EA. Providing
additional ways to detect these smells would help with measuring EA debt, which
in turn would help with discerning the quality of EA.

Analyzing EA models as graphs is one out of four main categories of EA
analysis proposed by Barbosa [6]. The graph’s nodes and edges represent the
components and relationships of an EA, respectively, and this sort of graph
representation enables more ways to assess the quality of the EAs through graph-
based analysis methods and algorithms. Graph-based analysis does not need to
be overtly complicated to achieve some effect. Just the transformation of EAs
into graph structure grants some visual analysis capabilities that a stakeholder
can manually utilize [7, 8]. That is not to say that graph-based analysis cannot
be more complex or automatized. For example, further analysis of graphs can
be implemented with the use of filter and search methods [9].

Smajevic et al. [10] created the CM2KG platform [11] that is capable of
transforming conceptual models into Knowledge Graphs which enable graph-
based analysis of EA models [10, 12]. It transforms EA models into graphs, which
enable automatic analysis to detect flaws and points of improvement within
the EAs. Further work on the CM2KG platform allowed it to automatically
detect EA smells in transformed EA models [12] and to realize a plugin to the
widely used open EA modeling platform Archi [13, 14]. The transformation of
EA models to graphs (e.g., using the CM2KG platform) enables the realization
of a generic solution in the sense that model quality measures, like EA smells,
can be defined on the generic level of graph structures. The generic metrics can
then be evaluated on any EA representation, including ArchiMate. As the field
of EA is packed with different modeling languages and frameworks, a generic
and modeling language agnostic solution is favorable. This is also the value of
the approach compared to the analysis functionality offered by EA tools which
are always bound to the specific EA modeling language at hand.

While the previous works, particularly the CM2KG platform, show the fea-
sibility of transforming EA models into graph structures and using these EA
graphs for analysis, they also come with severe limitations. Most importantly
for the scope of our work, they considered only one state of the EA (i.e., the
graph) [8, 9, 15]. In other words, the changes resulting in an evolution of an EA
are neither considered not amenable to analysis. Even professional tools often
just provide solely basic capabilities to analyze/query the evolution of EA and
then are bound to their proprietary model. Thus, the identification of EA smells,
that can be identified by comparing different states of the EA, is not possible.
For example, to identify a Big Bang, a strategy where large changes to a sys-
tem are made at once instead of in several smaller steps, can be just identified

Historization of Enterprise Architecture Models 3

by analyzing the delta between different states of an EA. Adding historization
to graphs can provide the needed information by enabling an evolutionary per-
spective on EA analysis. Such a perspective allows for historical analysis and
gives enterprise architects automated and programmatic insight into the evolu-
tion of an EA. To be able to analyze the evolution of EA models, we deduce the
following two research questions:

RQ1: What is an appropriate means to represent EA models for historical
analysis?

RQ2: How performant is the historical analysis of even large EA Knowl-
edge Graphs?

The rest of this work is structured as follows: Background and related works
are discussed in Section 2. Section 3 proposes a concept for the historization
of EA graphs. An implementation of a platform for historical EA graphs is
introduced in Section 4. Performance and efficacy of the platform are evaluated
in Section 5. Eventually, we close this paper with a discussion of contributions
and limitations in Section 6 and concluding remarks in Section 7.

2 Background and Related Work

2.1 EA debts and Smells

In software development, Technical Debt was introduced by Cunningham [16]
as a metaphor for the potential cost caused by refactoring code that is not quite
right when it is created. The metaphor is inspired by financial debt, where the
debt is the future work that has to be done to improve the code.

Technical Debt allows organizations to handle quality issues related to their
application landscape, but it does not extend to other domains of an organiza-
tion. Hacks et al. [4] proposed to combine the Technical Debt metaphor with
EA into what they coined EA debt. EA debt aims to provide a more holistic
view of the organization by not only measuring the quality of software but also
measuring the quality of all the other domains and thus exposing faults within
the enterprise. They demonstrated the use of EA debt by giving examples of
how it can highlight problems that would be costly to solve at the moment but
need to be solved at some point, such as dependency issues [4]. The EA debt
can make management aware of the problem so that it can be solved as soon as
the dependency is met, instead of potentially forgetting about it.

Schmid [17] presents some shortcomings of Technical Debt, e.g., that the
debt needs to be considered with respect to future evolution, since the develop-
ment might be impacted by the current implementation and structure. Another
shortcoming is the fact that a certain debt might not have an actual impact on
the development, this potential debt is just structural issues and needs to be
differentiated from effective debt that actually impacts the development.

4 Robin Br̊atfors et al.

Thus, a goal of EA debt is to provide relevant factors for estimating the archi-
tecture’s quality to increase awareness and communication about its improve-
ment [5]. However, to accomplish that, EA debt would need to be measured.
Salentin and Hacks [5] have proposed to transfer the concept of Code Smells [18]
to the EA domain in what they call EA smells. Accordingly, Technical Debt
can be seen as a subset of EA debt [4] and thus many EA smells are just direct
translations from already existing Code Smells [5]. EA smells can be considered a
metric to measure the amount EA debt in an EA [5], representing the symptoms
of EA debt and thus increasing awareness of potential deficits in an EA. We can
differentiate two basic categories of EA smells regarding their input. The first
and biggest category are EA smells, that analyze an EA based on a single state
such as Bloated Service or Cyclic Dependency. The second category demands
information about the evolution of an EA to be able to analyze if the EA is
flawed. Those EA smells are for example Big Bang or Data-Driven Migration.
For the latter class of EA smells, we are missing means to effectively identify
them yet. To close this gap, this work proposes an underlying graph structure
that will enable the identification of such EA smells.

2.2 Graph-based Analysis of EA Models

Graph-based analysis is one of four main categories of EA analysis proposed
by Barbosa et al. in [6]. In this approach the architectures are represented as
graphs where EA components and relations are transformed into nodes and
edges, respectively. Once transformed, such a graph enables the application of
many existing graph-based algorithms and metrics [10].

Panas et al. [8] introduced an architecture that dealt purely with the visu-
alization of a model using a graph-based approach. While its visualization does
provide some clarity, the user has to process most of the information by their
own, which does not scale well for large and complex models. Chan et al. [9]
presented a visual graph-based tool to analyze an enterprise, but this tool allows
for more interactive exploration of the data. The user can use the tool to navi-
gate, filter, and search the graph to process complex graph structures. Naranjo
et al. [15] implemented another visual analysis tool, called PRIMROSe. They
wanted to utilize visualization on the basis that the human visual system is a
naturally great analysis tool, with the caveat that the complexity of EA models
requires additional aid to properly inspect and find information about them.

The common trend through these works is that none of them looked at the
history of graphs. Implementing a historization of the graphs on top of the bene-
fits of graph-based analysis would increase the value for enterprise architects. All
discussed works are further constrained to a specific kind of data input, which
could be improved. Creating a generic solution that allows for several kinds of
EA models to be used and analyzed increases its value.

First steps toward graph-based analysis of conceptual models were proposed
in [10, 11] with the CM2KG platform, which has been recently specialized for the
model-based construction of EA Knowledge Graphs (EAKG) [13] and integrated
as a plugin to the Archi platform [14]. Their solution transforms EA models into

Historization of Enterprise Architecture Models 5

EAKGs to enable the execution of graph analysis metrics like betweenness and
centrality. The usage of KGs also allows for automatic, efficient detection of EA
smells even in large EA graphs with the help of semantic KG queries [12]. What
was lacking in the original proposal of CM2KG, and what is the focus of this
work, is the representation of the evolution of EAs and how this evolution can
be represented in an EAKG and made accessible to historical analysis. We plan
to incorporate that feature also in the newly developed EAKG toolkit [14].

2.3 Graph Historization

Nuha [19] evaluated two different approaches to store the historical data of graph
databases: a delta-based approach and a snapshot-based approach. A combination
of the two approaches was then implemented to utilize the strengths of each
approach. This combination only created a snapshot whenever the difference
between versions got too large and the reconstruction time of a version took
too long. The evaluation of the solutions was performance-based and covered
the execution time of storing new data, the checkout time of reconstructing and
retrieving a past version, and the storage cost.

Other graph versioning solutions also utilized the delta-based approach [20,
21]. Castellort and Laurent [22] aimed to separate the versioned data from the
operational data of graphs by storing the versioned data in a revision graph.
Every node and relation in the data graph is represented by a node in the revision
graph called revision element. These revision elements are a part of linked lists
that represent the history of each data graph element at certain points in time.
Any transaction will create a new revision and any data graph element that is
modified during that transaction will get a new revision element in their linked
list. Conversely, unmodified data graph elements keep their last revision element.

3 Toward Historization for EA Models

The purpose of this work is to conceptualize the transformation of EA models
into a KG that preserves and represents the historical information found in EA
models over time (cf. RQ1). With such a conceptualization, we aim to develop
an IT artifact that enables users to view and interact with the historical graph
through visual analysis and queries in a performant manner (cf. RQ2). Such an
artifact will thus provide practitioners in the field of EA a generic solution to
track, store, and analyze their EA models over a period of time by means of EA
smells. The artifact might also create avenues for new research in the field that
could further improve architects’ ability to enhance their EAs. Accordingly, we
have identified the following objectives. Any implementation of the historization
would need to:

O1 . . . be performing well for realistic model sizes. If a system is not responsive
enough users might opt to stop using it. Research shows that users maximally
tolerate a loading time between 2 and 3 seconds [23, 24]. Consequently, our
solution should not exceed a querying time of 2 seconds.

6 Robin Br̊atfors et al.

O2 . . . be generic in the sense that it is independent from any particular EA
modeling language. We therefore aim to conceptualize a graph format that
can store the historical data of an EA independently of the concrete EA
modeling language.

O3 . . . integrate into the existing CM2KG platform to benefit from its existing
capabilities such as import from different conceptual models, transformation
into graph structures, and graph-based analysis [10, 12].

O4 . . . provide users with an intuitive way to represent, interact, and query his-
torical states of an EA model.

3.1 Graph Structure

To realize Objective 2, we rely on a GraphML representation of the EA model
which has been used by the CM2KG platform since its conception [10]. This
design decision also eases the integration of the historization with CM2KG (Ob-
jective 3). GraphML is standardized and modeling language-agnostic. Since the
graph transformation of the tool converts the EA models into GraphML, there
was already a large incentive to stick with that format.

The most important extensions from the original structure are related to the
question, how to represent historical EA versions in the graph, to keep track on
the micro evolution of a single element of the EA model (e.g., adding, removing,
or altering an element). We propose to add properties to every element of the
graph (cf. “Additional properties” of ai, bj , tk in Fig. 1). The purpose of these
properties is to track the modifications of an EA element (i.e., when? and how?),
which is a necessary information to be able to identify history-based EA smells.
Since these properties are not inherent to the EA models themselves, they have
to be inserted during the model to graph transformation. The properties are
further defined in Section 3.3, their implementation is reported in Section 4.

3.2 Storage

The design choices when it comes to the storage of the transformed graph are
not inherently important to the problem at hand since they do not overly affect
the requirements of the design. The only vital part is that the historical data is
stored in some way that differentiates each version of the model, since that is of
course mandatory for historization.

The two major ways to store graph histories are the snapshot-based and the
delta-based approaches. In this work, a design that implements both approaches
is satisfactory by storing the change date and the actual changes (cf. “Additional
properties” in Fig. 1) as well as each complete graph representation of the EA
model’s version and their evolutionary relation (cf. mi in Fig. 1). This is neces-
sary to keep track on the macro evolution of the EA model (i.e., the aggregated
set of micro evolutions performed in a single iteration). The only drawback of
implementing both is the increased storage space. This was weighed towards the
benefit of having fast access to any requested version and the capability to easily
show differences between versions of the entire model.

Historization of Enterprise Architecture Models 7

Fig. 1: Conceptual representation of realizing historization for EAKGs

3.3 Historization properties

To sort and catalog different chronological versions of a model, which is necessary
to realize historization and create useful insights for EA smell analysis, those
versions need a standardized property to differentiate and contextualize them
from each other. The simplest way to implement this is by adding a date property
to every element of the model, including the model itself. This property should
then be updated each time its respective element gets modified. A property
that marks the kind of modification that was performed on the element is also
important to be able to efficiently sort and query the history. For simplicity
reasons, all modifications to the model are identified and tracked each time the
model gets uploaded to our artifact. Of course, a more detailed differentiation
between the time of the actual change and the upload of the changes can be
made. However, to demonstrate our approach, it is solely important to identify
the order of the changes. Consequently, it makes no difference from a conceptual
point of view what the concrete representation of the time is and, moreover, the
implementation (see Section 4) can be easily adapted in future versions.

8 Robin Br̊atfors et al.

4 Implementation

During the transformation of a model, the currently selected version is fetched
for comparison purposes. The previously last addition to this version is of course
especially important to establish what kind of changes have been made during
the last upload; we will henceforth refer to it as the parent model of the new
uploaded model, and the new uploaded model as the child model.

The content of the child is sorted into HashMaps that represent the nodes
and edges of the graph. These HashMaps are then used to compare the content
of the child to the content of the parent by looking at their GraphML properties.
Since GraphML is based on XML, each model follows a similar structure, and a
generic comparison can be realized by matching the element’s ID in the models.
If an ID exists in the child but not in its parent, we conclude that this is a newly
added element. If an ID instead exists in the parent but not in the child, then
that element has been deleted. If an ID exists in both models but has diverging
content, then that element has been modified. An element that is identical in
parent and child is accordingly the same.

A summary of the differences between parent and child is compiled and stored
in a comprehensive file that tracks the whole history from the first upload. After
the transformation is completed, the relevant historization data is converted into
session attributes to be used by Thymeleaf templates which are then presented
to the user to interact with.

Interface The interface of the artifact consists of four areas: history menu,
history visualization, graph content, and querying.

The history menu shows basic information about the history as a whole such
as the number of branches, the total number of versions, and the date of the last
update to the history. It also offers the option to upload a new version of the
model as a new branch or as a continuation of an existing branch. The new graph
gets added as a child to the currently selected graph. There are also options to
visually compare the currently selected graph to either its parent, the first graph
of its branch, or the last graph of its branch (cf. Figure 2a).

The history visualization area shows a visual representation of the history,
enabling the user to view and interact with the model history. Each node rep-
resents a version of the model and in the baseline view they all have a color to
indicate if they belong to the same branch. When hovering over a node, a tooltip
appears and provides some information about the version in question, such as
the differences to its parent and when it was uploaded. There are some buttons
to ease the navigation through large histories. When clicking the buttons, the
view instantly adapts to either the first graph, the last graph, or the currently
selected graph. A graph can be selected by clicking on its node. The user can
also view any version of the history by entering its ID in the search bar.

The graph content area shows the GraphML content of the selected graph.
This content can also be downloaded as a GraphML file or viewed visually with
the aid of Neo4j.

The querying area provides the user with the ability to query the history on
some model attributes, such as the update time or name of graph element. The

Historization of Enterprise Architecture Models 9

(a) Artifact interface

(b) Delta-based query of a history

Fig. 2: Screenshots of the developed artifact

10 Robin Br̊atfors et al.

available queries show either the attributes’ presence or how they have changed
through the course of the historization. Moreover, the user can analyze the EA’s
evolution by means of pre-defined EA smells loaded from the central EA smells
catalog. A more detailed explanation of how the queries work is provided in the
next section.

Queries Two implemented queries have been realized to explore the model
history. There is a delta-based query (cf. Figure 2b) and a presence-based query.
The two queries are functionally similar since checking for the presence of some-
thing can be seen as a sub-task of checking if that something has changed. If
a previously present object is not present any longer, then that object has ob-
viously been removed, which essentially summarizes how the delta-based query
determines if a model element has been deleted. Checking if an element has been
added is the same process but reversed, namely if it is present in the child but
not the parent then it is an added element.

5 Analysis

Hitherto, we have presented the implementation to realize a historization of EA
models for further analysis with EA smells addressing the Objectives 2 to 4.
To prove that the presented solution meets the performance requirements of
Objective 1, we conducted a set of experiments, that will be discussed next.

Transformation time. The time required to transform the model into a
history graph is shown in the scatter plot of Figure 3a. Each point represents
an average time of five different transformations of a certain version of a model,
indicating a polynomial growth. Taking the average of just five executions was
deemed sufficient as the transformation time never deviated more than 5% from
each run. Each version differed in the number of elements it contained (16, 59,
124, 189, 254, 319, 644, 969, 1294, 1619). The elements had a fairly even split of
nodes and edges.

Fetching time. The fetching time, the time to initially load an existing
history, for two histories with similar overall sizes but different make-up is shown
in Figure 3b. The histories both have around 46,000 elements but one history
only represents 32 total models while the other consists of 506 smaller ones. The
chart shows the results for five fetches for each history, measured in milliseconds.
We can see that the fetching time for several small models is slightly higher than
the fetching time for fewer large models.

Querying time. Figure 3c compares two implemented queries when exe-
cuted on a history with around 140,000 elements. The delta query explored the
difference between two evolutions of the EA model, i.e., it identified all changes
between the two model evolutions. The presence query queried a single EA model
evolution for the presence of a certain element. Therefore, each element in a single
EA model evolution was assessed for a certain property and returned if found.
The chart indicates that the two queries have essentially identical execution
times.

Historization of Enterprise Architecture Models 11

(a) Transformation time of models (b) Fetching time of histories

(c) Query comparison (d) Querying differing history composi-
tions

Fig. 3: Transformation and Querying analysis

Next, we elaborate the influence of the model size on the query times. There-
fore, we use the same query for different sizes of models. This is illustrated in
Figure 3d. Both queried histories had about 46,000 elements in total, but one
history only represented 32 models while the other consisted of 506 smaller ones.
The chart shows that the history with more and smaller graphs had longer exe-
cution times when queried.

Figure 4 shows the execution time of the delta-based query and how it in-
creases based on the element count of the history it is querying. We can derive
from the figure a linear relationship between the query execution time and the
element count of the queried model.

12 Robin Br̊atfors et al.

Fig. 4: Query execution time

6 Discussion

We believe even a rudimentary conceptualization of graph historization provides
advantages when it comes to the analysis of EA models. Just the means of being
able to store a history of models provides an easier way to access past versions
of a model in a coherent and organized way. Simpler and faster access to past
versions makes it easier to revert any mistakes by simply returning to a previous
version of the model. Adding the capability of visualizing the history grants
further benefits in terms of giving the user an overview of the history and a
greater understanding of how each version of the model relates to one another.
Future empirical research with our artifact will of course attest these claims.

The currently implemented queries in this work provide visual clarity of how
the status of an attribute or node changed over time to ease the analysis via EA
smells. Furthermore, the added functionality of the historization being generic
means that a greater number of users might find the artifact helpful, especially
if they are locked into a certain modeling platform and cannot for some reason
switch.

The performance could be improved in a number of areas, especially the
transformation time of models. The transformation time has a polynomial
growth in relation to the number of model elements. The bulk of the time is
spent on sorting the content of the child and then comparing that content to the
content of its parent. Given a proper sorting of the content, the time complexity
of the comparison should be no higher than linear since HashMaps are used to
store the data, and the complexity for lookups in HashMaps is constant.

It can be argued that this polynomial growth can cause issues, due to long
waiting times for large models. However, classically, the transformation of a
single EA model evolution will only happen once, as afterwards the graph is
already stored in the database. With that in mind, the transformation time

Historization of Enterprise Architecture Models 13

should be tolerable for users, especially as querying on the graph representation
will be performed significantly more often.

From the results, we see that the number of graphs in a history had a slightly
bigger impact on the execution time of fetching and querying compared to the
individual graph sizes. Accordingly, the artifact is in its current state more suit-
able for large models with few updates than for smaller models that might be
updated more frequently. Update frequency and model size are not necessar-
ily linked, but it might be something to take into consideration from a storage
perspective since both approaches to a history will result in similar history sizes.

The functionality that should see the most use is most likely the querying
of the history since varying the attribute input of the query will grant different
insights. With that in mind, it is beneficial, that the query execution time grows
linearly as it should stay within a tolerable range for any history with less than
500,000 elements (i.e., models far exceeding the size of typical EAs). Since the
implemented queries inspect every element in the history for a certain property,
it would be difficult to improve the execution time any further as long as the
data structure becomes not optimized towards certain expected queries, e.g.,
building sets of nodes with same properties.

7 Conclusion

With this work, we aimed to contribute toward historical analysis of EA models
and to provide a solution that allows a satisfactory analysis with respect to
performance and efficacy.

This overall aim has been detailed into four different objectives. Objective 1
demanded that the solution should not exceed a loading time of 2 seconds. This
objective has been partly realized, depending on the size of the input models.
If the size of the model exceeds approximately 750 elements, the transformation
time will be larger than 2 seconds with polynomial growth. However, this is
still acceptable, as a single EA model evolution only needs to be transformed
once and then can be queried several times by the enterprise architects. Thus,
the analyst will query the model more often and our solution performs well for
querying. Even for large models with more than 100,000 elements the execution
time remains around 1 second.

Objective 2 is realized by the graph-presentation that is shown in Figure 1,
and Objective 3 by the integration of the solution into the existing CM2KG plat-
form. Finally, we developed a graphical user interface that eases the exploration
of the solution (cf. Section 4).

We believe this research establishes a foundation for several streams of future
research. Firstly, it enables us in future to detect EA smells that we were not able
to detect before, due to missing information. For instance, we can now detect
the Big Bang EA smell by analyzing the number of changes between different
evolutions of an EA. From a theoretical viewpoint, we want to involve enterprise
architects in an empirical evaluation of our solution. This will add insights with
respect to the usability, ease of use, and intention to use of our solution by

14 Robin Br̊atfors et al.

practitioners. From a technical point of view, we aim to further experiment
with the artifact and different implementations of transformation, fetching, and
querying algorithms in order to further improve the usability. Hitherto, we have
solely conducted a technical evaluation of our approach. A deeper evaluation of
the functionality is missing, especially we aim for a discussion with practitioners
about their concrete needs and foreseen questions towards the historization of EA
models. Eventually, we intend to deploy the artifact publicly to ease testing and
use by the enterprise modeling and enterprise architecture community. Besides,
the source code is available on github1.

Finally, we want to make our research easily integrate-able into enterprise
architects daily working live. Therefore, we aim to integrate our approach into
wide-spread tooling such as Archi [14]. Thus, the analysis capabilities will be
available directly at the place in which the architect is conducting the modeling.
Moreover, due to our agnostic approach relying on Knowledge Graphs, our ap-
proach can be easily integrated with existing tooling and also enables analysis
of EA smells in proprietary EA model notations of existing tool vendors.

Acknowledgements

This work has been partially funded through the Erasmus+ KA220-HED project
Digital Platform Enterprise (project no.: 2021-1-RO01-KA220-HED-000027576)
and the Austrian Research Promotion Agency via the Austrian Competence
Center for Digital Production (contract no.: 854187).

References

1. Olsen, D.H.: Enterprise architecture management challenges in the norwegian
health sector. Procedia Computer Science 121 (2017) 637–645

2. Lankhorst, M., Iacob, M.E., Jonkers, H., van der Torre, L., Proper, H., Arbab,
F., Boer, F., Bonsangue, M., Hoppenbrouwers, S., Veldhuijzen van Zanten, G.,
Groenewegen, L., Buuren, R., Slagter, R., Campschroer, J., Steen, M., Stam, A.,
Wieringa, R., Eck, P., Krukkert, D., Janssen, W.: Enterprise architecture at work:
Modelling, communication, and analysis. Springer (2017)

3. Saint-Louis, P., Morency, M.C., Lapalme, J.: Defining enterprise architecture: A
systematic literature review. In: 2017 IEEE 21st International Enterprise Dis-
tributed Object Computing Workshop (EDOCW). (2017) 41–49

4. Hacks, S., Höfert, H., Salentin, J., Yeong, Y.C., Lichter, H.: Towards the defini-
tion of enterprise architecture debts. In: 2019 IEEE 23rd International Enterprise
Distributed Object Computing Workshop (EDOCW). (2019) 9–16

5. Salentin, J., Hacks, S.: Towards a catalog of enterprise architecture smells. In:
15th International Conference on Wirtschaftsinformatik (WI). (2020)

6. Barbosa, A., Santana, A., Hacks, S., von Stein, N.: A taxonomy for enterprise
architecture analysis research. In: 21st International Conference on Enterprise
Information Systems. (2019)

1 https://github.com/rbratfors/CM2KG

Historization of Enterprise Architecture Models 15

7. Garg, A., Kazman, R., Chen, H.M.: Interface descriptions for enterprise architec-
ture. Sci. Comput. Program. 61 (2006) 4–15

8. Panas, T., Lincke, R., Löwe, W.: Online-configuration of software visualizations
with vizz3d. In: Proceedings of the 2005 ACM Symposium on Software Visualiza-
tion. SoftVis ’05 (2005) 173–182

9. Chan, Y.H., Keeton, K., Ma, K.L.: Interactive visual analysis of hierarchical en-
terprise data. In: 2010 IEEE 12th Conference on Commerce and Enterprise Com-
puting. (2010) 180–187

10. Smajevic, M., Bork, D.: Towards graph-based analysis of enterprise architecture
models. In: Conceptual Modeling - 40th International Conference, ER 2021, Virtual
Event, October 18-21, 2021, Proceedings, Springer (2021) 199–209

11. Smajevic, M., Bork, D.: From conceptual models to knowledge graphs: A generic
model transformation platform. In: ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion, MODELS 2021 Compan-
ion, IEEE (2021) 610–614

12. Smajevic, M., Hacks, S., Bork, D.: Using knowledge graphs to detect enterprise
architecture smells. In: The Practice of Enterprise Modeling - 14th IFIP WG 8.1
Working Conference, PoEM 2021, Proceedings. (2021) 48–63

13. Glaser, P.L., Ali, S.J., Sallinger, E., Bork, D.: Model-based construction of en-
terprise architecture knowledge graphs. In: 26th International EDOC Conference
(EDOC’2022). (2022) in press

14. Glaser, P.L., Ali, S.J., Sallinger, E., Bork, D.: Exploring enterprise architecture
knowledge graphs in archi: The eakg toolkit. In: 26th International EDOC Con-
ference (EDOC’2022) – Tools and Demos. (2022) in press

15. Naranjo, D., Sánchez, M.E., Villalobos, J.: Primrose: A graph-based approach
for enterprise architecture analysis. In: International Conference on Enterprise
Information Systems. (2014)

16. Cunningham, W.: The wycash portfolio management system. OOPS Messenger 4
(1992) 29–30

17. Schmid, K.: On the limits of the technical debt metaphor some guidance on going
beyond. In: 4th International Workshop on Managing Technical Debt. (2013) 63–66

18. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(2018)

19. Nuha, M.U.: Data versioning for graph databases. Master’s thesis, TU Delft
Electrical Engineering (2019)

20. Gómez, A., Cabot, J., Wimmer, M.: Temporalemf: A temporal metamodeling
framework. In: 37th International Conference, ER 2018, Xi’an, China, October
22–25, 2018, Proceedings. (2018) 365–381

21. Vijitbenjaronk, W.D., Lee, J., Suzumura, T., Tanase, G.: Scalable time-versioning
support for property graph databases. In: 2017 IEEE International Conference on
Big Data (Big Data). (2017) 1580–1589

22. Castelltort, A., Laurent, A.: Representing history in graph-oriented nosql
databases: A versioning system. In: Eighth International Conference on Digital
Information Management (ICDIM 2013). (2013) 228–234

23. An, D.: Find out how you stack up to new industry benchmarks for mobile page
speed https://www.thinkwithgoogle.com/intl/en-ca/marketing-strategies/app-
and-mobile/mobile-page-speed-new-industry-benchmarks/ Accessed: 2022-06-12.

24. Nah, F.: A study on tolerable waiting time: How long are web users willing to
wait? Behaviour & Information Technology - Behaviour & IT 23 (01 2003) 285

