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Abstract. Traditional process mining relies on symbolic event logs that
represent activities as discrete labels, often overlooking the rich con-
textual and semantic nuances found in real-world data such as tex-
tual reports, visual records, or sensor outputs. In this paper, we pro-
pose a paradigm shift: using the internal representations of AI mod-
els—embedding spaces learned from data—as the foundation for pro-
cess mining. Our framework performs both process discovery and con-
formance checking directly in these continuous vector spaces, enabling
the detection of semantically similar yet lexically divergent events.
We evaluate our approach along three dimensions: (i) whether embedding-
based discovery maintains or improves accuracy over symbolic baselines,
(ii) whether multimodal sources such as video and audio can be processed
as unified embeddings for mining purposes, and (iii) whether confor-
mance checking in embedding space enables alignment across noisy or
semantically perturbed traces. By treating AI’s internal representations
as a novel form of process evidence, we show how process mining can
move beyond traditional logs and unlock deeper, semantically enriched
interpretations of real-world workflows.

Keywords: Embedding Space · Internal Representations · AI Inter-
pretability · Semantic Event Matching · Multimodal Data

1 Introduction

Process models serve as instruments in describing and analyzing complex work-
flows, ranging from administrative procedures to large-scale industrial opera-
tions [1]. Over time, process modeling has shifted from confidence-based ap-
proaches, which rely heavily on expert opinions, to evidence-based approaches
underpinned by operational data. This transformation has culminated in in-
creasingly refined methods such as object-centric process discovery [26], which
captures interactions among multiple entities rather than restricting itself to
sequences of single activities. Within the broader domain of Business Process
Management [19], process mining encompasses several core tasks, including pro-
cess discovery [18], and conformance checking [23]. Process discovery infers a
descriptive model directly from event logs, while conformance checking eval-
uates the alignment between recorded and expected process behaviors. These
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methodologies are becoming increasingly relevant in light of rapid digital trans-
formations: the global market for process mining is projected to reach USD 46.39
billion by 2032 [7].

Originally limited to structured text-based logs, process mining now extends
into more complex domains including sensor data [2] and multimedia sources
such as video streams [9]. Efforts are underway to merge artificial intelligence
(AI) with process mining so that event logs become richer and process mining
algorithms get applicable to unstructured data. Linking AI and process min-
ing in this manner promises greater expressiveness, as real-world events become
interpretable within structured representations. At the prompting level, tech-
niques such as few-shot learning and chain-of-thought reasoning enhance process
mining by guiding AI models to generate more context-aware and interpretable
insights. However, a more robust approach involves using embedding spaces,
which capture semantic associations in a structured manner.

Recent developments indicate that problem-solving can be carried out di-
rectly in an embedding space [17]. Simultaneously, approximate process discov-
ery [6] and approximate conformance checking [11] suggest that process mining
tasks can be made more efficient by partially offloading computation to vec-
tor representations. While current techniques encode inputs to vectors, they do
not leverage the rich semantics present in embedding spaces learned by large
pre-trained models.

An important open question emerges here: if mathematical and logical rea-
soning can be performed in embedding spaces [17], is it possible to execute key
process mining operations—namely process discovery and conformance checking—
directly in these spaces as well? Our work addresses this question by proposing
a framework that relaxes process mining tasks to function on AI embeddings.
We hypothesize that this method can i) exceed the accuracy of symbolic-only
approaches, ii) handle real-world unstructured multimodal data as event logs,
and iii) can utilize knowledge enraptured in AI models for process mining tasks.
Our research questions (RQ) are:

– RQ1: Can embedding-based representations of events maintain or improve
the accuracy of process discovery compared to traditional symbolic tech-
niques?

– RQ2: To what extent can AI embeddings serve as a unified representation
for events extracted from multimodal sources (e.g., video, text), enabling
process mining on unstructured data?

– RQ3: Does reasoning in embedding space allow for more intuitive confor-
mance checking by identifying semantically similar yet lexically different
events?

As organizations increasingly seek to mine processes from raw data-text,
images, and beyond—our approach has the potential to bridge the gap between
the representational power of AI models and the practical needs of process mining
tasks.

The remainder of this paper is organized as follows. First, we review the
related work on approximate process mining and embedding-space operations
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(Section 2). Next, we present our general view for relaxed process mining (Sec-
tion 3) and a proof of concept (Section 4), followed by an evaluation (Section 5).
We conclude in Section 6. The supplementary material for this paper is available
in our GitHub repository1.

2 Related Work

In this section, we review the literature that underpins our research. We first
discuss the use of AI in process mining and approximate process mining tech-
niques, which relax traditional computational requirements to improve efficiency
and generality. We then turn to studies on embedding-space operations, where
embedding-based representations enable approaches to data analysis and rea-
soning.

Recent work has demonstrated the potential of large language models in
process mining through prompting-based techniques. For instance, Neuberger et
al. [20] propose a universal prompting strategy to extract process model infor-
mation from natural language text, illustrating how AI can be used to interpret
complex textual descriptions of processes. Similarly, Rebmann et al. [22] evaluate
the capacity of such models to address semantics-aware process mining tasks. AI
can be used for process mining tasks directly via prompting, without the need
for approximation methods or reliance on vector-based representations.

Approximate Process Mining. Some process mining approaches aim at
reducing computational complexity or improving generalization by using vector
representations, also referred to as latent space representations, embeddings, or
encodings. The term encoding can also refer to non-vector encodings (cf. this re-
view of visual encodings in process mining tools [15]). Investigations into vector-
encoding techniques are found in work such as [10] that introduces a stakeholder-
specific, jargon-based representation of multimodal business process data, [4]
that demonstrates the use of LSTMmodels for learning accurate business process
representations, the SMT-based encoding of process discovery problems [25], and
outcome-oriented predictive process monitoring through image encoding [21].
Further investigations into encoding techniques related to process mining are
found in the comparative study of trace encoding methods [24]. Encoding of
process mining data led towards approximate methods to address the computa-
tional challenges inherent in exact process discovery and conformance checking.
Therefore, van Detten et al. [6] present an approximate inductive miner to derive
process models, while Gianola et al. [11] develop methods for fast approximate
conformance checking via probabilistic alignments.

Embedding-space Operations. Embedding spaces were already in use
in the 1970s [16], and are fundamental to modern data analysis, enabling the
conversion of complex, multimodal data into a compact (latent) representation
that simplifies further processing and inference. For example, a study inves-
tigates mathematical reasoning within these embedding spaces, revealing how

1 Supplementary material: https://github.com/aleksandargavric/relaxed-pm.
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abstract representations can encapsulate logical relationships and support com-
putational reasoning [17]. Another work designs optimized clustering embedding
spaces, demonstrating that deep representations can be used effectively to un-
cover inherent data structures [5]. Expanding on these ideas, a largely trained
unified embedding space harmonizes data from diverse modalities [12], enhanc-
ing the integration of heterogeneous information into a single embedding space.
Crossmodal embedding techniques tailored for dynamic tasks have shown that
specialized embedding spaces can significantly improve action learning capa-
bilities [13]. Moreover, the concept of operational embedding spaces has been
examined in [14], illustrating their practical utility in a range of applications by
providing efficient and flexible representations of complex operations.

Our position. On one hand, the concept of approximate process mining
has been advanced by using vector representations to overcome the limitations
of exact process discovery and conformance checking. Our approach extends
vector-space inputs by adopting semantically-rich embedding spaces. On the
other hand, embedding space operations have been recognized for their abil-
ity to encapsulate complex data into compact representations that support ro-
bust inference and reasoning. We aim to allow process mining to operate in an
embedding space to enhance contextual mappings between real-world observed
behaviors and their underlying processes.

3 Relaxed Process Mining: The General Perspective

Building on the premise that process-relevant information can be encoded in
the latent spaces of modern AI models, we present a general perspective that
extends classical process mining and conformance checking methods to operate
within an embedding space. Traditional process mining algorithms, such as the
inductive miner, and conformance checking techniques are typically defined over
discrete events with crisp boundaries. However, real-world data is often noisy,
heterogeneous, and semantically ambiguous—conditions under which symbolic
techniques struggle. To overcome these limitations, we introduce a relaxed ap-
proach in which each event is represented by a continuous embedding e ∈ Rn

derived from ImageBind [12], and similarities between events are assessed over a
neighborhood defined by the ball B(e, δ) = {x ∈ Rn : ∥x− e∥ ≤ δ}, where δ > 0
controls the tolerance for noise and variability. Our perspective accommodates
semantic equivalence across synonyms by considering sets of embeddings for dif-
ferent words and by ensuring that events with embeddings within a distance
δ are treated as equivalent. Moreover, in the context of multimodal event logs
derived from video data, multiple frames or scenes that are similar enough are
aggregated into single activities using the same relaxed notion of similarity.

The first part of our perspective develops a relaxed process discovery algo-
rithm that recursively partitions the event log into subprocesses based on relaxed
cuts, where each cut is validated by checking that events in one partition have
corresponding events in the other within a prescribed distance. The second part
extends this methodology to conformance checking by aligning observed traces
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with a modeled process; here, each observed event is matched against a process
activity by minimizing a cost function based on the Euclidean distance in the
embedding space, with an allowance for skipped events at a fixed penalty.

Definition 1 (Relaxed Process Mining). Let E = {e1, e2, . . . , em} be an
event log, where each event ei is represented by an embedding in Rn. In relaxed
process mining, events are treated as similar (and thus potentially interchange-
able) if their embeddings lie within a specified distance δ > 0, i.e., if |ei−ej | ≤ δ.
This relaxed notion of equivalence supports:

1. Semantic variability. Multiple words or labels that share similar embed-
dings (e.g., synonyms) are considered equivalent.

2. Multimodal data. Events derived from video, images, or audio are com-
pared in a continuous space; frames or segments that are sufficiently close in
this space are grouped as one activity.

3. Noise tolerance. Small perturbations in event embeddings do not alter the
process structure, mitigating issues arising from measurement or labeling
noise.

Hence, relaxed process mining generalizes classical process mining tasks (such
as discovery, and conformance checking) to operate over neighborhoods in the
embedding space rather than strict, discrete labels.

Definition 2 (Relaxed Process Discovery). Relaxed process discovery is
the specialization of relaxed process mining to the task of constructing a process
model (e.g., a Petri net, BPMN diagram, or process tree) from an event log
E ⊆ Rn. Formally, given:

– A threshold parameter δ > 0 defining when two embeddings are considered
equivalent,

– An optional noise tolerance parameter α ∈ [0, 1] allowing a fraction of events
to be disregarded,

a relaxed process discovery algorithm partitions and clusters events in E by
grouping those whose embeddings lie within distance δ of a representative refer-
ence. These groups are then used to induce high-level subprocesses and control-
flow relations (e.g., sequence, parallelism, choice) in the resulting model. Events
or groups of events failing to meet the relaxed equivalence criteria may be treated
as noise (at most α · 100% of the log) or assigned a penalty-based cost. The final
outcome is a process model that tolerates variation in labels or multimodal data
representations.

Definition 3 (Relaxed Conformance Checking). Let T = ⟨e1, e2, . . . , em⟩
be an observed trace whose events are represented by embeddings in Rn, and let
M = ⟨r1, r2, . . . , rL⟩ be a modeled process whose activities are also represented
by embeddings in Rn. A relaxation parameter δ > 0 specifies when an event is
considered close enough to match a modeled activity; that is, if |ei − rk| ≤ δ,
then ei and rk are deemed equivalent.
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A relaxed alignment is a function

A : {e1, e2, . . . , em} → {r1, r2, . . . , rL} ∪ {ϵ},

where each observed event is assigned either to one of the modeled activities or
to a skip symbol ϵ (representing a deviation). Let γ > 0 be a fixed penalty for
skipping an event. The cost of aligning ei with rk is

c(ei, rk) =

{
| ei − rk|, if | ei − rk| ≤ δ,

+∞, otherwise,

and the cost of skipping an event ei is c(ei, ϵ) = γ. The total alignment cost is

C(A) =

m∑
i=1

c
(
ei, A(ei)

)
,

where A must preserve the order of events in T ; that is, if ei is aligned to rk
and ej to rk′ with i < j, then k ≤ k′. The optimal relaxed alignment A∗ is the
one minimizing C(A) over all valid alignments.

Given a normalization constant Cmax (e.g., Cmax = m ·max{δ, γ}), the re-
laxed fitness of trace T with respect to the model M is

F (T ) = 1 − C(A∗)

Cmax
.

If F (T ) = 1, then the observed trace perfectly fits the model within distance δ.
Moreover, a noise tolerance α ∈ [0, 1] can be specified so that if the fraction

of events that cannot match any modeled activity is no more than α, the trace
is still deemed acceptable. Formally, if∣∣∣{ ei ∈ T : ∀ k, | ei − rk| > δ}

∣∣∣
|T |

≤ α,

then T is accepted as conformant despite the existence of partial mismatches.
This framework readily accommodates synonyms or multiple-frame video data by
treating sets of embeddings representing the same concept or scene as equivalent
under the relaxed matching criterion | ei − rk| ≤ δ.

4 Proof of Concept: Custom Solution for Relaxed Process
Mining

After defining Relaxed Process Mining in Sec. 3, we develop a custom solution
to demonstrate a proof of concept. Our approach is applied on both traditional
text-first and multimodal-first event logs. The former maintains compatibility
with established benchmarks, while the latter (comprising videos with images
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Fig. 1: Overview of the end-to-end pipeline: From multimodal observations and
static concept mapping to temporal-semantic alignment and embedding-based
reasoning with respect to business knowledge anchors.

and audio) showcases the method’s capabilities in an emerging field where stan-
dardized benchmarks are still under development.

To illustrate why our event logs can easily be multimodal data, we pro-
vide an illustration in Fig. 1 that presents our overall pipeline. The proposed
pipeline begins with a multimodal data stream—including video, audio, and sen-
sor traces—from which static entities such as actor Z, tool A, or item X are
extracted via object detection and mapped to conceptual categories (Conceptu-
alizing Statics). A semantic alignment layer then performs Timeline Sync, Ontol-
ogy Integration, and Key Points Tracking to organize these elements across time
and meaning, enabling Conceptualizing Dynamics and Structure. The resulting
representations are embedded into a joint concept space, where observed enti-
ties are aligned with curated business knowledge points, allowing reasoning over
semantic distances and classification into domain labels. As in Fig. 1, various in-
put sources—such as video frames, audio signals, and text annotations—are first
detected or segmented (e.g., identifying a phone, a pair of pliers, and a hand in
the scene). These individual elements are then converted into continuous embed-
dings using a unified embedding model, thereby mapping potentially diverse data
(e.g., speech, visuals, labels) into the same semantic space. In doing so, concepts
like “tool,” “item,” and “environment” become interchangeable across modes,
allowing downstream process-mining tasks to treat audio-visual segments and
textual descriptions as equivalent when their embeddings are sufficiently close.
This facilitates a robust and flexible interpretation of events, as small variations
(such as synonyms or slightly different camera angles) are handled naturally
through their proximity in the embedding space.

4.1 Embedding Space Operations

To capture the semantic meaning of each activity, we convert the event descrip-
tions (in particular, activity and resource attributes) into embeddings—arrays of
floating-point numbers representing latent features of the content. For text-first
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logs, we use the Ollama package2, which offers a variety of embedding models
(e.g., nomic-embed-text, bge-large, granite-embedding, snowflake-artic-embed2 ) as
well as several large language models (e.g., deepseek-r1, v3, gemma3, llama3.3,
phi4, mistral, mixtral, qwen2.5, etc.). For multimodal-first logs, we employ
ImageBind [12], which projects seven modalities into the same embedding space.
In our implementation, we favor the nomic-embed-text model because it is
open source, uses open data, and provides accessible training code. Note that
the Nomic algorithm enforces a maximum context length of 8192 characters for
any text input.

Context Length Verification Before embedding, we ensure that every event
description meets the context length requirement. Our analysis reveals that al-
though there is a wide range of lengths, all event descriptions remain below the
8192-character threshold. Keep in mind that embedding time is correlated with
the length of the text. On our evaluation set, embedding all events took less
than 1 second on a single A40 GPU (48 GB Memory, 10752 CUDA cores).

Embedding Computation We compute the embeddings by iterating over each
event description and invoking the embedding function. Algorithm 1 details the
embedding computation processes.

Algorithm 1 Compute Embeddings for Event Descriptions with Uniform
Modality

Require: A set of event descriptions E = {e1, e2, . . . , en}
Require: A boolean flag is multimodal indicating whether the set is multimodal
Require: A text embedding model functionMtext ▷ e.g., Ollama.embeddings with

model ’nomic’ OR
Require: A multimodal embedding model functionMmulti ▷ e.g., ImageBind
Ensure: A set of embedding vectors {emb(e1), emb(e2), . . . , emb(en)}
1: if is multimodal is true then
2: LetM←Mmulti

3: else
4: LetM←Mtext

5: end if
6: for each event description e ∈ E do
7: emb(e)←M(prompt = e)
8: end for
9: return {emb(e) | e ∈ E}

Event Embeddings Similarity Check via Cosine Similarity To validate
the usefulness of the embeddings, we compare them using cosine similarity. Al-
gorithm 2 defines the event embeddings similarity check via cosine similarity.
This function allows us to assess the similarity between two event embeddings.

2 https://ollama.com/

https://ollama.com/
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Algorithm 2 Event Embeddings Similarity Check via Cosine Similarity

Require: Two vectors a, b ∈ Rd

Ensure: Cosine similarity score s ∈ [−1, 1]

1: dot product←
d∑

i=1

ai × bi

2: magnitude a←

√√√√ d∑
i=1

a2
i

3: magnitude b←

√√√√ d∑
i=1

b2i

4: s← dot product

magnitude a×magnitude b
5: return s

Clustering and Visualization The embeddings enable us to cluster similar
events in the n-dimensional space. We perform hierarchical clustering using tool
scikit-learn and visualizing it using plot.ly (with its create dendrogram

function). At the top level, the dendrogram divides into two clusters, and further
subdivision yield more refined clusters. Although hierarchical clustering appears
promising for subsequent process discovery (by preparing data for the Inductive
Miner who naturally searches for cuts in the event logs), a detailed evaluation
of clustering methods is out of the scope for this paper and left for future work.

Visualization is achieved by reducing the embedding dimensions to 2 using
dimensionality reduction technique. We apply t-SNE (T-distributed Stochastic
Neighbor Embedding) via scikit-learn. Additionally, we utilize a large language
model, specifically llama3.3, to generate cluster labels based on its founda-
tional knowledge from extensive training data.

4.2 Process Mining Tasks on Embeddings

Once embeddings have been generated and clustered, we apply process mining
tasks using the pm4py [3] library. Our process mining pipeline consists of process
discovery and conformance checking.

We employ process discovery algorithm (Inductive Miner, Alpha Miner, Heuris-
tic Miner, etc., as described in the evaluation section). These algorithms take the
event logs, now enriched with clustering and embedding information, to generate
process models that capture the underlying workflow dynamics. After process
models are discovered, we perform conformance checking to compare the dis-
covered models with the actual event logs. This step quantitatively assesses the
alignment between the modeled process and the observed behavior. Algorithm 3
outlines our complete process mining pipeline.

Pipeline Overview. Figure 2 illustrates a pipeline that begins by projecting raw
events into a unified embedding space, where proximity denotes semantic similar-
ity. These embeddings are then clustered based on distance thresholds or density
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Algorithm 3 Process Mining Pipeline on Embeddings with Cluster Label Aug-
mentation

Require: Event log E
Require: Embedding generation algorithm (Algorithm 1)
Require: Clustering method (e.g., Hierarchical clustering)
Require: A language model (LLM) for naming clusters
Require: A set of process discovery algorithms A = {InductiveMiner, . . . }
Ensure: A set of process modelsM and corresponding conformance scores
1: E ← Extract activities and resource attributes from E
2: embs← {emb(e) | e ∈ E} ▷ Generate embeddings using Algorithm 1
3: Clusters← Clustering(embs)
4: for each cluster C ∈ Clusters do
5: labelsC ← Collect all event labels from events in C
6: nameC ← LLM(labelsC) ▷ Generate a unique name for cluster C
7: Replace the cluster label of each event in C with nameC
8: end for
9: E′ ← E augmented with cluster names
10: L ← Transform the augmented event log E′ into a format compatible with the

process mining tool
11: for each algorithm A ∈ A do
12: MA ← A(L) ▷ Discover a process model MA using algorithm A
13: scoreA ← ConformanceCheck(MA, L) ▷ Evaluate the conformance of MA

against log L
14: end for
15: return {(MA, scoreA) | A ∈ A}

criteria, and domain knowledge is applied to label each cluster with a descriptive
name. The events in the log are subsequently replaced with these cluster labels,
producing a discrete event log where items that share a latent concept (e.g., a
“cable” or a “tool”) are unified. This transformed log is finally processed by a
standard process mining tool pm4py [3], allowing for conformance checking, and
discovery, in a conventional event-log format despite originating from diverse,
multimodal sources.

Future directions in the proof of concept include (1) experimenting with al-
ternative clustering methods and dimensionality reduction techniques, and (2)
integrating the entire pipeline into an interactive application for rapid prototyp-
ing and iterative refinement.

5 Evaluation

To evaluate the central premise of this work—that AI’s internal representations
can serve as a new form of process evidence beyond traditional event logs—we
systematically assess our embedding-based process mining framework with re-
spect to the three research questions introduced earlier, covering discovery ac-
curacy, multimodal applicability, and tolerance in conformance checking.
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Fig. 2: Overview of transforming embeddings into discrete event labels for process
mining. On the left, various concepts reside in a shared embedding space, where
proximity indicates semantic similarity (e.g., “Domain Label 1” vs. “Domain
Label 2”). Through clustering and domain expertise, each cluster is assigned a
human-readable name. On the right, an event log schema is shown with references
to the clustered concepts. The final step replaces events with their corresponding
cluster names, producing an event log suitable for standard process mining tools
such as PM4Py.

Firstly, we present an evaluation of our proposed approach by examining it
from two perspectives. First, in Section 5.1, we introduce and apply a series
of metrics designed to quantify the performance of relaxed process mining, in-
cluding discovery and conformance checking in embedding space. This analysis
showcases how our approach handles noise, manages embedding variability, and
accommodates multimodal data while remaining consistent with the underlying
process model. Next, in Section 5.2, we evaluate our proof of concept. Here, we
compare our embedding-based discovery algorithm against established process
discovery techniques, and demonstrate the method’s ability to produce accurate,
high-level semantic models—even when dealing with heterogeneous data sources
such as video. Finally, in 5.3, we discuss our results and respond to our research
questions defined in Sec. 1.

5.1 Evaluating Relaxed Process Mining

In the evaluation of the general perspective of the relaxed process mining, we
consider embeddings corresponding to activities in the reference (traditional)
text-first event log. For relaxed process discovery, we define a relaxed fitness
metric as the ratio of events in the log for which there exists a representative
activity r in the discovered model such that |e − r| ≤ δ, and we quantify the
average deviation by AvgDev = 1

|E|
∑

e∈E minr∈M |e− r|, where E is the set of

event embeddings and M is the set of representative embeddings in the process
model. Additionally, we measure precision by assessing the fraction of behavior
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allowed by the model that is observed in the log and evaluate model simplicity
by the overall size of the process tree. For relaxed conformance checking, we
compute the optimal alignment cost C(A) for each trace T and normalize it to

obtain a fitness score F (T ) = 1 − C(A)

|T |·max δ,γ , where γ > 0 is the fixed penalty

for skipping events and |T | denotes the length of the trace. We further consider
the percentage of events that are aligned directly (i.e., with cost |e − r| ≤ δ)
and the fraction of traces that remain conformant when allowing a noise toler-

ance α, expressed as |e∈T :minr |e−r|>δ|
|T | ≤ α. Moreover, to evaluate the robust-

ness with respect to synonyms, we calculate the proportion of synonym sets for
which the maximum pairwise distance satisfies max |ei − ej | : ei, ej ∈ Sw ≤ δ,
and in the multimodal setting we measure the agreement within video segments
by determining the fraction of segments for which minf∈F |f − r| ≤ δ, with
F representing the set of frame embeddings. These metrics collectively provide
a rigorous quantitative assessment of both the relaxed process discovery and
conformance-checking approaches, highlighting their ability to handle noise, em-
bedding variability, and multimodal data while maintaining consistency with the
underlying process model.

5.2 Evaluating the Proof of Concept

In benchmarking, we compared our embedding-based process discovery algo-
rithm with established process discovery algorithms, including Inductive Miner
infrequent (IMf), Inductive Miner incomplete (IMc), and Split Miner (SM). De-
spite the inability to include the Probabilistic Inductive Miner (PIM) and the
Approximate Miner (AIM)—owing to proprietary constraints—our approach
consistently achieved the same precision and accuracy as the pm4py implemen-
tations in 100% of the cases. This finding underscores that when the clustering
threshold is set to a sufficiently low value (zero), the embedding-based process
discovery yields models that are as reliable as those produced using traditional
symbolic methods.

For multimodal event logs, we validated our approach using a diverse set
of datasets enriched with video evidence, in particular, DNA testing [8], and
IKEA [9]. These datasets illustrate the framework’s capability to convert hetero-
geneous data into a unified embedding space, thereby enabling the extraction of
high-level semantic process models. It is important to emphasize that our pro-
duced models are not directly comparable to models derived via conventional
computer vision techniques, which focus on precise object and actor identifica-
tion, because our focus is on capturing broader, abstract semantic relationships.

The true applicability of our methodology in real-life scenarios would be ver-
ified on processes mined from event logs generated by AI detection, recognition,
and classification systems. Our proof of concept establishes that transitioning to
an embedding space does not compromise the accuracy and precision of process
models—in fact, it matches the performance of symbolic approaches when clus-
tering thresholds are appropriately low. For a more detailed comparison across
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datasets and mining algorithms, we invite readers to consult the supplementary
materials accompanying this work.

5.3 Discussion

The empirical results obtained from both our relaxed metric evaluation and
the proof-of-concept implementation support the hypothesis that embedding-
based process mining can effectively substitute—and in some contexts, outper-
form—symbolic approaches. Our findings confirm that semantic reasoning over
embeddings maintains conformance and precision, scales to multimodal data,
and enhances tolerance to noise and synonymy.

Revisiting Research Questions

RQ1. Accuracy of Embedding-based Discovery. Compared to IMf,
IMc, and SM, our relaxed discovery algorithm achieved equivalent or supe-
rior precision (mean = 0.91) and relaxed fitnessa (M = 0.88, SD = 0.04),
with average deviation AvgDev = 0.12.
RQ2. Handling Multimodal Unstructured Data. Across datasets
(e.g., IKEA, DNA Testing), we successfully generated process models from
video-derived embeddings. Agreement across frame-wise representations av-
eraged 82.6%b, with cross-modality alignment yielding semantically coher-
ent behavior clusters.
RQ3. Conformance Checking in Embedding Space. In a targeted
experiment, we assessed relaxed conformance against perturbed event se-
quences (adding semantic noise). Despite lexical divergence, our approach
preserved alignment fitness (M = 0.84) at a tolerance δ = 0.18. Additionally,
78.3% of perturbed traces remained within conformance under α = 0.25c.

a Relaxed fitness defined as proportion of events in embedding space within δ =
0.15 distance of reference model nodes.

b Agreement defined as proportion of frames for which minf∈F |f − r| ≤ δ.
c α denotes the maximum allowed fraction of out-of-bound events per trace.

Response to the RQs. Our evaluation shows that process discovery (RQ1) in em-
bedding space achieves comparable statistical performance to symbolic baselines,
with tighter semantic clustering and reduced model size. Multimodal integration
(RQ2) proved feasible via unified embeddings, especially in video-rich domains
where visual features dominate symbolic traces. Finally, conformance checking
(RQ3) benefited from the neighborhood-based tolerance δ, capturing semanti-
cally correct but lexically altered traces with high robustness. Together, these
findings reinforce our claim: embedding spaces are not only expressive but also
actionable domains for next-generation process mining.



14 A. Gavric et al.

6 Conclusion

This paper advances the idea that AI’s internal representations—embedding
spaces—can serve as a new form of process evidence, moving beyond traditional
symbolic logs. We proposed a relaxed formulation of process mining that operates
in an embedding space, enabling discovery and conformance checking based on
similarity in vector space rather than symbolic equality. This allows for handling
semantically similar but lexically or visually divergent events, including those
extracted from multimodal inputs.

Through a general framework and a proof-of-concept implementation, we
showed that embedding-based mining performs comparably to symbolic tech-
niques under controlled thresholds, while offering additional flexibility for pro-
cessing diverse data types. The approach supports six modalities and demon-
strates potential for unified process analysis from text, images, audio, and other
inputs. By looking beyond symbolic logs and toward AI’s internal representa-
tions, this work outlines a direction for process mining that accommodates un-
structured and multimodal inputs while remaining interpretable and measurable.
Further studies are needed to assess scalability, generalization, and integration
with existing process analysis pipelines.
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