

Introducing BIGUML: A Flexible Open-Source GLSP-based
Web Modeling Tool for UML

Haydar Metin and Dominik Bork

To appear in:

Companion Proceedings of the 26th International Conference on
Model Driven Engineering Languages and Systems,

Tools & Demos (MODELS-C 2023)

© 2023 by IEEE.

Final version available soon:

www.model-engineering.info

Introducing BIGUML: A Flexible Open-Source
GLSP-based Web Modeling Tool for UML

Haydar Metin
Business Informatics Group, TU Wien, Vienna, Austria

haydar.metin@tuwien.ac.at,

Dominik Bork
Business Informatics Group, TU Wien, Vienna, Austria

dominik.bork@tuwien.ac.at,

Abstract—Unified Modeling Language (UML) plays a cru-
cial role in software development by providing a standardized
notation for visualizing, specifying, and documenting system
architectures. Traditional UML modeling tools often follow a rich
client approach and suffer from limitations such as steep learning
curves and restricted extensibility. Usually, those tools are also
proprietary and constrained to specific platforms. This paper
presents BIGUML, a flexible, open-source UML modeling tool
implemented as a Visual Studio Code extension leveraging the
Graphical Language Server Protocol (GLSP) to offer a seamless
modeling experience with rich features and enhanced usability.
The early release already supports the Class and the Use Case
diagram, further UML diagrams will follow soon iteratively. We
introduce BIGUML and highlight, how its flexible architecture
allowed the integration of custom features, such as the property
and outline view, and contextual copy-paste operations. The
BIGUML modeling tool is one of the first tools to incorporate
GLSP and to be distributed through the VS Code ecosystem.

Index Terms—UML, Software modeling, GLSP, Modeling tool,
Web modeling, LSP

I. INTRODUCTION

Unified Modeling Language (UML) is a foundational nota-
tion for visualizing, specifying, constructing, and documenting
complex software systems. UML diagrams provide a standard-
ized way to communicate design concepts, architecture, and
behavior among software development teams. The develop-
ment of modeling tools has a long tradition within the MOD-
ELS community and the broader modeling communities [1].
For this reason, the modeling community has developed many
UML tools in the past [2]. However, a recent survey and
evaluation showed the current tools are not satisfactorily
addressing the requirements of their users such as effectively
assisting them on creating models or providing enough context
information [3]. To address this issue, there is a need for
modern, flexible, and open UML modeling tools that facilitate
advanced visualization and interaction functionalities (cf. [4]).
In response to this need, the Language Server Protocol (LSP)
and the Graphical Language Server Platform (GLSP) have
gained popularity for their capabilities in enhancing code
editors’ functionality and are used in numerous popular IDEs
like Eclipse, Theia, and VS Code. A comprehensive discussion
of the flexibility enabled by GLSP-based web modeling tools
is provided in [5], [6].

Part of this research was funded through the FFG Innovationsscheck
entitled ’Automatisiertes End-to-End-Testen von Cloud-basierten Model-
lierungswerkzeugen’ (No. 903552).

In this paper, we present BIGUML. This UML modeling
tool utilizes GLSP to enhance the UML modeling experience,
which, to the best of our knowledge, is the first realized
and released GLSP open-source UML editor for VS Code
available. By utilizing the GLSP framework and a well-known
domain like UML with multiple intricate complexities, we
demonstrate that it is possible to have a paradigm shift from
traditional modeling tools. We will provide an overview of
BIGUML’s theoretical aspects (Section II), followed by the
features it exposes (Section III), a short discussion about
available related tools (Section IV), and the future outlook
of BIGUML (Section V).

II. THE BIGUML MODELING TOOL

The core technology utilized by BIGUML is the Graphical
Language Server Platform (GLSP), which is an open-source
framework designed for creating customized diagram editors
using web technologies [6] hosted by the Eclipse Foundation.
Editors developed using GLSP can be easily integrated into
web applications and tool platforms like Eclipse Theia and VS
Code, and even traditional Rich Client Application platforms
like Eclipse RCP. Accordingly, GLSP adopts the structure
and principles introduced by the Language Server Protocol
(LSP) [7], [8]. However, GLSP extends LSP to address specific
challenges that arise when dealing with graphical models
as opposed to textual documents (cf. [9]). These challenges
include transitioning from a two-dimensional representation
(document row and character position) to a three-dimensional
space (where elements occupy a geographical area and can
include child elements) and moving from simple character-
based editing operations to complex ones, such as creating
relationships between nodes in a diagram and restricting
allowed connections, among others [5], [6].

Fig. 1 showcases the various components within GLSP.
Firstly, we have the source models, which contain the actual
model data, such as a UML model. Next, we have the
server framework, which holds language-specific knowledge
and functionalities related to the model and domain. The third
component is the GLSP-Client, a language-agnostic graphical
modeling client. This client is responsible for rendering the
diagram and managing user interfaces. Remarkably, the GLSP-
Client can be seamlessly integrated into different platforms,
including Theia and VS Code. Lastly, the GLSP-Client and
server communicate with each other through messages defined

https://orcid.org/0009-0000-1328-4119
https://orcid.org/0000-0001-8259-2297

Server
FrameworksClient Framework

Extensible Protocol

Pl
at

fo
rm

 I
n

te
gr

at
io

n
s

Source Model
action

action

operations,
graph update,

palette actions,
navigation targets, ...

M
od

el
 M

an
ag

em
en

t

EMF, JSON, ... em
f.cloud

Standalone

Theia

VS Code

Eclipse

Fig. 1: Overview of GLSP components and their interplay [6]

in a flexible and extensible protocol. This protocol enables
smooth and efficient data exchange between the client and
server, allowing them to work together. More information
regarding GLSP can be taken from their documentation1 and
from [6]. A discussion on how characteristics of graphical
modeling languages can facilitate the flexibility of the core
LSP protocol is presented in [9]. The subsequent sections
focus on the GLSP-based architecture of BIGUML and the
tool deployment within VS Code.

A. BIGUML Architecture

Fig. 2 illustrates the BIGUML reference architecture, which
the different deployed components (e.g., servers), such as
the GLSP-Server and the model server internally adhere to.
For a detailed understanding of the reference architecture,
the interested reader is referred to [5]. In this context, the
BIGUML architecture aligns with the adaptable and reusable
components presented there. In the following, we will provide
only a brief overview of the fundamental principles that shape
the BIGUML architecture.

Core

Tool Features

Module 1

Module 2

Manifest Contribution ...

Manifest Contribution ...

Diagram Features

Feature 2

Representation
Handling

Contribution ...

Feature 1 Contribution ...

Framework (e.g.,
GLSP, ModelServer)

Flow
Generalization

Instance
Management

Module 1 Manifest ...

Module 2 Manifest ...

Contribution

Module

Fig. 2: BIGUML Architecture

BIGUML adopts a modular architecture. It leverages Depen-
dency Injection and various design patterns such as Separation
of Concerns, Single Source of Truth, and Single Responsibility
Principle. Furthermore, the architecture is categorized into
three main components: Core, Tool, and Diagram features,
each responsible for governing different aspects of the appli-
cation.

1https://eclipse.dev/glsp/documentation/overview/

• Core features: These components directly interact with
the server and the underlying framework and serve as
entry points for other features. They lack language-
specific information while acting as a bridge between the
server and other functionalities. Overall, they manage the
server application and handle any changes introduced by
the evolving framework.

• Diagram features: These components offer language-
specific functionality and have access to the source
model. They facilitate CRUD (Create, Read, Update,
Delete) operations for other features to control the mod-
ifications of the source model.

• Tool features: These components extend the functionality
by utilizing Core and Diagram features. They provide ad-
ditional language-agnostic capabilities that are not present
in the server framework, such as custom diagram outlines,
copy-paste, and auto-complete.

Moreover, within each module, two crucial concepts, Con-
tributions, and Manifests, are introduced, operating like plugin
systems known from other applications. These modules expose
contribution points, which allow the introduction of extra
functionalities in the module by delegating their execution to
registered components. This delegation allows functionalities
to be executed from implementations outside the module’s
primary responsibility.

In essence, Contributions establish well-defined interfaces
for these delegated functionalities, which can be registered
externally. On the other hand, Manifests serve as containers for
dependency injection. They are responsible for registering the
functionality requested from the Contributions and ensuring
that the necessary functionalities are available and accessible
when required. This way, the architecture maintains flexibility
and modularity and eases the integration of new features while
adhering to a clean separation of concerns.

B. Multi Representation Support

One of the main reasons for adhering to the reference
architecture is to efficiently support various diagram represen-
tations, as UML encompasses numerous elements that can be
visualized in different forms and shapes. Specifically, UML
version 2 includes seven Structure Diagrams and seven Be-

https://eclipse.dev/glsp/documentation/overview/

havior Diagrams, which share some common primitive types.
For instance, the Communication and Sequence diagrams
largely share the same elements which are visually represented
differently in both diagrams but saved similarly in the source
models—because we are using the UML 2 Ecore resources.

Consequently, the system saves the active representation
from the current source file to handle this diversity. This
information also enables the system to load and utilize dif-
ferent features based on the specific diagram representation.
Moreover, it also allows rendering elements depending on the
representation while reusing the same components from the
source models. This approach ensures greater flexibility and
reusability within the system.

C. Deployment

BIGUML follows a client-server architecture, where distinct
roles are assigned to each side. The server side implements
language-specific functionalities, while the client solely fo-
cuses on presenting the information to users as already men-
tioned before. This approach is widely known as the language
server protocol, which modern editors utilize. In the case of
BIGUML, the server side is responsible for processing requests
related to the UML editor by implementing language-specific
functionality. On the other hand, the client side provides the
user interface in VS Code and displays the UML diagrams
and information to the users. The concrete components used
on a running system are illustrated in Fig. 3 and defined in
the following paragraphs.

ModelServer

GLSP-ServerExtension
(VS Code)

GLSP-Client

Files
(UML, Notation)

Fig. 3: BIGUML Deployment

a) Extension: BIGUML is distributed as an extension
that users can easily install from the VS Code marketplace
to enable a seamless UML modeling experience within VS
Code. The extension’s primary responsibility is handling the
presentation of UML diagrams and enabling interaction with
the diagram in the editor without getting involved in language-
specific complexities. For diagram rendering and communi-
cation with the server, BIGUML relies on the GLSP-Client,
which complements the GLSP-Server. Additional information
will be discussed in more detail in Section III-B.

b) GLSP-Server: The GLSP-Server is a Java-based ap-
plication utilizing the GLSP framework. It functions as the
counterpart to the GLSP-Client and is responsible for tasks
such as transforming the UML model into diagrams for
rendering in the GLSP-Client and handling other triggered
user actions in the editor. Notably, the GLSP-Server does
not directly manage the source models; instead, it reads the

models from the model server. Any modification requests
concerning the source models are forwarded by the GLSP-
Server to the model server. This separation of responsibilities
ensures efficient and organized management of diagrams and
source models.

c) Model server: The model server is responsible for
managing all aspects of the source models and performing
CRUD operations on them. It is the only part of the system
capable of reading and understanding UML files stored on the
disk and modifying them accordingly. For instance, when the
GLSP-Client needs to render diagrams, it requests data from
the GLSP-Server, which, in turn, retrieves the content from
the model server. The GLSP-Server then returns the UML
elements as a diagram to be rendered in the GLSP-Client.
This division of responsibilities guarantees that the model
server maintains complete control over the source models,
consequently ensuring data integrity and proper management
of UML files stored on the disk.

Apparent to the components visible, the BIGUML extension
has a runtime requirement to function properly. Accordingly,
after starting the extension in VS Code, it will automatically
also start those servers in the background.

III. BIGUML IN USE

Next, we will present examples regarding BIGUML and
explore functionalities that are currently available.

A. Example

To showcase the main features of the BIGUML tool, we
show two examples, as seen in Fig. 4 and Fig. 5. The former
is a simple class diagram for a lecture web service, and the
latter is a use case diagram for an airport check-in. In detail,
the BIGUML extension is structured into two parts. On the
left side, we have a custom panel that integrates directly into
VS Code and provides contextual functionalities based on the
active diagram. This panel currently consists of two views: the
property view (visible in Fig. 4) and the outline view (visible in
Fig. 5). Accordingly, the property view displays properties and
details of selected elements in the diagram, while the outline
view provides an overview of the diagram in a tree structure.
The rest of the editor is taken by the diagram, presented within
a custom tab. In this tab, the GLSP-Client renders the diagram
and offers additional custom functionalities to enhance the user
experience for working with the diagram, such as the tool
palette (visible on the right side of Figs 4 and 5).

B. BIGUML Core Functionalities

BIGUML utilizes the GLSP framework as the foundation.
That means that the GLSP framework already provides the
editor with a set of pre-built features. The GLSP framework
provides all the fundamental means to interact with the dia-
gram, including renaming of graphical elements via a double-
click and deleting via shortcuts. Next, it exposes a tool palette
which is a list of options to select the node or edge to create in
the diagram. The GLSP framework also provides a command

Fig. 4: BIGUML Class diagram Fig. 5: BIGUML Use Case diagram

palette. The command palette is similar to other modern
editors and allows the users to trigger specific commands.
Similarly, it allows to execute commands with regard to the
selected graphical element. More features exist, like diagram
validation which shows markers on the graphical elements.

On top of those features, BIGUML introduces additional
features that expand the capabilities beyond what the GLSP
framework offers alone.

1) Wizard: The wizard in BIGUML serves as a useful way
to create new diagrams and guides users through a step-by-
step process. At present, users can specify the diagram’s name
and select the desired diagram type. Additionally, the wizard
validates that the chosen path is valid to ensure an error-free
diagram creation.

2) Property Palette: As previously mentioned, the property
palette provides a means to modify the selected element
outside the diagram. This feature proves valuable in cases
where certain actions are not feasible through the graphical
representation in the editor alone. For instance, many elements
have multiple properties that users can customize. Displaying
all of these properties directly on the diagram would make it
cluttered and confusing. For this reason, the property palette
offers a dedicated space where information that influences the
source model can be accessed and edited without overloading
the graphical editor.

Moreover, the property palette also serves as a convenient
way to create new child properties, e.g., for enumerations and
their enumeration literals. This fast and accessible method
enables users to efficiently manage and customize properties
without complicating the diagram’s visual presentation.

3) Outline View: The outline view functions as an overview
of all elements present in the diagram. It provides users with a
quick way to navigate and select specific elements. Moreover,
it is bi-directional, which means that the users can see the
selected item in the diagram highlighted as an entry in the
outline view as well. By offering this comprehensive view,
users can easily keep track of the entire diagram’s content,
ensuring they do not lose sight of the overall structure. Overall,
the outline view is valuable in clearly understanding the
diagram’s composition.

4) Contextual (Copy-) Paste: Another noteworthy feature
is the server’s ability to perform context-based copy-paste
operations. Typically, when users select elements and perform

a paste operation, all the selected entries are duplicated. How-
ever, in the case of graphical elements, it can happen that not
all the necessary graphical elements have been selected by the
user. In such instances, it is up to the server to determine how
to handle the paste operation. This also means that the outcome
can be influenced programmatically, in particular depending on
the diagram representation (e.g., the active diagram type).

Consider the default implementation for duplicating an
edge. If the source or target node is not selected, the server
may choose to reuse the existing node the edge is connected to
and duplicate only the rest. On the other hand, if all elements
are selected, the server may duplicate all the interconnected
elements together, creating new connections between them.
This context-based approach ensures that the copy-paste oper-
ation adapts to the specific elements selected and maintains the
semantic integrity of the diagram while providing a seamless
user experience.

IV. RELATED TOOLS

A wide variety of UML modeling tools are available 2, and
on the surface, they may seem similar, as shown in Table I.
This section compares some of these UML tools to highlight
their key differences because each of them allows users to
create UML diagrams to some extent. A more comprehensive
comparison to the related tools can be found in [2] and is out
of scope of this tool paper.

Eclipse Papyrus3 and StarUML4 are both robust UML
editors, each offering a native application for users. Papyrus
is an industrial-grade open-source model-based engineering
tool [10]. However, Papyrus can be complex, and its user
interface may not be as intuitive compared to more modern
tools. On the other hand, StarUML, which is also widely
known, requires a fee for usage and is not open-source.
Draw.io5 is a general graphical creation tool that mainly
focuses on the visual representation of diagrams and lacks
emphasis on the underlying semantics as it offers basic support
for UML. Meanwhile, PlantUML6 is an advanced tool that
enables diagram creation through a simple plain text language

2https://modeling-languages.com/uml-tools/
3https://eclipse.dev/papyrus/index.php
4https://staruml.io/
5https://www.drawio.com/
6https://plantuml.com/

https://modeling-languages.com/uml-tools/
https://eclipse.dev/papyrus/index.php
https://staruml.io/
https://www.drawio.com/
https://plantuml.com/

TABLE I: Related Tools

BIGUML Papyrus PlantUML StarUML Draw.io

Open Source Yes Yes Yes No (licensed) Yes (with limitations)

Platform VS Code Native Application Multi-Platform Native Application Web, VS Code

Input Type Graphical Graphical Text Graphical Graphical

UML Focus Yes Yes Yes Yes No

LSP Yes No No No No

specification. Yet, it is not possible for users to freely position
the graphical elements according to the users’ preferences.

Although BIGUML also aims to create UML diagrams,
it sets itself apart by fully utilizing the Language Server
Protocol and the available UML semantics. This approach
makes it the first modeling tool to leverage LSP for UML
and being distributed through the VS Code ecosystem. Using
LSP, users can easily reuse the capabilities of the BIGUML
language server in other editors like Theia or other platforms.
Additionally, developers can define their diagrams in the same
environment where they write their code.

Note that BIGUML is still under active development and
may not be as powerful as well-established tools like Papyrus
or StarUML. However, new features and diagram types are
continuously being introduced in iterative updates.

V. FUTURE WORK

BIGUML is currently in its early release stage and is
actively being developed. As the foundational components of
the architecture are being prepared, students from TU Wien are
working on developing various UML diagram types. However,
these diagrams are still under review and need to be integrated
into the extension gradually before they become accessible to
external users. Additionally, the visual representation of these
different diagram types is still a work in progress.

In the future, BIGUML plans to introduce smart features
that enhance the user experience. These features may include
automating the creation of elements, intelligently connecting
nodes based on the context, and allowing users to further
customize the visual rendering of the diagrams [11]. These
enhancements are aimed at providing users with a more effi-
cient and personalized UML modeling experience. Moreover,
it is planned to allow the users to customize how the graphical
elements are rendered and to allow the users to import UML
models from other tools like Papyrus.

VI. CONCLUSION

In this paper, we introduced the BIGUML modeling tool,
a promising approach to UML modeling within the realm
of available UML tools. While there is a wide variety of
UML editors, each with its strengths and limitations, BIGUML
stands out by being flexible to extend by other developers, fully
harnessing the LSP capabilities, and seamlessly integrating
into the VS Code ecosystem7. BIGUML aims to provide a
modeling tool that teachers can recommend and use in model-
ing courses according to their preferences. Future versions will

7https://tinyurl.com/biguml-vscode

provide richer functionalities to make the modeling experience
smoother and more appealing. We are also working on a
collaboration feature.

Overall, BIGUML emphasizes combining user-friendliness
with powerful UML modeling capabilities through the GLSP
framework to become a valuable tool for UML enthusiasts and
developers. As technology evolves and user feedback shapes
development, BIGUML aims to contribute significantly to the
UML modeling landscape. A video showcasing BIGUML in
use can be found at: https://youtu.be/GR-hSB0ZOfE.

ACKNOWLEDGMENTS

We want to thank EclipseSource Vienna for the close
collaboration and all the students of TU Wien who contributed
to the development and evaluation of BIGUML.

REFERENCES

[1] H. Ossher, A. van der Hoek, M. D. Storey, J. Grundy, and R. K. E. Bel-
lamy, “Flexible modeling tools (FlexiTools2010),” in 32nd ACM/IEEE
Int. Conf. on Software Engineering - Volume 2, 2010, pp. 441–442.

[2] M. Ozkaya, “Are the UML modelling tools powerful enough for
practitioners? A literature review,” IET Softw., vol. 13, no. 5, pp. 338–
354, 2019.

[3] P. Pourali and J. M. Atlee, “An empirical investigation to understand the
difficulties and challenges of software modellers when using modelling
tools,” in 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. ACM, 2018, pp. 224–234.

[4] G. D. Carlo, P. Langer, and D. Bork, “Advanced visualization and
interaction in GLSP-based web modeling: realizing semantic zoom and
off-screen elements,” in 25th International Conference on Model Driven
Engineering Languages and Systems. ACM, 2022, pp. 221–231.

[5] H. Metin and D. Bork, “On developing and operating glsp-based web
modeling tools: Lessons learned from bigUML,” in Proceedings of the
26th International Conference on Model Driven Engineering Languages
and Systems, MODELS 2023. IEEE, 2023.

[6] D. Bork, P. Langer, and T. Ortmayr, “A vision for flexibile glsp-based
web modeling tools,” CoRR, vol. abs/2307.01352, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2307.01352

[7] “Microsoft language server protocol specification,” https://microsoft.
github.io/language-server-protocol/specifications/specification-current/,
accessed: 13.04.2023.

[8] “Microsoft language server protocol implementations,” https:
//microsoft.github.io/language-server-protocol/implementors/servers/,
accessed: 13.04.2023.

[9] R. Rodrı́guez-Echeverrı́a, J. L. C. Izquierdo, M. Wimmer, and J. Cabot,
“Towards a language server protocol infrastructure for graphical mod-
eling,” in 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. ACM, 2018, pp. 370–380.

[10] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA,” in 5th European Conference on Model-Driven
Architecture Foundations and Applications, 2009, pp. 1–4.

[11] G. D. Carlo, P. Langer, and D. Bork, “Rethinking model representation
- A taxonomy of advanced information visualization in conceptual
modeling,” in 41st International Conference on Conceptual Modeling.
Springer, 2022, pp. 35–51.

https://tinyurl.com/biguml-vscode
https://youtu.be/GR-hSB0ZOfE
https://doi.org/10.48550/arXiv.2307.01352
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/

	Introduction
	The bigUML Modeling Tool
	bigUML Architecture
	Multi Representation Support
	Deployment

	bigUML in Use
	Example
	bigUML Core Functionalities
	Wizard
	Property Palette
	Outline View
	Contextual (Copy-) Paste

	Related Tools
	Future Work
	Conclusion
	References

